u-boot/drivers/mtd/nand/fsl_upm.c
Wolfgang Grandegger a75a57ef6e NAND FSL UPM: driver re-write using the hwcontrol callback
This is a re-write of the NAND FSL UPM driver using the more universal
hwcontrol callback (instead of the cmdfunc callback). Here is a brief
list of furher modifications:

- For the time being, the UPM setup writing the UPM array has been
  removed from the driver and must now be done by the board specific
  code.

- The bus width definition in "struct fsl_upm_nand" is now in bits to
  comply with the corresponding Linux driver and 8, 16 and 32 bit
  accesses are supported.

- chip->dev_read is only set if fun->dev_ready != NULL, which is
  required for boards not connecting the R/B pin.

- A few issue have been fixed with MxMR bit manipulation like in the
  corresponding Linux driver.

Note: I think the "io_addr" field of "struct fsl_upm" could be removed
      as well, because the address is already determined by
      "nand->IO_ADDR_[RW]", but I'm not 100% sure.

This patch has been tested on a TQM8548 modules with the NAND chip
Micron MT29F8G08FABWP.

This patch is based on the following patches posted to this list a few
minutes ago:

  PPC: add accessor macros to clear and set bits in one shot
  83xx/85xx/86xx: add more MxMR local bus definitions

Signed-off-by: Wolfgang Grandegger <wg@grandegger.com>
Acked-by: Anton Vorontsov <avorontsov@ru.mvista.com>
2008-06-10 18:22:26 -05:00

165 lines
3.7 KiB
C

/*
* FSL UPM NAND driver
*
* Copyright (C) 2007 MontaVista Software, Inc.
* Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <config.h>
#if defined(CONFIG_CMD_NAND) && defined(CONFIG_NAND_FSL_UPM)
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/fsl_upm.h>
#include <nand.h>
static int fsl_upm_in_pattern;
static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset)
{
clrsetbits_be32(upm->mxmr, MxMR_MAD_MSK, MxMR_OP_RUNP | pat_offset);
}
static void fsl_upm_end_pattern(struct fsl_upm *upm)
{
clrbits_be32(upm->mxmr, MxMR_OP_RUNP);
while (in_be32(upm->mxmr) & MxMR_OP_RUNP)
eieio();
}
static void fsl_upm_run_pattern(struct fsl_upm *upm, int width, u32 cmd)
{
out_be32(upm->mar, cmd << (32 - width));
switch (width) {
case 8:
out_8(upm->io_addr, 0x0);
break;
case 16:
out_be16(upm->io_addr, 0x0);
break;
case 32:
out_be32(upm->io_addr, 0x0);
break;
}
}
static void nand_hwcontrol (struct mtd_info *mtd, int cmd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_upm_nand *fun = chip->priv;
switch (cmd) {
case NAND_CTL_SETCLE:
fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
fsl_upm_in_pattern++;
break;
case NAND_CTL_SETALE:
fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
fsl_upm_in_pattern++;
break;
case NAND_CTL_CLRCLE:
case NAND_CTL_CLRALE:
fsl_upm_end_pattern(&fun->upm);
fsl_upm_in_pattern--;
break;
}
}
static void nand_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *chip = mtd->priv;
if (fsl_upm_in_pattern) {
struct fsl_upm_nand *fun = chip->priv;
fsl_upm_run_pattern(&fun->upm, fun->width, byte);
/*
* Some boards/chips needs this. At least on MPC8360E-RDK we
* need it. Probably weird chip, because I don't see any need
* for this on MPC8555E + Samsung K9F1G08U0A. Usually here are
* 0-2 unexpected busy states per block read.
*/
if (fun->wait_pattern) {
while (!fun->dev_ready())
debug("unexpected busy state\n");
}
} else {
out_8(chip->IO_ADDR_W, byte);
}
}
static u8 nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
return in_8(chip->IO_ADDR_R);
}
static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
out_8(chip->IO_ADDR_W, buf[i]);
}
static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++)
buf[i] = in_8(chip->IO_ADDR_R);
}
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *chip = mtd->priv;
for (i = 0; i < len; i++) {
if (buf[i] != in_8(chip->IO_ADDR_R))
return -EFAULT;
}
return 0;
}
static int nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct fsl_upm_nand *fun = chip->priv;
return fun->dev_ready();
}
int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun)
{
if (fun->width != 8 && fun->width != 16 && fun->width != 32)
return -ENOSYS;
chip->priv = fun;
chip->chip_delay = fun->chip_delay;
chip->eccmode = NAND_ECC_SOFT;
chip->hwcontrol = nand_hwcontrol;
chip->read_byte = nand_read_byte;
chip->read_buf = nand_read_buf;
chip->write_byte = nand_write_byte;
chip->write_buf = nand_write_buf;
chip->verify_buf = nand_verify_buf;
if (fun->dev_ready)
chip->dev_ready = nand_dev_ready;
return 0;
}
#endif /* CONFIG_CMD_NAND */