u-boot/drivers/firmware/arm-ffa/arm-ffa-uclass.c
Abdellatif El Khlifi 482a0f1764 arm_ffa: fix: remove deadcode in ffa_print_error_log()
address the CID 464361 Control flow issues [1]

[1]: https://lore.kernel.org/all/20230821210927.GL3953269@bill-the-cat/

Signed-off-by: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
Cc: Tom Rini <trini@konsulko.com>
2023-10-30 15:32:49 -04:00

1063 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
*
* Authors:
* Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
*/
#include <common.h>
#include <arm_ffa.h>
#include <arm_ffa_priv.h>
#include <dm.h>
#include <log.h>
#include <malloc.h>
#include <string.h>
#include <uuid.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/devres.h>
#include <dm/root.h>
#include <linux/errno.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
/* Error mapping declarations */
int ffa_to_std_errmap[MAX_NUMBER_FFA_ERR] = {
[NOT_SUPPORTED] = -EOPNOTSUPP,
[INVALID_PARAMETERS] = -EINVAL,
[NO_MEMORY] = -ENOMEM,
[BUSY] = -EBUSY,
[INTERRUPTED] = -EINTR,
[DENIED] = -EACCES,
[RETRY] = -EAGAIN,
[ABORTED] = -ECANCELED,
};
static struct ffa_abi_errmap err_msg_map[FFA_ERRMAP_COUNT] = {
[FFA_ID_TO_ERRMAP_ID(FFA_VERSION)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: A Firmware Framework implementation does not exist",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_ID_GET)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: This function is not implemented at this FF-A instance",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_FEATURES)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: FFA_RXTX_MAP is not implemented at this FF-A instance",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_PARTITION_INFO_GET)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: This function is not implemented at this FF-A instance",
[INVALID_PARAMETERS] =
"INVALID_PARAMETERS: Unrecognized UUID",
[NO_MEMORY] =
"NO_MEMORY: Results cannot fit in RX buffer of the caller",
[BUSY] =
"BUSY: RX buffer of the caller is not free",
[DENIED] =
"DENIED: Callee is not in a state to handle this request",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_RXTX_UNMAP)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: FFA_RXTX_UNMAP is not implemented at this FF-A instance",
[INVALID_PARAMETERS] =
"INVALID_PARAMETERS: No buffer pair registered on behalf of the caller",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_RX_RELEASE)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: FFA_RX_RELEASE is not implemented at this FF-A instance",
[DENIED] =
"DENIED: Caller did not have ownership of the RX buffer",
},
},
[FFA_ID_TO_ERRMAP_ID(FFA_RXTX_MAP)] = {
{
[NOT_SUPPORTED] =
"NOT_SUPPORTED: This function is not implemented at this FF-A instance",
[INVALID_PARAMETERS] =
"INVALID_PARAMETERS: Field(s) in input parameters incorrectly encoded",
[NO_MEMORY] =
"NO_MEMORY: Not enough memory",
[DENIED] =
"DENIED: Buffer pair already registered",
},
},
};
/**
* ffa_to_std_errno() - convert FF-A error code to standard error code
* @ffa_errno: Error code returned by the FF-A ABI
*
* Map the given FF-A error code as specified
* by the spec to a u-boot standard error code.
*
* Return:
*
* The standard error code on success. . Otherwise, failure
*/
static int ffa_to_std_errno(int ffa_errno)
{
int err_idx = -ffa_errno;
/* Map the FF-A error code to the standard u-boot error code */
if (err_idx > 0 && err_idx < MAX_NUMBER_FFA_ERR)
return ffa_to_std_errmap[err_idx];
return -EINVAL;
}
/**
* ffa_print_error_log() - print the error log corresponding to the selected FF-A ABI
* @ffa_id: FF-A ABI ID
* @ffa_errno: Error code returned by the FF-A ABI
*
* Map the FF-A error code to the error log relevant to the
* selected FF-A ABI. Then the error log is printed.
*
* Return:
*
* 0 on success. . Otherwise, failure
*/
static int ffa_print_error_log(u32 ffa_id, int ffa_errno)
{
int err_idx = -ffa_errno, abi_idx = 0;
/* Map the FF-A error code to the corresponding error log */
if (err_idx <= 0 || err_idx >= MAX_NUMBER_FFA_ERR)
return -EINVAL;
if (ffa_id < FFA_FIRST_ID || ffa_id > FFA_LAST_ID)
return -EINVAL;
abi_idx = FFA_ID_TO_ERRMAP_ID(ffa_id);
if (!err_msg_map[abi_idx].err_str[err_idx])
return -EINVAL;
log_err("%s\n", err_msg_map[abi_idx].err_str[err_idx]);
return 0;
}
/* FF-A ABIs implementation (U-Boot side) */
/**
* invoke_ffa_fn() - SMC wrapper
* @args: FF-A ABI arguments to be copied to Xn registers
* @res: FF-A ABI return data to be copied from Xn registers
*
* Calls low level SMC implementation.
* This function should be implemented by the user driver.
*/
void __weak invoke_ffa_fn(ffa_value_t args, ffa_value_t *res)
{
}
/**
* ffa_get_version_hdlr() - FFA_VERSION handler function
* @dev: The FF-A bus device
*
* Implement FFA_VERSION FF-A function
* to get from the secure world the FF-A framework version
* FFA_VERSION is used to discover the FF-A framework.
*
* Return:
*
* 0 on success. Otherwise, failure
*/
int ffa_get_version_hdlr(struct udevice *dev)
{
u16 major, minor;
ffa_value_t res = {0};
int ffa_errno;
struct ffa_priv *uc_priv;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_VERSION), .a1 = FFA_VERSION_1_0,
}, &res);
ffa_errno = res.a0;
if (ffa_errno < 0) {
ffa_print_error_log(FFA_VERSION, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
major = GET_FFA_MAJOR_VERSION(res.a0);
minor = GET_FFA_MINOR_VERSION(res.a0);
log_debug("FF-A driver %d.%d\nFF-A framework %d.%d\n",
FFA_MAJOR_VERSION, FFA_MINOR_VERSION, major, minor);
if (major == FFA_MAJOR_VERSION && minor >= FFA_MINOR_VERSION) {
log_debug("FF-A versions are compatible\n");
if (dev) {
uc_priv = dev_get_uclass_priv(dev);
if (uc_priv)
uc_priv->fwk_version = res.a0;
}
return 0;
}
log_err("versions are incompatible\nExpected: %d.%d , Found: %d.%d\n",
FFA_MAJOR_VERSION, FFA_MINOR_VERSION, major, minor);
return -EPROTONOSUPPORT;
}
/**
* ffa_get_endpoint_id() - FFA_ID_GET handler function
* @dev: The FF-A bus device
*
* Implement FFA_ID_GET FF-A function
* to get from the secure world u-boot endpoint ID
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_get_endpoint_id(struct udevice *dev)
{
ffa_value_t res = {0};
int ffa_errno;
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_ID_GET),
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS)) {
uc_priv->id = GET_SELF_ENDPOINT_ID((u32)res.a2);
log_debug("FF-A endpoint ID is %u\n", uc_priv->id);
return 0;
}
ffa_errno = res.a2;
ffa_print_error_log(FFA_ID_GET, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_set_rxtx_buffers_pages_cnt() - set the minimum number of pages in each of the RX/TX buffers
* @dev: The FF-A bus device
* @prop_field: properties field obtained from FFA_FEATURES ABI
*
* Set the minimum number of pages in each of the RX/TX buffers in uc_priv
*
* Return:
*
* rxtx_min_pages field contains the returned number of pages
* 0 on success. Otherwise, failure
*/
static int ffa_set_rxtx_buffers_pages_cnt(struct udevice *dev, u32 prop_field)
{
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
switch (prop_field) {
case RXTX_4K:
uc_priv->pair.rxtx_min_pages = 1;
break;
case RXTX_16K:
uc_priv->pair.rxtx_min_pages = 4;
break;
case RXTX_64K:
uc_priv->pair.rxtx_min_pages = 16;
break;
default:
log_err("RX/TX buffer size not supported\n");
return -EINVAL;
}
return 0;
}
/**
* ffa_get_rxtx_map_features_hdlr() - FFA_FEATURES handler function with FFA_RXTX_MAP argument
* @dev: The FF-A bus device
*
* Implement FFA_FEATURES FF-A function to retrieve the FFA_RXTX_MAP features
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_get_rxtx_map_features_hdlr(struct udevice *dev)
{
ffa_value_t res = {0};
int ffa_errno;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_FEATURES),
.a1 = FFA_SMC_64(FFA_RXTX_MAP),
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS))
return ffa_set_rxtx_buffers_pages_cnt(dev, res.a2);
ffa_errno = res.a2;
ffa_print_error_log(FFA_FEATURES, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_free_rxtx_buffers() - free the RX/TX buffers
* @dev: The FF-A bus device
*
* Free the RX/TX buffers
*/
static void ffa_free_rxtx_buffers(struct udevice *dev)
{
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
log_debug("Freeing FF-A RX/TX buffers\n");
if (uc_priv->pair.rxbuf) {
free(uc_priv->pair.rxbuf);
uc_priv->pair.rxbuf = NULL;
}
if (uc_priv->pair.txbuf) {
free(uc_priv->pair.txbuf);
uc_priv->pair.txbuf = NULL;
}
}
/**
* ffa_alloc_rxtx_buffers() - allocate the RX/TX buffers
* @dev: The FF-A bus device
*
* Used by ffa_map_rxtx_buffers to allocate
* the RX/TX buffers before mapping them. The allocated memory is physically
* contiguous since memalign ends up calling malloc which allocates
* contiguous memory in u-boot.
* The size of the memory allocated is the minimum allowed.
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_alloc_rxtx_buffers(struct udevice *dev)
{
u64 bytes;
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
log_debug("Using %lu 4KB page(s) for FF-A RX/TX buffers size\n",
uc_priv->pair.rxtx_min_pages);
bytes = uc_priv->pair.rxtx_min_pages * SZ_4K;
/*
* The alignment of the RX and TX buffers must be equal
* to the larger translation granule size
* Assumption: Memory allocated with memalign is always physically contiguous
*/
uc_priv->pair.rxbuf = memalign(bytes, bytes);
if (!uc_priv->pair.rxbuf) {
log_err("failure to allocate RX buffer\n");
return -ENOBUFS;
}
log_debug("FF-A RX buffer at virtual address %p\n", uc_priv->pair.rxbuf);
uc_priv->pair.txbuf = memalign(bytes, bytes);
if (!uc_priv->pair.txbuf) {
free(uc_priv->pair.rxbuf);
uc_priv->pair.rxbuf = NULL;
log_err("failure to allocate the TX buffer\n");
return -ENOBUFS;
}
log_debug("FF-A TX buffer at virtual address %p\n", uc_priv->pair.txbuf);
/* Make sure the buffers are cleared before use */
memset(uc_priv->pair.rxbuf, 0, bytes);
memset(uc_priv->pair.txbuf, 0, bytes);
return 0;
}
/**
* ffa_map_rxtx_buffers_hdlr() - FFA_RXTX_MAP handler function
* @dev: The FF-A bus device
*
* Implement FFA_RXTX_MAP FF-A function to map the RX/TX buffers
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_map_rxtx_buffers_hdlr(struct udevice *dev)
{
int ret;
ffa_value_t res = {0};
int ffa_errno;
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
ret = ffa_alloc_rxtx_buffers(dev);
if (ret)
return ret;
/*
* we need to pass the physical addresses of the RX/TX buffers
* in u-boot physical/virtual mapping is 1:1
* no need to convert from virtual to physical
*/
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_64(FFA_RXTX_MAP),
.a1 = map_to_sysmem(uc_priv->pair.txbuf),
.a2 = map_to_sysmem(uc_priv->pair.rxbuf),
.a3 = uc_priv->pair.rxtx_min_pages,
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS)) {
log_debug("FF-A RX/TX buffers mapped\n");
return 0;
}
ffa_errno = res.a2;
ffa_print_error_log(FFA_RXTX_MAP, ffa_errno);
ffa_free_rxtx_buffers(dev);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_unmap_rxtx_buffers_hdlr() - FFA_RXTX_UNMAP handler function
* @dev: The FF-A bus device
*
* Implement FFA_RXTX_UNMAP FF-A function to unmap the RX/TX buffers
*
* Return:
*
* 0 on success. Otherwise, failure
*/
int ffa_unmap_rxtx_buffers_hdlr(struct udevice *dev)
{
ffa_value_t res = {0};
int ffa_errno;
struct ffa_priv *uc_priv;
log_debug("unmapping FF-A RX/TX buffers\n");
uc_priv = dev_get_uclass_priv(dev);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_RXTX_UNMAP),
.a1 = PREP_SELF_ENDPOINT_ID(uc_priv->id),
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS)) {
ffa_free_rxtx_buffers(dev);
return 0;
}
ffa_errno = res.a2;
ffa_print_error_log(FFA_RXTX_UNMAP, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_release_rx_buffer_hdlr() - FFA_RX_RELEASE handler function
* @dev: The FF-A bus device
*
* Invoke FFA_RX_RELEASE FF-A function to release the ownership of the RX buffer
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_release_rx_buffer_hdlr(struct udevice *dev)
{
ffa_value_t res = {0};
int ffa_errno;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_RX_RELEASE),
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS))
return 0;
ffa_errno = res.a2;
ffa_print_error_log(FFA_RX_RELEASE, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_uuid_are_identical() - check whether two given UUIDs are identical
* @uuid1: first UUID
* @uuid2: second UUID
*
* Used by ffa_read_partitions_info to search for a UUID in the partitions descriptors table
*
* Return:
*
* 1 when UUIDs match. Otherwise, 0
*/
static bool ffa_uuid_are_identical(const struct ffa_partition_uuid *uuid1,
const struct ffa_partition_uuid *uuid2)
{
if (!uuid1 || !uuid2)
return 0;
return !memcmp(uuid1, uuid2, sizeof(struct ffa_partition_uuid));
}
/**
* ffa_read_partitions_info() - read queried partition data
* @dev: The FF-A bus device
* @count: The number of partitions queried
* @part_uuid: Pointer to the partition(s) UUID
*
* Read the partitions information returned by the FFA_PARTITION_INFO_GET and saves it in uc_priv
*
* Return:
*
* uc_priv is updated with the partition(s) information
* 0 is returned on success. Otherwise, failure
*/
static int ffa_read_partitions_info(struct udevice *dev, u32 count,
struct ffa_partition_uuid *part_uuid)
{
struct ffa_priv *uc_priv = dev_get_uclass_priv(dev);
if (!count) {
log_err("no partition detected\n");
return -ENODATA;
}
log_debug("Reading FF-A partitions data from the RX buffer\n");
if (!part_uuid) {
/* Querying information of all partitions */
u64 buf_bytes;
u64 data_bytes;
u32 desc_idx;
struct ffa_partition_info *parts_info;
data_bytes = count * sizeof(struct ffa_partition_desc);
buf_bytes = uc_priv->pair.rxtx_min_pages * SZ_4K;
if (data_bytes > buf_bytes) {
log_err("partitions data size exceeds the RX buffer size:\n");
log_err(" sizes in bytes: data %llu , RX buffer %llu\n",
data_bytes,
buf_bytes);
return -ENOMEM;
}
uc_priv->partitions.descs = devm_kmalloc(dev, data_bytes, __GFP_ZERO);
if (!uc_priv->partitions.descs) {
log_err("cannot allocate partitions data buffer\n");
return -ENOMEM;
}
parts_info = uc_priv->pair.rxbuf;
for (desc_idx = 0 ; desc_idx < count ; desc_idx++) {
uc_priv->partitions.descs[desc_idx].info =
parts_info[desc_idx];
log_debug("FF-A partition ID %x : info cached\n",
uc_priv->partitions.descs[desc_idx].info.id);
}
uc_priv->partitions.count = count;
log_debug("%d FF-A partition(s) found and cached\n", count);
} else {
u32 rx_desc_idx, cached_desc_idx;
struct ffa_partition_info *parts_info;
u8 desc_found;
parts_info = uc_priv->pair.rxbuf;
/*
* Search for the SP IDs read from the RX buffer
* in the already cached SPs.
* Update the UUID when ID found.
*/
for (rx_desc_idx = 0; rx_desc_idx < count ; rx_desc_idx++) {
desc_found = 0;
/* Search the current ID in the cached partitions */
for (cached_desc_idx = 0;
cached_desc_idx < uc_priv->partitions.count;
cached_desc_idx++) {
/* Save the UUID */
if (uc_priv->partitions.descs[cached_desc_idx].info.id ==
parts_info[rx_desc_idx].id) {
uc_priv->partitions.descs[cached_desc_idx].sp_uuid =
*part_uuid;
desc_found = 1;
break;
}
}
if (!desc_found)
return -ENODATA;
}
}
return 0;
}
/**
* ffa_query_partitions_info() - invoke FFA_PARTITION_INFO_GET and save partitions data
* @dev: The FF-A bus device
* @part_uuid: Pointer to the partition(s) UUID
* @pcount: Pointer to the number of partitions variable filled when querying
*
* Execute the FFA_PARTITION_INFO_GET to query the partitions data.
* Then, call ffa_read_partitions_info to save the data in uc_priv.
*
* After reading the data the RX buffer is released using ffa_release_rx_buffer
*
* Return:
*
* When part_uuid is NULL, all partitions data are retrieved from secure world
* When part_uuid is non NULL, data for partitions matching the given UUID are
* retrieved and the number of partitions is returned
* 0 is returned on success. Otherwise, failure
*/
static int ffa_query_partitions_info(struct udevice *dev, struct ffa_partition_uuid *part_uuid,
u32 *pcount)
{
struct ffa_partition_uuid query_uuid = {0};
ffa_value_t res = {0};
int ffa_errno;
/*
* If a UUID is specified. Information for one or more
* partitions in the system is queried. Otherwise, information
* for all installed partitions is queried
*/
if (part_uuid) {
if (!pcount)
return -EINVAL;
query_uuid = *part_uuid;
} else if (pcount) {
return -EINVAL;
}
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_PARTITION_INFO_GET),
.a1 = query_uuid.a1,
.a2 = query_uuid.a2,
.a3 = query_uuid.a3,
.a4 = query_uuid.a4,
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS)) {
int ret;
/*
* res.a2 contains the count of partition information descriptors
* populated in the RX buffer
*/
if (res.a2) {
ret = ffa_read_partitions_info(dev, (u32)res.a2, part_uuid);
if (ret) {
log_err("failed reading SP(s) data , err (%d)\n", ret);
ffa_release_rx_buffer_hdlr(dev);
return -EINVAL;
}
}
/* Return the SP count (when querying using a UUID) */
if (pcount)
*pcount = (u32)res.a2;
/*
* After calling FFA_PARTITION_INFO_GET the buffer ownership
* is assigned to the consumer (u-boot). So, we need to give
* the ownership back to the SPM or hypervisor
*/
ret = ffa_release_rx_buffer_hdlr(dev);
return ret;
}
ffa_errno = res.a2;
ffa_print_error_log(FFA_PARTITION_INFO_GET, ffa_errno);
return ffa_to_std_errno(ffa_errno);
}
/**
* ffa_get_partitions_info_hdlr() - FFA_PARTITION_INFO_GET handler function
* @uuid_str: pointer to the UUID string
* @sp_count: address of the variable containing the number of partitions matching the UUID
* The variable is set by the driver
* @sp_descs: address of the descriptors of the partitions matching the UUID
* The address is set by the driver
*
* Return the number of partitions and their descriptors matching the UUID
*
* Query the secure partition data from uc_priv.
* If not found, invoke FFA_PARTITION_INFO_GET FF-A function to query the partition information
* from secure world.
*
* A client of the FF-A driver should know the UUID of the service it wants to
* access. It should use the UUID to request the FF-A driver to provide the
* partition(s) information of the service. The FF-A driver uses
* PARTITION_INFO_GET to obtain this information. This is implemented through
* ffa_get_partitions_info_hdlr() function.
* If the partition(s) matching the UUID found, the partition(s) information and the
* number are returned.
* If no partition matching the UUID is found in the cached area, a new FFA_PARTITION_INFO_GET
* call is issued.
* If not done yet, the UUID is updated in the cached area.
* This assumes that partitions data does not change in the secure world.
* Otherwise u-boot will have an outdated partition data. The benefit of caching
* the information in the FF-A driver is to accommodate discovery after
* ExitBootServices().
*
* Return:
*
* @sp_count: the number of partitions
* @sp_descs: address of the partitions descriptors
*
* On success 0 is returned. Otherwise, failure
*/
int ffa_get_partitions_info_hdlr(struct udevice *dev, const char *uuid_str,
u32 *sp_count, struct ffa_partition_desc **sp_descs)
{
u32 i;
struct ffa_partition_uuid part_uuid = {0};
struct ffa_priv *uc_priv;
struct ffa_partition_desc *rx_descs;
uc_priv = dev_get_uclass_priv(dev);
if (!uc_priv->partitions.count || !uc_priv->partitions.descs) {
log_err("no partition installed\n");
return -EINVAL;
}
if (!uuid_str) {
log_err("no UUID provided\n");
return -EINVAL;
}
if (!sp_count) {
log_err("no count argument provided\n");
return -EINVAL;
}
if (!sp_descs) {
log_err("no info argument provided\n");
return -EINVAL;
}
if (uuid_str_to_le_bin(uuid_str, (unsigned char *)&part_uuid)) {
log_err("invalid UUID\n");
return -EINVAL;
}
log_debug("Searching FF-A partitions using the provided UUID\n");
*sp_count = 0;
*sp_descs = uc_priv->pair.rxbuf;
rx_descs = *sp_descs;
/* Search in the cached partitions */
for (i = 0; i < uc_priv->partitions.count; i++)
if (ffa_uuid_are_identical(&uc_priv->partitions.descs[i].sp_uuid,
&part_uuid)) {
log_debug("FF-A partition ID %x matches the provided UUID\n",
uc_priv->partitions.descs[i].info.id);
(*sp_count)++;
*rx_descs++ = uc_priv->partitions.descs[i];
}
if (!(*sp_count)) {
int ret;
log_debug("No FF-A partition found. Querying framework ...\n");
ret = ffa_query_partitions_info(dev, &part_uuid, sp_count);
if (!ret) {
log_debug("Number of FF-A partition(s) matching the UUID: %d\n", *sp_count);
if (*sp_count)
ret = ffa_get_partitions_info_hdlr(dev, uuid_str, sp_count,
sp_descs);
else
ret = -ENODATA;
}
return ret;
}
return 0;
}
/**
* ffa_cache_partitions_info() - Query and saves all secure partitions data
* @dev: The FF-A bus device
*
* Invoke FFA_PARTITION_INFO_GET FF-A function to query from secure world
* all partitions information.
*
* The FFA_PARTITION_INFO_GET call is issued with nil UUID as an argument.
* All installed partitions information are returned. We cache them in uc_priv
* and we keep the UUID field empty (in FF-A 1.0 UUID is not provided by the partition descriptor)
*
* Called at the device probing level.
* ffa_cache_partitions_info uses ffa_query_partitions_info to get the data
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_cache_partitions_info(struct udevice *dev)
{
return ffa_query_partitions_info(dev, NULL, NULL);
}
/**
* ffa_msg_send_direct_req_hdlr() - FFA_MSG_SEND_DIRECT_{REQ,RESP} handler function
* @dev: The FF-A bus device
* @dst_part_id: destination partition ID
* @msg: pointer to the message data preallocated by the client (in/out)
* @is_smc64: select 64-bit or 32-bit FF-A ABI
*
* Implement FFA_MSG_SEND_DIRECT_{REQ,RESP}
* FF-A functions.
*
* FFA_MSG_SEND_DIRECT_REQ is used to send the data to the secure partition.
* The response from the secure partition is handled by reading the
* FFA_MSG_SEND_DIRECT_RESP arguments.
*
* The maximum size of the data that can be exchanged is 40 bytes which is
* sizeof(struct ffa_send_direct_data) as defined by the FF-A specification 1.0
* in the section relevant to FFA_MSG_SEND_DIRECT_{REQ,RESP}
*
* Return:
*
* 0 on success. Otherwise, failure
*/
int ffa_msg_send_direct_req_hdlr(struct udevice *dev, u16 dst_part_id,
struct ffa_send_direct_data *msg, bool is_smc64)
{
ffa_value_t res = {0};
int ffa_errno;
u64 req_mode, resp_mode;
struct ffa_priv *uc_priv;
uc_priv = dev_get_uclass_priv(dev);
/* No partition installed */
if (!uc_priv->partitions.count || !uc_priv->partitions.descs)
return -ENODEV;
if (is_smc64) {
req_mode = FFA_SMC_64(FFA_MSG_SEND_DIRECT_REQ);
resp_mode = FFA_SMC_64(FFA_MSG_SEND_DIRECT_RESP);
} else {
req_mode = FFA_SMC_32(FFA_MSG_SEND_DIRECT_REQ);
resp_mode = FFA_SMC_32(FFA_MSG_SEND_DIRECT_RESP);
}
invoke_ffa_fn((ffa_value_t){
.a0 = req_mode,
.a1 = PREP_SELF_ENDPOINT_ID(uc_priv->id) |
PREP_PART_ENDPOINT_ID(dst_part_id),
.a2 = 0,
.a3 = msg->data0,
.a4 = msg->data1,
.a5 = msg->data2,
.a6 = msg->data3,
.a7 = msg->data4,
}, &res);
while (res.a0 == FFA_SMC_32(FFA_INTERRUPT))
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_SMC_32(FFA_RUN),
.a1 = res.a1,
}, &res);
if (res.a0 == FFA_SMC_32(FFA_SUCCESS)) {
/* Message sent with no response */
return 0;
}
if (res.a0 == resp_mode) {
/* Message sent with response extract the return data */
msg->data0 = res.a3;
msg->data1 = res.a4;
msg->data2 = res.a5;
msg->data3 = res.a6;
msg->data4 = res.a7;
return 0;
}
ffa_errno = res.a2;
return ffa_to_std_errno(ffa_errno);
}
/* FF-A driver operations (used by clients for communicating with FF-A)*/
/**
* ffa_partition_info_get() - FFA_PARTITION_INFO_GET driver operation
* @uuid_str: pointer to the UUID string
* @sp_count: address of the variable containing the number of partitions matching the UUID
* The variable is set by the driver
* @sp_descs: address of the descriptors of the partitions matching the UUID
* The address is set by the driver
*
* Driver operation for FFA_PARTITION_INFO_GET.
* Please see ffa_get_partitions_info_hdlr() description for more details.
*
* Return:
*
* @sp_count: the number of partitions
* @sp_descs: address of the partitions descriptors
*
* On success 0 is returned. Otherwise, failure
*/
int ffa_partition_info_get(struct udevice *dev, const char *uuid_str,
u32 *sp_count, struct ffa_partition_desc **sp_descs)
{
struct ffa_bus_ops *ops = ffa_get_ops(dev);
if (!ops->partition_info_get)
return -ENOSYS;
return ops->partition_info_get(dev, uuid_str, sp_count, sp_descs);
}
/**
* ffa_sync_send_receive() - FFA_MSG_SEND_DIRECT_{REQ,RESP} driver operation
* @dev: The FF-A bus device
* @dst_part_id: destination partition ID
* @msg: pointer to the message data preallocated by the client (in/out)
* @is_smc64: select 64-bit or 32-bit FF-A ABI
*
* Driver operation for FFA_MSG_SEND_DIRECT_{REQ,RESP}.
* Please see ffa_msg_send_direct_req_hdlr() description for more details.
*
* Return:
*
* 0 on success. Otherwise, failure
*/
int ffa_sync_send_receive(struct udevice *dev, u16 dst_part_id,
struct ffa_send_direct_data *msg, bool is_smc64)
{
struct ffa_bus_ops *ops = ffa_get_ops(dev);
if (!ops->sync_send_receive)
return -ENOSYS;
return ops->sync_send_receive(dev, dst_part_id, msg, is_smc64);
}
/**
* ffa_rxtx_unmap() - FFA_RXTX_UNMAP driver operation
* @dev: The FF-A bus device
*
* Driver operation for FFA_RXTX_UNMAP.
* Please see ffa_unmap_rxtx_buffers_hdlr() description for more details.
*
* Return:
*
* 0 on success. Otherwise, failure
*/
int ffa_rxtx_unmap(struct udevice *dev)
{
struct ffa_bus_ops *ops = ffa_get_ops(dev);
if (!ops->rxtx_unmap)
return -ENOSYS;
return ops->rxtx_unmap(dev);
}
/**
* ffa_do_probe() - probing FF-A framework
* @dev: the FF-A bus device (arm_ffa)
*
* Probing is triggered on demand by clients searching for the uclass.
* At probe level the following actions are done:
* - saving the FF-A framework version in uc_priv
* - querying from secure world the u-boot endpoint ID
* - querying from secure world the supported features of FFA_RXTX_MAP
* - mapping the RX/TX buffers
* - querying from secure world all the partitions information
*
* All data queried from secure world is saved in uc_priv.
*
* Return:
*
* 0 on success. Otherwise, failure
*/
static int ffa_do_probe(struct udevice *dev)
{
int ret;
ret = ffa_get_version_hdlr(dev);
if (ret)
return ret;
ret = ffa_get_endpoint_id(dev);
if (ret)
return ret;
ret = ffa_get_rxtx_map_features_hdlr(dev);
if (ret)
return ret;
ret = ffa_map_rxtx_buffers_hdlr(dev);
if (ret)
return ret;
ret = ffa_cache_partitions_info(dev);
if (ret) {
ffa_unmap_rxtx_buffers_hdlr(dev);
return ret;
}
return 0;
}
UCLASS_DRIVER(ffa) = {
.name = "ffa",
.id = UCLASS_FFA,
.pre_probe = ffa_do_probe,
.pre_remove = ffa_unmap_rxtx_buffers_hdlr,
.per_device_auto = sizeof(struct ffa_priv)
};