u-boot/cpu/ppc4xx/ndfc.c
2007-06-01 16:15:34 +02:00

228 lines
5.7 KiB
C

/*
* Overview:
* Platform independend driver for NDFC (NanD Flash Controller)
* integrated into EP440 cores
*
* (C) Copyright 2006-2007
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* Based on original work by
* Thomas Gleixner
* Copyright 2006 IBM
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) && \
(defined(CONFIG_440EP) || defined(CONFIG_440GR) || \
defined(CONFIG_440EPX) || defined(CONFIG_440GRX) || \
defined(CONFIG_405EZ))
#include <nand.h>
#include <linux/mtd/ndfc.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <ppc4xx.h>
static u8 hwctl = 0;
static void ndfc_hwcontrol(struct mtd_info *mtdinfo, int cmd)
{
switch (cmd) {
case NAND_CTL_SETCLE:
hwctl |= 0x1;
break;
case NAND_CTL_CLRCLE:
hwctl &= ~0x1;
break;
case NAND_CTL_SETALE:
hwctl |= 0x2;
break;
case NAND_CTL_CLRALE:
hwctl &= ~0x2;
break;
}
}
static void ndfc_write_byte(struct mtd_info *mtdinfo, u_char byte)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
if (hwctl & 0x1)
out_8((u8 *)(base + NDFC_CMD), byte);
else if (hwctl & 0x2)
out_8((u8 *)(base + NDFC_ALE), byte);
else
out_8((u8 *)(base + NDFC_DATA), byte);
}
static u_char ndfc_read_byte(struct mtd_info *mtdinfo)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
return (in_8((u8 *)(base + NDFC_DATA)));
}
static int ndfc_dev_ready(struct mtd_info *mtdinfo)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
while (!(in_be32((u32 *)(base + NDFC_STAT)) & NDFC_STAT_IS_READY))
;
return 1;
}
static void ndfc_enable_hwecc(struct mtd_info *mtdinfo, int mode)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
u32 ccr;
ccr = in_be32((u32 *)(base + NDFC_CCR));
ccr |= NDFC_CCR_RESET_ECC;
out_be32((u32 *)(base + NDFC_CCR), ccr);
}
static int ndfc_calculate_ecc(struct mtd_info *mtdinfo,
const u_char *dat, u_char *ecc_code)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
u32 ecc;
u8 *p = (u8 *)&ecc;
ecc = in_be32((u32 *)(base + NDFC_ECC));
/* The NDFC uses Smart Media (SMC) bytes order
*/
ecc_code[0] = p[2];
ecc_code[1] = p[1];
ecc_code[2] = p[3];
return 0;
}
/*
* Speedups for buffer read/write/verify
*
* NDFC allows 32bit read/write of data. So we can speed up the buffer
* functions. No further checking, as nand_base will always read/write
* page aligned.
*/
static void ndfc_read_buf(struct mtd_info *mtdinfo, uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
uint32_t *p = (uint32_t *) buf;
for (;len > 0; len -= 4)
*p++ = in_be32((u32 *)(base + NDFC_DATA));
}
#ifndef CONFIG_NAND_SPL
/*
* Don't use these speedup functions in NAND boot image, since the image
* has to fit into 4kByte.
*/
static void ndfc_write_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
uint32_t *p = (uint32_t *) buf;
for (; len > 0; len -= 4)
out_be32((u32 *)(base + NDFC_DATA), *p++);
}
static int ndfc_verify_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len)
{
struct nand_chip *this = mtdinfo->priv;
ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc;
uint32_t *p = (uint32_t *) buf;
for (; len > 0; len -= 4)
if (*p++ != in_be32((u32 *)(base + NDFC_DATA)))
return -1;
return 0;
}
#endif /* #ifndef CONFIG_NAND_SPL */
void board_nand_select_device(struct nand_chip *nand, int chip)
{
/*
* Don't use "chip" to address the NAND device,
* generate the cs from the address where it is encoded.
*/
int cs = (ulong)nand->IO_ADDR_W & 0x00000003;
ulong base = (ulong)nand->IO_ADDR_W & 0xfffffffc;
/* Set NandFlash Core Configuration Register */
/* 1 col x 2 rows */
out_be32((u32 *)(base + NDFC_CCR), 0x00000000 | (cs << 24));
}
int board_nand_init(struct nand_chip *nand)
{
int cs = (ulong)nand->IO_ADDR_W & 0x00000003;
ulong base = (ulong)nand->IO_ADDR_W & 0xfffffffc;
nand->hwcontrol = ndfc_hwcontrol;
nand->read_byte = ndfc_read_byte;
nand->read_buf = ndfc_read_buf;
nand->write_byte = ndfc_write_byte;
nand->dev_ready = ndfc_dev_ready;
nand->eccmode = NAND_ECC_HW3_256;
nand->enable_hwecc = ndfc_enable_hwecc;
nand->calculate_ecc = ndfc_calculate_ecc;
nand->correct_data = nand_correct_data;
#ifndef CONFIG_NAND_SPL
nand->write_buf = ndfc_write_buf;
nand->verify_buf = ndfc_verify_buf;
#else
/*
* Setup EBC (CS0 only right now)
*/
mtebc(EBC0_CFG, 0xb8400000);
mtebc(pb0cr, CFG_EBC_PB0CR);
mtebc(pb0ap, CFG_EBC_PB0AP);
#endif
/*
* Select required NAND chip in NDFC
*/
board_nand_select_device(nand, cs);
out_be32((u32 *)(base + NDFC_BCFG0 + (cs << 2)), 0x80002222);
return 0;
}
#endif