mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-26 04:53:42 +00:00
cfa460adfd
A lot changed in the Linux MTD code, since it was last ported from Linux to U-Boot. This patch takes U-Boot NAND support to the level of Linux 2.6.22.1 and will enable support for very large NAND devices (4KB pages) and ease the compatibility between U-Boot and Linux filesystems. This patch is tested on two custom boards with PPC and ARM processors running YAFFS in U-Boot and Linux using gcc-4.1.2 cross compilers. MAKEALL ppc/arm has some issues: * DOC/OneNand/nand_spl is not building (I have not tried porting these parts, and since I do not have any HW and I am not familiar with this code/HW I think its best left to someone else.) Except for the issues mentioned above, I have ported all drivers necessary to run MAKEALL ppc/arm without errors and warnings. Many drivers were trivial to port, but some were not so trivial. The following drivers must be examined carefully and maybe rewritten to some degree: cpu/ppc4xx/ndfc.c cpu/arm926ejs/davinci/nand.c board/delta/nand.c board/zylonite/nand.c Signed-off-by: William Juul <william.juul@tandberg.com> Signed-off-by: Stig Olsen <stig.olsen@tandberg.com> Signed-off-by: Scott Wood <scottwood@freescale.com>
161 lines
5.5 KiB
C
161 lines
5.5 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
#ifndef __UBI_USER_H__
|
|
#define __UBI_USER_H__
|
|
|
|
/*
|
|
* UBI volume creation
|
|
* ~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
|
|
* device. A &struct ubi_mkvol_req object has to be properly filled and a
|
|
* pointer to it has to be passed to the IOCTL.
|
|
*
|
|
* UBI volume deletion
|
|
* ~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
|
|
* device should be used. A pointer to the 32-bit volume ID hast to be passed
|
|
* to the IOCTL.
|
|
*
|
|
* UBI volume re-size
|
|
* ~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
|
|
* device should be used. A &struct ubi_rsvol_req object has to be properly
|
|
* filled and a pointer to it has to be passed to the IOCTL.
|
|
*
|
|
* UBI volume update
|
|
* ~~~~~~~~~~~~~~~~~
|
|
*
|
|
* Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
|
|
* corresponding UBI volume character device. A pointer to a 64-bit update
|
|
* size should be passed to the IOCTL. After then, UBI expects user to write
|
|
* this number of bytes to the volume character device. The update is finished
|
|
* when the claimed number of bytes is passed. So, the volume update sequence
|
|
* is something like:
|
|
*
|
|
* fd = open("/dev/my_volume");
|
|
* ioctl(fd, UBI_IOCVOLUP, &image_size);
|
|
* write(fd, buf, image_size);
|
|
* close(fd);
|
|
*/
|
|
|
|
/*
|
|
* When a new volume is created, users may either specify the volume number they
|
|
* want to create or to let UBI automatically assign a volume number using this
|
|
* constant.
|
|
*/
|
|
#define UBI_VOL_NUM_AUTO (-1)
|
|
|
|
/* Maximum volume name length */
|
|
#define UBI_MAX_VOLUME_NAME 127
|
|
|
|
/* IOCTL commands of UBI character devices */
|
|
|
|
#define UBI_IOC_MAGIC 'o'
|
|
|
|
/* Create an UBI volume */
|
|
#define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
|
|
/* Remove an UBI volume */
|
|
#define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
|
|
/* Re-size an UBI volume */
|
|
#define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
|
|
|
|
/* IOCTL commands of UBI volume character devices */
|
|
|
|
#define UBI_VOL_IOC_MAGIC 'O'
|
|
|
|
/* Start UBI volume update */
|
|
#define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
|
|
/* An eraseblock erasure command, used for debugging, disabled by default */
|
|
#define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
|
|
|
|
/*
|
|
* UBI volume type constants.
|
|
*
|
|
* @UBI_DYNAMIC_VOLUME: dynamic volume
|
|
* @UBI_STATIC_VOLUME: static volume
|
|
*/
|
|
enum {
|
|
UBI_DYNAMIC_VOLUME = 3,
|
|
UBI_STATIC_VOLUME = 4
|
|
};
|
|
|
|
/**
|
|
* struct ubi_mkvol_req - volume description data structure used in
|
|
* volume creation requests.
|
|
* @vol_id: volume number
|
|
* @alignment: volume alignment
|
|
* @bytes: volume size in bytes
|
|
* @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
|
|
* @padding1: reserved for future, not used
|
|
* @name_len: volume name length
|
|
* @padding2: reserved for future, not used
|
|
* @name: volume name
|
|
*
|
|
* This structure is used by userspace programs when creating new volumes. The
|
|
* @used_bytes field is only necessary when creating static volumes.
|
|
*
|
|
* The @alignment field specifies the required alignment of the volume logical
|
|
* eraseblock. This means, that the size of logical eraseblocks will be aligned
|
|
* to this number, i.e.,
|
|
* (UBI device logical eraseblock size) mod (@alignment) = 0.
|
|
*
|
|
* To put it differently, the logical eraseblock of this volume may be slightly
|
|
* shortened in order to make it properly aligned. The alignment has to be
|
|
* multiple of the flash minimal input/output unit, or %1 to utilize the entire
|
|
* available space of logical eraseblocks.
|
|
*
|
|
* The @alignment field may be useful, for example, when one wants to maintain
|
|
* a block device on top of an UBI volume. In this case, it is desirable to fit
|
|
* an integer number of blocks in logical eraseblocks of this UBI volume. With
|
|
* alignment it is possible to update this volume using plane UBI volume image
|
|
* BLOBs, without caring about how to properly align them.
|
|
*/
|
|
struct ubi_mkvol_req {
|
|
int32_t vol_id;
|
|
int32_t alignment;
|
|
int64_t bytes;
|
|
int8_t vol_type;
|
|
int8_t padding1;
|
|
int16_t name_len;
|
|
int8_t padding2[4];
|
|
char name[UBI_MAX_VOLUME_NAME+1];
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* struct ubi_rsvol_req - a data structure used in volume re-size requests.
|
|
* @vol_id: ID of the volume to re-size
|
|
* @bytes: new size of the volume in bytes
|
|
*
|
|
* Re-sizing is possible for both dynamic and static volumes. But while dynamic
|
|
* volumes may be re-sized arbitrarily, static volumes cannot be made to be
|
|
* smaller then the number of bytes they bear. To arbitrarily shrink a static
|
|
* volume, it must be wiped out first (by means of volume update operation with
|
|
* zero number of bytes).
|
|
*/
|
|
struct ubi_rsvol_req {
|
|
int64_t bytes;
|
|
int32_t vol_id;
|
|
} __attribute__ ((packed));
|
|
|
|
#endif /* __UBI_USER_H__ */
|