u-boot/board/BuR/common/common.c
Hannes Petermaier 750461887e board/BuR/common: remove unused function 'blink'
since we have possibility to write out on lcd whats going on, we don't need
the gpio blink functionality anymore.

Signed-off-by: Hannes Petermaier <hannes.petermaier@br-automation.com>

Signed-off-by: Hannes Petermaier <oe5hpm@oevsv.at>
2015-03-28 12:07:44 -04:00

629 lines
16 KiB
C

/*
* common.c
*
* common board functions for B&R boards
*
* Copyright (C) 2013 Hannes Petermaier <oe5hpm@oevsv.at>
* Bernecker & Rainer Industrieelektronik GmbH - http://www.br-automation.com
*
* SPDX-License-Identifier: GPL-2.0+
*
*/
#include <version.h>
#include <common.h>
#include <errno.h>
#include <spl.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65217.h>
#include <lcd.h>
#include <fs.h>
#ifdef CONFIG_USE_FDT
#include <fdt_support.h>
#endif
#include "bur_common.h"
#include "../../../drivers/video/am335x-fb.h"
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_USE_FDT
#define FDTPROP(a, b, c) fdt_getprop_u32_default((void *)a, b, c, ~0UL)
#define PATHTIM "/panel/display-timings/default"
#define PATHINF "/panel/panel-info"
#endif
/* --------------------------------------------------------------------------*/
#if defined(CONFIG_LCD) && defined(CONFIG_AM335X_LCD) && \
!defined(CONFIG_SPL_BUILD)
int load_lcdtiming(struct am335x_lcdpanel *panel)
{
struct am335x_lcdpanel pnltmp;
#ifdef CONFIG_USE_FDT
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
u32 dtbprop;
if (dtbaddr == ~0UL) {
puts("load_lcdtiming: failed to get 'dtbaddr' from env!\n");
return -1;
}
memcpy(&pnltmp, (void *)panel, sizeof(struct am335x_lcdpanel));
pnltmp.hactive = FDTPROP(dtbaddr, PATHTIM, "hactive");
pnltmp.vactive = FDTPROP(dtbaddr, PATHTIM, "vactive");
pnltmp.bpp = FDTPROP(dtbaddr, PATHINF, "bpp");
pnltmp.hfp = FDTPROP(dtbaddr, PATHTIM, "hfront-porch");
pnltmp.hbp = FDTPROP(dtbaddr, PATHTIM, "hback-porch");
pnltmp.hsw = FDTPROP(dtbaddr, PATHTIM, "hsync-len");
pnltmp.vfp = FDTPROP(dtbaddr, PATHTIM, "vfront-porch");
pnltmp.vbp = FDTPROP(dtbaddr, PATHTIM, "vback-porch");
pnltmp.vsw = FDTPROP(dtbaddr, PATHTIM, "vsync-len");
pnltmp.pup_delay = FDTPROP(dtbaddr, PATHTIM, "pupdelay");
pnltmp.pon_delay = FDTPROP(dtbaddr, PATHTIM, "pondelay");
/* calc. proper clk-divisor */
dtbprop = FDTPROP(dtbaddr, PATHTIM, "clock-frequency");
if (dtbprop != ~0UL)
pnltmp.pxl_clk_div = 192000000 / dtbprop;
else
pnltmp.pxl_clk_div = ~0UL;
/* check polarity of control-signals */
dtbprop = FDTPROP(dtbaddr, PATHTIM, "hsync-active");
if (dtbprop == 0)
pnltmp.pol |= HSYNC_INVERT;
dtbprop = FDTPROP(dtbaddr, PATHTIM, "vsync-active");
if (dtbprop == 0)
pnltmp.pol |= VSYNC_INVERT;
dtbprop = FDTPROP(dtbaddr, PATHINF, "sync-ctrl");
if (dtbprop == 1)
pnltmp.pol |= HSVS_CONTROL;
dtbprop = FDTPROP(dtbaddr, PATHINF, "sync-edge");
if (dtbprop == 1)
pnltmp.pol |= HSVS_RISEFALL;
dtbprop = FDTPROP(dtbaddr, PATHTIM, "pixelclk-active");
if (dtbprop == 0)
pnltmp.pol |= PXCLK_INVERT;
dtbprop = FDTPROP(dtbaddr, PATHTIM, "de-active");
if (dtbprop == 0)
pnltmp.pol |= DE_INVERT;
#else
pnltmp.hactive = getenv_ulong("ds1_hactive", 10, ~0UL);
pnltmp.vactive = getenv_ulong("ds1_vactive", 10, ~0UL);
pnltmp.bpp = getenv_ulong("ds1_bpp", 10, ~0UL);
pnltmp.hfp = getenv_ulong("ds1_hfp", 10, ~0UL);
pnltmp.hbp = getenv_ulong("ds1_hbp", 10, ~0UL);
pnltmp.hsw = getenv_ulong("ds1_hsw", 10, ~0UL);
pnltmp.vfp = getenv_ulong("ds1_vfp", 10, ~0UL);
pnltmp.vbp = getenv_ulong("ds1_vbp", 10, ~0UL);
pnltmp.vsw = getenv_ulong("ds1_vsw", 10, ~0UL);
pnltmp.pxl_clk_div = getenv_ulong("ds1_pxlclkdiv", 10, ~0UL);
pnltmp.pol = getenv_ulong("ds1_pol", 16, ~0UL);
pnltmp.pup_delay = getenv_ulong("ds1_pupdelay", 10, ~0UL);
pnltmp.pon_delay = getenv_ulong("ds1_tondelay", 10, ~0UL);
#endif
if (
~0UL == (pnltmp.hactive) ||
~0UL == (pnltmp.vactive) ||
~0UL == (pnltmp.bpp) ||
~0UL == (pnltmp.hfp) ||
~0UL == (pnltmp.hbp) ||
~0UL == (pnltmp.hsw) ||
~0UL == (pnltmp.vfp) ||
~0UL == (pnltmp.vbp) ||
~0UL == (pnltmp.vsw) ||
~0UL == (pnltmp.pxl_clk_div) ||
~0UL == (pnltmp.pol) ||
~0UL == (pnltmp.pup_delay) ||
~0UL == (pnltmp.pon_delay)
) {
puts("lcd-settings in env/dtb incomplete!\n");
printf("display-timings:\n"
"================\n"
"hactive: %d\n"
"vactive: %d\n"
"bpp : %d\n"
"hfp : %d\n"
"hbp : %d\n"
"hsw : %d\n"
"vfp : %d\n"
"vbp : %d\n"
"vsw : %d\n"
"pxlclk : %d\n"
"pol : 0x%08x\n"
"pondly : %d\n",
pnltmp.hactive, pnltmp.vactive, pnltmp.bpp,
pnltmp.hfp, pnltmp.hbp, pnltmp.hsw,
pnltmp.vfp, pnltmp.vbp, pnltmp.vsw,
pnltmp.pxl_clk_div, pnltmp.pol, pnltmp.pon_delay);
return -1;
}
debug("lcd-settings in env complete, taking over.\n");
memcpy((void *)panel,
(void *)&pnltmp,
sizeof(struct am335x_lcdpanel));
return 0;
}
#ifdef CONFIG_USE_FDT
static int load_devicetree(void)
{
char *dtbname = getenv("dtb");
char *dtbdev = getenv("dtbdev");
char *dtppart = getenv("dtbpart");
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
loff_t dtbsize;
if (!dtbdev || !dtbdev) {
puts("load_devicetree: <dtbdev>/<dtbpart> missing.\n");
return -1;
}
if (fs_set_blk_dev(dtbdev, dtppart, FS_TYPE_EXT)) {
puts("load_devicetree: set_blk_dev failed.\n");
return -1;
}
if (dtbname && dtbaddr != ~0UL) {
if (fs_read(dtbname, dtbaddr, 0, 0, &dtbsize) == 0) {
gd->fdt_blob = (void *)dtbaddr;
gd->fdt_size = dtbsize;
debug("loaded %d bytes of dtb onto 0x%08x\n",
(u32)dtbsize, dtbaddr);
return dtbsize;
}
puts("load_devicetree: load dtb failed,file does not exist!\n");
}
puts("load_devicetree: <dtb>/<dtbaddr> missing!\n");
return -1;
}
static const char *dtbmacaddr(u32 ifno)
{
int node, len;
char enet[16];
const char *mac;
const char *path;
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
if (dtbaddr == ~0UL) {
puts("dtbmacaddr: failed to get 'dtbaddr' from env!\n");
return NULL;
}
node = fdt_path_offset((void *)dtbaddr, "/aliases");
if (node < 0)
return NULL;
sprintf(enet, "ethernet%d", ifno);
path = fdt_getprop((void *)dtbaddr, node, enet, NULL);
if (!path) {
printf("no alias for %s\n", enet);
return NULL;
}
node = fdt_path_offset((void *)dtbaddr, path);
mac = fdt_getprop((void *)dtbaddr, node, "mac-address", &len);
if (mac && is_valid_ether_addr((u8 *)mac))
return mac;
return NULL;
}
static void br_summaryscreen_printdtb(char *prefix,
char *name,
char *suffix)
{
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
char buf[32] = { 0 };
const char *nodep = buf;
char *mac = 0;
int nodeoffset;
int len;
if (dtbaddr == ~0UL) {
puts("br_summaryscreen: failed to get 'dtbaddr' from env!\n");
return;
}
if (strcmp(name, "brmac1") == 0) {
mac = (char *)dtbmacaddr(0);
if (mac)
sprintf(buf, "%pM", mac);
} else if (strcmp(name, "brmac2") == 0) {
mac = (char *)dtbmacaddr(1);
if (mac)
sprintf(buf, "%pM", mac);
} else {
nodeoffset = fdt_path_offset((void *)dtbaddr,
"/factory-settings");
if (nodeoffset < 0) {
puts("no 'factory-settings' in dtb!\n");
return;
}
nodep = fdt_getprop((void *)dtbaddr, nodeoffset, name, &len);
}
if (nodep && strlen(nodep) > 1)
lcd_printf("%s %s %s", prefix, nodep, suffix);
else
lcd_printf("\n");
}
int ft_board_setup(void *blob, bd_t *bd)
{
int nodeoffset;
nodeoffset = fdt_path_offset(blob, "/factory-settings");
if (nodeoffset < 0) {
puts("set bootloader version 'factory-settings' not in dtb!\n");
return -1;
}
if (fdt_setprop(blob, nodeoffset, "bl-version",
PLAIN_VERSION, strlen(PLAIN_VERSION)) != 0) {
puts("set bootloader version 'bl-version' prop. not in dtb!\n");
return -1;
}
return 0;
}
#else
static void br_summaryscreen_printenv(char *prefix,
char *name, char *altname,
char *suffix)
{
char *envval = getenv(name);
if (0 != envval) {
lcd_printf("%s %s %s", prefix, envval, suffix);
} else if (0 != altname) {
envval = getenv(altname);
if (0 != envval)
lcd_printf("%s %s %s", prefix, envval, suffix);
} else {
lcd_printf("\n");
}
}
#endif
void br_summaryscreen(void)
{
#ifdef CONFIG_USE_FDT
br_summaryscreen_printdtb(" - B&R -", "order-no", "-\n");
br_summaryscreen_printdtb(" Serial/Rev :", "serial-no", " /");
br_summaryscreen_printdtb(" ", "hw-revision", "\n");
br_summaryscreen_printdtb(" MAC (IF1) :", "brmac1", "\n");
br_summaryscreen_printdtb(" MAC (IF2) :", "brmac2", "\n");
lcd_puts(" Bootloader : " PLAIN_VERSION "\n");
lcd_puts("\n");
#else
br_summaryscreen_printenv(" - B&R -", "br_orderno", 0, "-\n");
br_summaryscreen_printenv(" Serial/Rev :", "br_serial", 0, "\n");
br_summaryscreen_printenv(" MAC (IF1) :", "br_mac1", "ethaddr", "\n");
br_summaryscreen_printenv(" MAC (IF2) :", "br_mac2", 0, "\n");
lcd_puts(" Bootloader : " PLAIN_VERSION "\n");
lcd_puts("\n");
#endif
}
void lcdpower(int on)
{
u32 pin, swval, i;
#ifdef CONFIG_USE_FDT
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
if (dtbaddr == ~0UL) {
puts("lcdpower: failed to get 'dtbaddr' from env!\n");
return;
}
pin = FDTPROP(dtbaddr, PATHINF, "pwrpin");
#else
pin = getenv_ulong("ds1_pwr", 16, ~0UL);
#endif
if (pin == ~0UL) {
puts("no pwrpin in dtb/env, cannot powerup display!\n");
return;
}
for (i = 0; i < 3; i++) {
if (pin != 0) {
swval = pin & 0x80 ? 0 : 1;
if (on)
gpio_direction_output(pin & 0x7F, swval);
else
gpio_direction_output(pin & 0x7F, !swval);
debug("switched pin %d to %d\n", pin & 0x7F, swval);
}
pin >>= 8;
}
}
vidinfo_t panel_info = {
.vl_col = 1366, /*
* give full resolution for allocating enough
* memory
*/
.vl_row = 768,
.vl_bpix = 5,
.priv = 0
};
void lcd_ctrl_init(void *lcdbase)
{
struct am335x_lcdpanel lcd_panel;
#ifdef CONFIG_USE_FDT
/* TODO: is there a better place to load the dtb ? */
load_devicetree();
#endif
memset(&lcd_panel, 0, sizeof(struct am335x_lcdpanel));
if (load_lcdtiming(&lcd_panel) != 0)
return;
lcd_panel.panel_power_ctrl = &lcdpower;
if (0 != am335xfb_init(&lcd_panel))
printf("ERROR: failed to initialize video!");
/*
* modifiy panel info to 'real' resolution, to operate correct with
* lcd-framework.
*/
panel_info.vl_col = lcd_panel.hactive;
panel_info.vl_row = lcd_panel.vactive;
lcd_set_flush_dcache(1);
}
void lcd_enable(void)
{
#ifdef CONFIG_USE_FDT
u32 dtbaddr = getenv_ulong("dtbaddr", 16, ~0UL);
if (dtbaddr == ~0UL) {
puts("lcdpower: failed to get 'dtbaddr' from env!\n");
return;
}
unsigned int driver = FDTPROP(dtbaddr, PATHINF, "brightdrv");
unsigned int bright = FDTPROP(dtbaddr, PATHINF, "brightdef");
unsigned int pwmfrq = FDTPROP(dtbaddr, PATHINF, "brightfdim");
#else
unsigned int driver = getenv_ulong("ds1_bright_drv", 16, 0UL);
unsigned int bright = getenv_ulong("ds1_bright_def", 10, 50);
unsigned int pwmfrq = getenv_ulong("ds1_pwmfreq", 10, ~0UL);
#endif
unsigned int tmp;
struct gptimer *const timerhw = (struct gptimer *)DM_TIMER6_BASE;
bright = bright != ~0UL ? bright : 50;
switch (driver) {
case 0: /* PMIC LED-Driver */
/* brightness level */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_WLEDCTRL2, bright, 0xFF);
/* turn on light */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_WLEDCTRL1, 0x0A, 0xFF);
break;
case 1: /* PWM using timer6 */
if (pwmfrq != ~0UL) {
timerhw->tiocp_cfg = TCFG_RESET;
udelay(10);
while (timerhw->tiocp_cfg & TCFG_RESET)
;
tmp = ~0UL-(V_OSCK/pwmfrq); /* bottom value */
timerhw->tldr = tmp;
timerhw->tcrr = tmp;
tmp = tmp + ((V_OSCK/pwmfrq)/100) * bright;
timerhw->tmar = tmp;
timerhw->tclr = (TCLR_PT | (2 << TCLR_TRG_SHIFT) |
TCLR_CE | TCLR_AR | TCLR_ST);
} else {
puts("invalid pwmfrq in env/dtb! skip PWM-setup.\n");
}
break;
default:
puts("no suitable backlightdriver in env/dtb!\n");
break;
}
br_summaryscreen();
}
#elif CONFIG_SPL_BUILD
#else
#error "LCD-support with a suitable FB-Driver is mandatory !"
#endif /* CONFIG_LCD */
#ifdef CONFIG_SPL_BUILD
void pmicsetup(u32 mpupll)
{
int mpu_vdd;
int usb_cur_lim;
if (i2c_probe(TPS65217_CHIP_PM)) {
puts("PMIC (0x24) not found! skip further initalization.\n");
return;
}
/* Get the frequency which is defined by device fuses */
dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
printf("detected max. frequency: %d - ", dpll_mpu_opp100.m);
if (0 != mpupll) {
dpll_mpu_opp100.m = MPUPLL_M_1000;
printf("retuning MPU-PLL to: %d MHz.\n", dpll_mpu_opp100.m);
} else {
puts("ok.\n");
}
/*
* Increase USB current limit to 1300mA or 1800mA and set
* the MPU voltage controller as needed.
*/
if (dpll_mpu_opp100.m == MPUPLL_M_1000) {
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
} else {
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE, TPS65217_POWER_PATH,
usb_cur_lim, TPS65217_USB_INPUT_CUR_LIMIT_MASK))
puts("tps65217_reg_write failure\n");
/* Set DCDC3 (CORE) voltage to 1.125V */
if (tps65217_voltage_update(TPS65217_DEFDCDC3,
TPS65217_DCDC_VOLT_SEL_1125MV)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set CORE Frequencies to OPP100 */
do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
/* Set DCDC2 (MPU) voltage */
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set LDO3 to 1.8V */
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_1_8,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
/* Set LDO4 to 3.3V */
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS2,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
/* Set MPU Frequency to what we detected now that voltages are set */
do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
/* Set PWR_EN bit in Status Register */
tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_STATUS, TPS65217_PWR_OFF, TPS65217_PWR_OFF);
}
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
#endif /* CONFIG_SPL_BUILD */
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
static void cpsw_control(int enabled)
{
/* VTP can be added here */
return;
}
/* describing port offsets of TI's CPSW block */
static struct cpsw_slave_data cpsw_slaves[] = {
{
.slave_reg_ofs = 0x208,
.sliver_reg_ofs = 0xd80,
.phy_addr = 1,
},
{
.slave_reg_ofs = 0x308,
.sliver_reg_ofs = 0xdc0,
.phy_addr = 2,
},
};
static struct cpsw_platform_data cpsw_data = {
.mdio_base = CPSW_MDIO_BASE,
.cpsw_base = CPSW_BASE,
.mdio_div = 0xff,
.channels = 8,
.cpdma_reg_ofs = 0x800,
.slaves = 1,
.slave_data = cpsw_slaves,
.ale_reg_ofs = 0xd00,
.ale_entries = 1024,
.host_port_reg_ofs = 0x108,
.hw_stats_reg_ofs = 0x900,
.bd_ram_ofs = 0x2000,
.mac_control = (1 << 5),
.control = cpsw_control,
.host_port_num = 0,
.version = CPSW_CTRL_VERSION_2,
};
#endif /* CONFIG_DRIVER_TI_CPSW, ... */
#if defined(CONFIG_DRIVER_TI_CPSW)
int board_eth_init(bd_t *bis)
{
int rv = 0;
char mac_addr[6];
const char *mac = 0;
uint32_t mac_hi, mac_lo;
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
if (!getenv("ethaddr")) {
#if !defined(CONFIG_SPL_BUILD) && defined(CONFIG_USE_FDT)
printf("<ethaddr> not set. trying DTB ... ");
mac = dtbmacaddr(0);
#endif
if (!mac) {
printf("<ethaddr> not set. validating E-fuse MAC ... ");
if (is_valid_ether_addr((const u8 *)mac_addr))
mac = (const char *)mac_addr;
}
if (mac) {
printf("using: %pM on ", mac);
eth_setenv_enetaddr("ethaddr", (const u8 *)mac);
}
}
writel(MII_MODE_ENABLE, &cdev->miisel);
cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_MII;
cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_MII;
rv = cpsw_register(&cpsw_data);
if (rv < 0) {
printf("Error %d registering CPSW switch\n", rv);
return 0;
}
#endif /* CONFIG_DRIVER_TI_CPSW, ... */
return rv;
}
#endif /* CONFIG_DRIVER_TI_CPSW */
#if defined(CONFIG_GENERIC_MMC) && !defined(CONFIG_SPL_BUILD)
int board_mmc_init(bd_t *bis)
{
return omap_mmc_init(1, 0, 0, -1, -1);
}
#endif
int overwrite_console(void)
{
return 1;
}