mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-14 17:07:38 +00:00
90cce0582d
Add support for imx8mn architecture in order to run the NAND in fast edo mode. Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> Reviewed-by: Dario Binacchi <dario.binacchi@amarulasolutions.com> Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
1855 lines
52 KiB
C
1855 lines
52 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Freescale i.MX28 NAND flash driver
|
|
*
|
|
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
|
|
* on behalf of DENX Software Engineering GmbH
|
|
*
|
|
* Based on code from LTIB:
|
|
* Freescale GPMI NFC NAND Flash Driver
|
|
*
|
|
* Copyright (C) 2010 Freescale Semiconductor, Inc.
|
|
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
|
|
* Copyright 2017-2019 NXP
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <clk.h>
|
|
#include <cpu_func.h>
|
|
#include <dm.h>
|
|
#include <dm/device_compat.h>
|
|
#include <malloc.h>
|
|
#include <mxs_nand.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/imx-regs.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mach-imx/regs-bch.h>
|
|
#include <asm/mach-imx/regs-gpmi.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/types.h>
|
|
#include <linux/math64.h>
|
|
|
|
#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
|
|
|
|
#if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_IMX8) || \
|
|
defined(CONFIG_IMX8M)
|
|
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
|
|
#else
|
|
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
|
|
#endif
|
|
#define MXS_NAND_METADATA_SIZE 10
|
|
#define MXS_NAND_BITS_PER_ECC_LEVEL 13
|
|
|
|
#if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
|
|
#define MXS_NAND_COMMAND_BUFFER_SIZE 32
|
|
#else
|
|
#define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE
|
|
#endif
|
|
|
|
#define MXS_NAND_BCH_TIMEOUT 10000
|
|
#define USEC_PER_SEC 1000000
|
|
#define NSEC_PER_SEC 1000000000L
|
|
|
|
#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
|
|
|
|
struct nand_ecclayout fake_ecc_layout;
|
|
|
|
/*
|
|
* Cache management functions
|
|
*/
|
|
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
|
|
static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
|
|
{
|
|
uint32_t addr = (uintptr_t)info->data_buf;
|
|
|
|
flush_dcache_range(addr, addr + info->data_buf_size);
|
|
}
|
|
|
|
static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
|
|
{
|
|
uint32_t addr = (uintptr_t)info->data_buf;
|
|
|
|
invalidate_dcache_range(addr, addr + info->data_buf_size);
|
|
}
|
|
|
|
static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
|
|
{
|
|
uint32_t addr = (uintptr_t)info->cmd_buf;
|
|
|
|
flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
|
|
}
|
|
#else
|
|
static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
|
|
static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
|
|
static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
|
|
#endif
|
|
|
|
static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
|
|
{
|
|
struct mxs_dma_desc *desc;
|
|
|
|
if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
|
|
printf("MXS NAND: Too many DMA descriptors requested\n");
|
|
return NULL;
|
|
}
|
|
|
|
desc = info->desc[info->desc_index];
|
|
info->desc_index++;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
|
|
{
|
|
int i;
|
|
struct mxs_dma_desc *desc;
|
|
|
|
for (i = 0; i < info->desc_index; i++) {
|
|
desc = info->desc[i];
|
|
memset(desc, 0, sizeof(struct mxs_dma_desc));
|
|
desc->address = (dma_addr_t)desc;
|
|
}
|
|
|
|
info->desc_index = 0;
|
|
}
|
|
|
|
static uint32_t mxs_nand_aux_status_offset(void)
|
|
{
|
|
return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
|
|
}
|
|
|
|
static inline bool mxs_nand_bbm_in_data_chunk(struct bch_geometry *geo,
|
|
struct mtd_info *mtd,
|
|
unsigned int *chunk_num)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
if (geo->ecc_chunk0_size != geo->ecc_chunkn_size) {
|
|
dev_err(mtd->dev, "The size of chunk0 must equal to chunkn\n");
|
|
return false;
|
|
}
|
|
|
|
i = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) /
|
|
(geo->gf_len * geo->ecc_strength +
|
|
geo->ecc_chunkn_size * 8);
|
|
|
|
j = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) -
|
|
(geo->gf_len * geo->ecc_strength +
|
|
geo->ecc_chunkn_size * 8) * i;
|
|
|
|
if (j < geo->ecc_chunkn_size * 8) {
|
|
*chunk_num = i + 1;
|
|
dev_dbg(mtd->dev, "Set ecc to %d and bbm in chunk %d\n",
|
|
geo->ecc_strength, *chunk_num);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
|
|
struct mtd_info *mtd,
|
|
unsigned int ecc_strength,
|
|
unsigned int ecc_step)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
switch (ecc_step) {
|
|
case SZ_512:
|
|
geo->gf_len = 13;
|
|
break;
|
|
case SZ_1K:
|
|
geo->gf_len = 14;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
geo->ecc_chunk0_size = ecc_step;
|
|
geo->ecc_chunkn_size = ecc_step;
|
|
geo->ecc_strength = round_up(ecc_strength, 2);
|
|
|
|
/* Keep the C >= O */
|
|
if (geo->ecc_chunkn_size < mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
|
|
return -EINVAL;
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
|
|
|
|
/* For bit swap. */
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ MXS_NAND_METADATA_SIZE * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int mxs_nand_legacy_calc_ecc_layout(struct bch_geometry *geo,
|
|
struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
unsigned int block_mark_bit_offset;
|
|
int corr, ds_corr;
|
|
|
|
/* The default for the length of Galois Field. */
|
|
geo->gf_len = 13;
|
|
|
|
/* The default for chunk size. */
|
|
geo->ecc_chunk0_size = 512;
|
|
geo->ecc_chunkn_size = 512;
|
|
|
|
if (geo->ecc_chunkn_size < mtd->oobsize) {
|
|
geo->gf_len = 14;
|
|
geo->ecc_chunk0_size *= 2;
|
|
geo->ecc_chunkn_size *= 2;
|
|
}
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
|
|
|
|
/*
|
|
* Determine the ECC layout with the formula:
|
|
* ECC bits per chunk = (total page spare data bits) /
|
|
* (bits per ECC level) / (chunks per page)
|
|
* where:
|
|
* total page spare data bits =
|
|
* (page oob size - meta data size) * (bits per byte)
|
|
*/
|
|
geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
|
|
/ (geo->gf_len * geo->ecc_chunk_count);
|
|
|
|
geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
|
|
nand_info->max_ecc_strength_supported);
|
|
|
|
/* check ecc strength, same as nand_ecc_is_strong_enough() did*/
|
|
if (chip->ecc_step_ds) {
|
|
corr = mtd->writesize * geo->ecc_strength /
|
|
geo->ecc_chunkn_size;
|
|
ds_corr = mtd->writesize * chip->ecc_strength_ds /
|
|
chip->ecc_step_ds;
|
|
if (corr < ds_corr ||
|
|
geo->ecc_strength < chip->ecc_strength_ds)
|
|
return -EINVAL;
|
|
}
|
|
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ MXS_NAND_METADATA_SIZE * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int mxs_nand_calc_ecc_for_large_oob(struct bch_geometry *geo,
|
|
struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
unsigned int block_mark_bit_offset;
|
|
unsigned int max_ecc;
|
|
unsigned int bbm_chunk;
|
|
unsigned int i;
|
|
|
|
/* sanity check for the minimum ecc nand required */
|
|
if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
|
|
return -EINVAL;
|
|
geo->ecc_strength = chip->ecc_strength_ds;
|
|
|
|
/* calculate the maximum ecc platform can support*/
|
|
geo->gf_len = 14;
|
|
geo->ecc_chunk0_size = 1024;
|
|
geo->ecc_chunkn_size = 1024;
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size;
|
|
max_ecc = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
|
|
/ (geo->gf_len * geo->ecc_chunk_count);
|
|
max_ecc = min(round_down(max_ecc, 2),
|
|
nand_info->max_ecc_strength_supported);
|
|
|
|
|
|
/* search a supported ecc strength that makes bbm */
|
|
/* located in data chunk */
|
|
geo->ecc_strength = chip->ecc_strength_ds;
|
|
while (!(geo->ecc_strength > max_ecc)) {
|
|
if (mxs_nand_bbm_in_data_chunk(geo, mtd, &bbm_chunk))
|
|
break;
|
|
geo->ecc_strength += 2;
|
|
}
|
|
|
|
/* if none of them works, keep using the minimum ecc */
|
|
/* nand required but changing ecc page layout */
|
|
if (geo->ecc_strength > max_ecc) {
|
|
geo->ecc_strength = chip->ecc_strength_ds;
|
|
/* add extra ecc for meta data */
|
|
geo->ecc_chunk0_size = 0;
|
|
geo->ecc_chunk_count = (mtd->writesize / geo->ecc_chunkn_size) + 1;
|
|
geo->ecc_for_meta = 1;
|
|
/* check if oob can afford this extra ecc chunk */
|
|
if (mtd->oobsize * 8 < MXS_NAND_METADATA_SIZE * 8 +
|
|
geo->gf_len * geo->ecc_strength
|
|
* geo->ecc_chunk_count) {
|
|
printf("unsupported NAND chip with new layout\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* calculate in which chunk bbm located */
|
|
bbm_chunk = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8 -
|
|
geo->gf_len * geo->ecc_strength) /
|
|
(geo->gf_len * geo->ecc_strength +
|
|
geo->ecc_chunkn_size * 8) + 1;
|
|
}
|
|
|
|
/* calculate the number of ecc chunk behind the bbm */
|
|
i = (mtd->writesize / geo->ecc_chunkn_size) - bbm_chunk + 1;
|
|
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i)
|
|
+ MXS_NAND_METADATA_SIZE * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for BCH complete IRQ and clear the IRQ
|
|
*/
|
|
static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
|
|
{
|
|
int timeout = MXS_NAND_BCH_TIMEOUT;
|
|
int ret;
|
|
|
|
ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
|
|
BCH_CTRL_COMPLETE_IRQ, timeout);
|
|
|
|
writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the function that we install in the cmd_ctrl function pointer of the
|
|
* owning struct nand_chip. The only functions in the reference implementation
|
|
* that use these functions pointers are cmdfunc and select_chip.
|
|
*
|
|
* In this driver, we implement our own select_chip, so this function will only
|
|
* be called by the reference implementation's cmdfunc. For this reason, we can
|
|
* ignore the chip enable bit and concentrate only on sending bytes to the NAND
|
|
* Flash.
|
|
*/
|
|
static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct mxs_dma_desc *d;
|
|
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
|
|
int ret;
|
|
|
|
/*
|
|
* If this condition is true, something is _VERY_ wrong in MTD
|
|
* subsystem!
|
|
*/
|
|
if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
|
|
printf("MXS NAND: Command queue too long\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Every operation begins with a command byte and a series of zero or
|
|
* more address bytes. These are distinguished by either the Address
|
|
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
|
|
* asserted. When MTD is ready to execute the command, it will
|
|
* deasert both latch enables.
|
|
*
|
|
* Rather than run a separate DMA operation for every single byte, we
|
|
* queue them up and run a single DMA operation for the entire series
|
|
* of command and data bytes.
|
|
*/
|
|
if (ctrl & (NAND_ALE | NAND_CLE)) {
|
|
if (data != NAND_CMD_NONE)
|
|
nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If control arrives here, MTD has deasserted both the ALE and CLE,
|
|
* which means it's ready to run an operation. Check if we have any
|
|
* bytes to send.
|
|
*/
|
|
if (nand_info->cmd_queue_len == 0)
|
|
return;
|
|
|
|
/* Compile the DMA descriptor -- a descriptor that sends command. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
|
|
MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
|
|
(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
|
|
|
|
d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WRITE |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_CLE |
|
|
GPMI_CTRL0_ADDRESS_INCREMENT |
|
|
nand_info->cmd_queue_len;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Flush caches */
|
|
mxs_nand_flush_cmd_buf(nand_info);
|
|
|
|
/* Execute the DMA chain. */
|
|
ret = mxs_dma_go(channel);
|
|
if (ret)
|
|
printf("MXS NAND: Error sending command\n");
|
|
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
|
|
/* Reset the command queue. */
|
|
nand_info->cmd_queue_len = 0;
|
|
}
|
|
|
|
/*
|
|
* Test if the NAND flash is ready.
|
|
*/
|
|
static int mxs_nand_device_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
uint32_t tmp;
|
|
|
|
tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
|
|
tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
|
|
|
|
return tmp & 1;
|
|
}
|
|
|
|
/*
|
|
* Select the NAND chip.
|
|
*/
|
|
static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
|
|
nand_info->cur_chip = chip;
|
|
}
|
|
|
|
/*
|
|
* Handle block mark swapping.
|
|
*
|
|
* Note that, when this function is called, it doesn't know whether it's
|
|
* swapping the block mark, or swapping it *back* -- but it doesn't matter
|
|
* because the the operation is the same.
|
|
*/
|
|
static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
|
|
uint8_t *data_buf, uint8_t *oob_buf)
|
|
{
|
|
uint32_t bit_offset = geo->block_mark_bit_offset;
|
|
uint32_t buf_offset = geo->block_mark_byte_offset;
|
|
|
|
uint32_t src;
|
|
uint32_t dst;
|
|
|
|
/*
|
|
* Get the byte from the data area that overlays the block mark. Since
|
|
* the ECC engine applies its own view to the bits in the page, the
|
|
* physical block mark won't (in general) appear on a byte boundary in
|
|
* the data.
|
|
*/
|
|
src = data_buf[buf_offset] >> bit_offset;
|
|
src |= data_buf[buf_offset + 1] << (8 - bit_offset);
|
|
|
|
dst = oob_buf[0];
|
|
|
|
oob_buf[0] = src;
|
|
|
|
data_buf[buf_offset] &= ~(0xff << bit_offset);
|
|
data_buf[buf_offset + 1] &= 0xff << bit_offset;
|
|
|
|
data_buf[buf_offset] |= dst << bit_offset;
|
|
data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
|
|
}
|
|
|
|
/*
|
|
* Read data from NAND.
|
|
*/
|
|
static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct mxs_dma_desc *d;
|
|
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
|
|
int ret;
|
|
|
|
if (length > NAND_MAX_PAGESIZE) {
|
|
printf("MXS NAND: DMA buffer too big\n");
|
|
return;
|
|
}
|
|
|
|
if (!buf) {
|
|
printf("MXS NAND: DMA buffer is NULL\n");
|
|
return;
|
|
}
|
|
|
|
/* Compile the DMA descriptor - a descriptor that reads data. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
|
|
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
|
|
(length << MXS_DMA_DESC_BYTES_OFFSET);
|
|
|
|
d->cmd.address = (dma_addr_t)nand_info->data_buf;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_READ |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA |
|
|
length;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/*
|
|
* A DMA descriptor that waits for the command to end and the chip to
|
|
* become ready.
|
|
*
|
|
* I think we actually should *not* be waiting for the chip to become
|
|
* ready because, after all, we don't care. I think the original code
|
|
* did that and no one has re-thought it yet.
|
|
*/
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
|
|
MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
|
|
|
|
d->cmd.address = 0;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Invalidate caches */
|
|
mxs_nand_inval_data_buf(nand_info);
|
|
|
|
/* Execute the DMA chain. */
|
|
ret = mxs_dma_go(channel);
|
|
if (ret) {
|
|
printf("MXS NAND: DMA read error\n");
|
|
goto rtn;
|
|
}
|
|
|
|
/* Invalidate caches */
|
|
mxs_nand_inval_data_buf(nand_info);
|
|
|
|
memcpy(buf, nand_info->data_buf, length);
|
|
|
|
rtn:
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
}
|
|
|
|
/*
|
|
* Write data to NAND.
|
|
*/
|
|
static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
|
|
int length)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct mxs_dma_desc *d;
|
|
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
|
|
int ret;
|
|
|
|
if (length > NAND_MAX_PAGESIZE) {
|
|
printf("MXS NAND: DMA buffer too big\n");
|
|
return;
|
|
}
|
|
|
|
if (!buf) {
|
|
printf("MXS NAND: DMA buffer is NULL\n");
|
|
return;
|
|
}
|
|
|
|
memcpy(nand_info->data_buf, buf, length);
|
|
|
|
/* Compile the DMA descriptor - a descriptor that writes data. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
|
|
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
|
|
(length << MXS_DMA_DESC_BYTES_OFFSET);
|
|
|
|
d->cmd.address = (dma_addr_t)nand_info->data_buf;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WRITE |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA |
|
|
length;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Flush caches */
|
|
mxs_nand_flush_data_buf(nand_info);
|
|
|
|
/* Execute the DMA chain. */
|
|
ret = mxs_dma_go(channel);
|
|
if (ret)
|
|
printf("MXS NAND: DMA write error\n");
|
|
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
}
|
|
|
|
/*
|
|
* Read a single byte from NAND.
|
|
*/
|
|
static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
uint8_t buf;
|
|
mxs_nand_read_buf(mtd, &buf, 1);
|
|
return buf;
|
|
}
|
|
|
|
static bool mxs_nand_erased_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
u8 *buf, int chunk, int page)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
unsigned int flip_bits = 0, flip_bits_noecc = 0;
|
|
unsigned int threshold;
|
|
unsigned int base = geo->ecc_chunkn_size * chunk;
|
|
u32 *dma_buf = (u32 *)buf;
|
|
int i;
|
|
|
|
threshold = geo->gf_len / 2;
|
|
if (threshold > geo->ecc_strength)
|
|
threshold = geo->ecc_strength;
|
|
|
|
for (i = 0; i < geo->ecc_chunkn_size; i++) {
|
|
flip_bits += hweight8(~buf[base + i]);
|
|
if (flip_bits > threshold)
|
|
return false;
|
|
}
|
|
|
|
nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
nand->read_buf(mtd, buf, mtd->writesize);
|
|
|
|
for (i = 0; i < mtd->writesize / 4; i++) {
|
|
flip_bits_noecc += hweight32(~dma_buf[i]);
|
|
if (flip_bits_noecc > threshold)
|
|
return false;
|
|
}
|
|
|
|
mtd->ecc_stats.corrected += flip_bits;
|
|
|
|
memset(buf, 0xff, mtd->writesize);
|
|
|
|
printf("The page(%d) is an erased page(%d,%d,%d,%d).\n", page, chunk, threshold, flip_bits, flip_bits_noecc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Read a page from NAND.
|
|
*/
|
|
static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
|
|
uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
|
|
struct mxs_dma_desc *d;
|
|
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
|
|
uint32_t corrected = 0, failed = 0;
|
|
uint8_t *status;
|
|
int i, ret;
|
|
int flag = 0;
|
|
|
|
/* Compile the DMA descriptor - wait for ready. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
|
|
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
|
|
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
|
|
|
|
d->cmd.address = 0;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Compile the DMA descriptor - enable the BCH block and read. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
|
|
MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
|
|
|
|
d->cmd.address = 0;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_READ |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA |
|
|
(mtd->writesize + mtd->oobsize);
|
|
d->cmd.pio_words[1] = 0;
|
|
d->cmd.pio_words[2] =
|
|
GPMI_ECCCTRL_ENABLE_ECC |
|
|
GPMI_ECCCTRL_ECC_CMD_DECODE |
|
|
GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
|
|
d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
|
|
d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
|
|
d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
|
|
|
|
if (nand_info->en_randomizer) {
|
|
d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE |
|
|
GPMI_ECCCTRL_RANDOMIZER_TYPE2;
|
|
d->cmd.pio_words[3] |= (page % 256) << 16;
|
|
}
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Compile the DMA descriptor - disable the BCH block. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
|
|
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
|
|
(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
|
|
|
|
d->cmd.address = 0;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA |
|
|
(mtd->writesize + mtd->oobsize);
|
|
d->cmd.pio_words[1] = 0;
|
|
d->cmd.pio_words[2] = 0;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_DEC_SEM;
|
|
|
|
d->cmd.address = 0;
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Invalidate caches */
|
|
mxs_nand_inval_data_buf(nand_info);
|
|
|
|
/* Execute the DMA chain. */
|
|
ret = mxs_dma_go(channel);
|
|
if (ret) {
|
|
printf("MXS NAND: DMA read error\n");
|
|
goto rtn;
|
|
}
|
|
|
|
ret = mxs_nand_wait_for_bch_complete(nand_info);
|
|
if (ret) {
|
|
printf("MXS NAND: BCH read timeout\n");
|
|
goto rtn;
|
|
}
|
|
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
|
|
/* Invalidate caches */
|
|
mxs_nand_inval_data_buf(nand_info);
|
|
|
|
/* Read DMA completed, now do the mark swapping. */
|
|
mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
|
|
|
|
/* Loop over status bytes, accumulating ECC status. */
|
|
status = nand_info->oob_buf + mxs_nand_aux_status_offset();
|
|
for (i = 0; i < geo->ecc_chunk_count; i++) {
|
|
if (status[i] == 0x00)
|
|
continue;
|
|
|
|
if (status[i] == 0xff) {
|
|
if (!nand_info->en_randomizer &&
|
|
(is_mx6dqp() || is_mx7() || is_mx6ul() ||
|
|
is_imx8() || is_imx8m()))
|
|
if (readl(&bch_regs->hw_bch_debug1))
|
|
flag = 1;
|
|
continue;
|
|
}
|
|
|
|
if (status[i] == 0xfe) {
|
|
if (mxs_nand_erased_page(mtd, nand,
|
|
nand_info->data_buf, i, page))
|
|
break;
|
|
failed++;
|
|
continue;
|
|
}
|
|
|
|
corrected += status[i];
|
|
}
|
|
|
|
/* Propagate ECC status to the owning MTD. */
|
|
mtd->ecc_stats.failed += failed;
|
|
mtd->ecc_stats.corrected += corrected;
|
|
|
|
/*
|
|
* It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
|
|
* details about our policy for delivering the OOB.
|
|
*
|
|
* We fill the caller's buffer with set bits, and then copy the block
|
|
* mark to the caller's buffer. Note that, if block mark swapping was
|
|
* necessary, it has already been done, so we can rely on the first
|
|
* byte of the auxiliary buffer to contain the block mark.
|
|
*/
|
|
memset(nand->oob_poi, 0xff, mtd->oobsize);
|
|
|
|
nand->oob_poi[0] = nand_info->oob_buf[0];
|
|
|
|
memcpy(buf, nand_info->data_buf, mtd->writesize);
|
|
|
|
if (flag)
|
|
memset(buf, 0xff, mtd->writesize);
|
|
rtn:
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write a page to NAND.
|
|
*/
|
|
static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *nand, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
struct mxs_dma_desc *d;
|
|
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
|
|
int ret;
|
|
|
|
memcpy(nand_info->data_buf, buf, mtd->writesize);
|
|
memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
|
|
|
|
/* Handle block mark swapping. */
|
|
mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
|
|
|
|
/* Compile the DMA descriptor - write data. */
|
|
d = mxs_nand_get_dma_desc(nand_info);
|
|
d->cmd.data =
|
|
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
|
|
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
|
|
(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
|
|
|
|
d->cmd.address = 0;
|
|
|
|
d->cmd.pio_words[0] =
|
|
GPMI_CTRL0_COMMAND_MODE_WRITE |
|
|
GPMI_CTRL0_WORD_LENGTH |
|
|
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
|
|
GPMI_CTRL0_ADDRESS_NAND_DATA;
|
|
d->cmd.pio_words[1] = 0;
|
|
d->cmd.pio_words[2] =
|
|
GPMI_ECCCTRL_ENABLE_ECC |
|
|
GPMI_ECCCTRL_ECC_CMD_ENCODE |
|
|
GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
|
|
d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
|
|
d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
|
|
d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
|
|
|
|
if (nand_info->en_randomizer) {
|
|
d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE |
|
|
GPMI_ECCCTRL_RANDOMIZER_TYPE2;
|
|
/*
|
|
* Write NAND page number needed to be randomized
|
|
* to GPMI_ECCCOUNT register.
|
|
*
|
|
* The value is between 0-255. For additional details
|
|
* check 9.6.6.4 of i.MX7D Applications Processor reference
|
|
*/
|
|
d->cmd.pio_words[3] |= (page % 256) << 16;
|
|
}
|
|
|
|
mxs_dma_desc_append(channel, d);
|
|
|
|
/* Flush caches */
|
|
mxs_nand_flush_data_buf(nand_info);
|
|
|
|
/* Execute the DMA chain. */
|
|
ret = mxs_dma_go(channel);
|
|
if (ret) {
|
|
printf("MXS NAND: DMA write error\n");
|
|
goto rtn;
|
|
}
|
|
|
|
ret = mxs_nand_wait_for_bch_complete(nand_info);
|
|
if (ret) {
|
|
printf("MXS NAND: BCH write timeout\n");
|
|
goto rtn;
|
|
}
|
|
|
|
rtn:
|
|
mxs_nand_return_dma_descs(nand_info);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read OOB from NAND.
|
|
*
|
|
* This function is a veneer that replaces the function originally installed by
|
|
* the NAND Flash MTD code.
|
|
*/
|
|
static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
int ret;
|
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
nand_info->raw_oob_mode = 1;
|
|
else
|
|
nand_info->raw_oob_mode = 0;
|
|
|
|
ret = nand_info->hooked_read_oob(mtd, from, ops);
|
|
|
|
nand_info->raw_oob_mode = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write OOB to NAND.
|
|
*
|
|
* This function is a veneer that replaces the function originally installed by
|
|
* the NAND Flash MTD code.
|
|
*/
|
|
static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
int ret;
|
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
nand_info->raw_oob_mode = 1;
|
|
else
|
|
nand_info->raw_oob_mode = 0;
|
|
|
|
ret = nand_info->hooked_write_oob(mtd, to, ops);
|
|
|
|
nand_info->raw_oob_mode = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Mark a block bad in NAND.
|
|
*
|
|
* This function is a veneer that replaces the function originally installed by
|
|
* the NAND Flash MTD code.
|
|
*/
|
|
static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
int ret;
|
|
|
|
nand_info->marking_block_bad = 1;
|
|
|
|
ret = nand_info->hooked_block_markbad(mtd, ofs);
|
|
|
|
nand_info->marking_block_bad = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* There are several places in this driver where we have to handle the OOB and
|
|
* block marks. This is the function where things are the most complicated, so
|
|
* this is where we try to explain it all. All the other places refer back to
|
|
* here.
|
|
*
|
|
* These are the rules, in order of decreasing importance:
|
|
*
|
|
* 1) Nothing the caller does can be allowed to imperil the block mark, so all
|
|
* write operations take measures to protect it.
|
|
*
|
|
* 2) In read operations, the first byte of the OOB we return must reflect the
|
|
* true state of the block mark, no matter where that block mark appears in
|
|
* the physical page.
|
|
*
|
|
* 3) ECC-based read operations return an OOB full of set bits (since we never
|
|
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
|
|
* return).
|
|
*
|
|
* 4) "Raw" read operations return a direct view of the physical bytes in the
|
|
* page, using the conventional definition of which bytes are data and which
|
|
* are OOB. This gives the caller a way to see the actual, physical bytes
|
|
* in the page, without the distortions applied by our ECC engine.
|
|
*
|
|
* What we do for this specific read operation depends on whether we're doing
|
|
* "raw" read, or an ECC-based read.
|
|
*
|
|
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
|
|
* easy. When reading a page, for example, the NAND Flash MTD code calls our
|
|
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
|
|
* ECC-based or raw view of the page is implicit in which function it calls
|
|
* (there is a similar pair of ECC-based/raw functions for writing).
|
|
*
|
|
* Since MTD assumes the OOB is not covered by ECC, there is no pair of
|
|
* ECC-based/raw functions for reading or or writing the OOB. The fact that the
|
|
* caller wants an ECC-based or raw view of the page is not propagated down to
|
|
* this driver.
|
|
*
|
|
* Since our OOB *is* covered by ECC, we need this information. So, we hook the
|
|
* ecc.read_oob and ecc.write_oob function pointers in the owning
|
|
* struct mtd_info with our own functions. These hook functions set the
|
|
* raw_oob_mode field so that, when control finally arrives here, we'll know
|
|
* what to do.
|
|
*/
|
|
static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
|
|
int page)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
|
|
/*
|
|
* First, fill in the OOB buffer. If we're doing a raw read, we need to
|
|
* get the bytes from the physical page. If we're not doing a raw read,
|
|
* we need to fill the buffer with set bits.
|
|
*/
|
|
if (nand_info->raw_oob_mode) {
|
|
/*
|
|
* If control arrives here, we're doing a "raw" read. Send the
|
|
* command to read the conventional OOB and read it.
|
|
*/
|
|
nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
|
|
} else {
|
|
/*
|
|
* If control arrives here, we're not doing a "raw" read. Fill
|
|
* the OOB buffer with set bits and correct the block mark.
|
|
*/
|
|
memset(nand->oob_poi, 0xff, mtd->oobsize);
|
|
|
|
nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
mxs_nand_read_buf(mtd, nand->oob_poi, 1);
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* Write OOB data to NAND.
|
|
*/
|
|
static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
|
|
int page)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
uint8_t block_mark = 0;
|
|
|
|
/*
|
|
* There are fundamental incompatibilities between the i.MX GPMI NFC and
|
|
* the NAND Flash MTD model that make it essentially impossible to write
|
|
* the out-of-band bytes.
|
|
*
|
|
* We permit *ONE* exception. If the *intent* of writing the OOB is to
|
|
* mark a block bad, we can do that.
|
|
*/
|
|
|
|
if (!nand_info->marking_block_bad) {
|
|
printf("NXS NAND: Writing OOB isn't supported\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Write the block mark. */
|
|
nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
|
|
nand->write_buf(mtd, &block_mark, 1);
|
|
nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
/* Check if it worked. */
|
|
if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Claims all blocks are good.
|
|
*
|
|
* In principle, this function is *only* called when the NAND Flash MTD system
|
|
* isn't allowed to keep an in-memory bad block table, so it is forced to ask
|
|
* the driver for bad block information.
|
|
*
|
|
* In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
|
|
* this function is *only* called when we take it away.
|
|
*
|
|
* Thus, this function is only called when we want *all* blocks to look good,
|
|
* so it *always* return success.
|
|
*/
|
|
static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
int err;
|
|
|
|
if (chip->ecc_strength_ds > nand_info->max_ecc_strength_supported) {
|
|
printf("unsupported NAND chip, minimum ecc required %d\n"
|
|
, chip->ecc_strength_ds);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* use the legacy bch setting by default */
|
|
if ((!nand_info->use_minimum_ecc && mtd->oobsize < 1024) ||
|
|
!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) {
|
|
dev_dbg(mtd->dev, "use legacy bch geometry\n");
|
|
err = mxs_nand_legacy_calc_ecc_layout(geo, mtd);
|
|
if (!err)
|
|
return 0;
|
|
}
|
|
|
|
/* for large oob nand */
|
|
if (mtd->oobsize > 1024) {
|
|
dev_dbg(mtd->dev, "use large oob bch geometry\n");
|
|
err = mxs_nand_calc_ecc_for_large_oob(geo, mtd);
|
|
if (!err)
|
|
return 0;
|
|
}
|
|
|
|
/* otherwise use the minimum ecc nand chips required */
|
|
dev_dbg(mtd->dev, "use minimum ecc bch geometry\n");
|
|
err = mxs_nand_calc_ecc_layout_by_info(geo, mtd, chip->ecc_strength_ds,
|
|
chip->ecc_step_ds);
|
|
|
|
if (err)
|
|
dev_err(mtd->dev, "none of the bch geometry setting works\n");
|
|
|
|
return err;
|
|
}
|
|
|
|
void mxs_nand_dump_geo(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
|
|
dev_dbg(mtd->dev, "BCH Geometry :\n"
|
|
"GF Length\t\t: %u\n"
|
|
"ECC Strength\t\t: %u\n"
|
|
"ECC for Meta\t\t: %u\n"
|
|
"ECC Chunk0 Size\t\t: %u\n"
|
|
"ECC Chunkn Size\t\t: %u\n"
|
|
"ECC Chunk Count\t\t: %u\n"
|
|
"Block Mark Byte Offset\t: %u\n"
|
|
"Block Mark Bit Offset\t: %u\n",
|
|
geo->gf_len,
|
|
geo->ecc_strength,
|
|
geo->ecc_for_meta,
|
|
geo->ecc_chunk0_size,
|
|
geo->ecc_chunkn_size,
|
|
geo->ecc_chunk_count,
|
|
geo->block_mark_byte_offset,
|
|
geo->block_mark_bit_offset);
|
|
}
|
|
|
|
/*
|
|
* At this point, the physical NAND Flash chips have been identified and
|
|
* counted, so we know the physical geometry. This enables us to make some
|
|
* important configuration decisions.
|
|
*
|
|
* The return value of this function propagates directly back to this driver's
|
|
* board_nand_init(). Anything other than zero will cause this driver to
|
|
* tear everything down and declare failure.
|
|
*/
|
|
int mxs_nand_setup_ecc(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
|
|
uint32_t tmp;
|
|
int ret;
|
|
|
|
nand_info->en_randomizer = 0;
|
|
nand_info->oobsize = mtd->oobsize;
|
|
nand_info->writesize = mtd->writesize;
|
|
|
|
ret = mxs_nand_set_geometry(mtd, geo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mxs_nand_dump_geo(mtd);
|
|
|
|
/* Configure BCH and set NFC geometry */
|
|
mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
|
|
|
|
/* Configure layout 0 */
|
|
tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
|
|
tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
|
|
tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
|
|
tmp |= geo->ecc_chunk0_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
|
|
tmp |= (geo->gf_len == 14 ? 1 : 0) <<
|
|
BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout0);
|
|
nand_info->bch_flash0layout0 = tmp;
|
|
|
|
tmp = (mtd->writesize + mtd->oobsize)
|
|
<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
|
|
tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
|
|
tmp |= geo->ecc_chunkn_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
|
|
tmp |= (geo->gf_len == 14 ? 1 : 0) <<
|
|
BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout1);
|
|
nand_info->bch_flash0layout1 = tmp;
|
|
|
|
/* Set erase threshold to ecc strength for mx6ul, mx6qp and mx7 */
|
|
if (is_mx6dqp() || is_mx7() ||
|
|
is_mx6ul() || is_imx8() || is_imx8m())
|
|
writel(BCH_MODE_ERASE_THRESHOLD(geo->ecc_strength),
|
|
&bch_regs->hw_bch_mode);
|
|
|
|
/* Set *all* chip selects to use layout 0 */
|
|
writel(0, &bch_regs->hw_bch_layoutselect);
|
|
|
|
/* Enable BCH complete interrupt */
|
|
writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA buffers
|
|
*/
|
|
int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
|
|
{
|
|
uint8_t *buf;
|
|
const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
|
|
|
|
nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
|
|
|
|
/* DMA buffers */
|
|
buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
|
|
if (!buf) {
|
|
printf("MXS NAND: Error allocating DMA buffers\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(buf, 0, nand_info->data_buf_size);
|
|
|
|
nand_info->data_buf = buf;
|
|
nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
|
|
/* Command buffers */
|
|
nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
|
|
MXS_NAND_COMMAND_BUFFER_SIZE);
|
|
if (!nand_info->cmd_buf) {
|
|
free(buf);
|
|
printf("MXS NAND: Error allocating command buffers\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
|
|
nand_info->cmd_queue_len = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes the NFC hardware.
|
|
*/
|
|
static int mxs_nand_init_dma(struct mxs_nand_info *info)
|
|
{
|
|
int i = 0, j, ret = 0;
|
|
|
|
info->desc = malloc(sizeof(struct mxs_dma_desc *) *
|
|
MXS_NAND_DMA_DESCRIPTOR_COUNT);
|
|
if (!info->desc) {
|
|
ret = -ENOMEM;
|
|
goto err1;
|
|
}
|
|
|
|
/* Allocate the DMA descriptors. */
|
|
for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
|
|
info->desc[i] = mxs_dma_desc_alloc();
|
|
if (!info->desc[i]) {
|
|
ret = -ENOMEM;
|
|
goto err2;
|
|
}
|
|
}
|
|
|
|
/* Init the DMA controller. */
|
|
mxs_dma_init();
|
|
for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
|
|
j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
|
|
ret = mxs_dma_init_channel(j);
|
|
if (ret)
|
|
goto err3;
|
|
}
|
|
|
|
/* Reset the GPMI block. */
|
|
mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
|
|
mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
|
|
|
|
/*
|
|
* Choose NAND mode, set IRQ polarity, disable write protection and
|
|
* select BCH ECC.
|
|
*/
|
|
clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
|
|
GPMI_CTRL1_GPMI_MODE,
|
|
GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
|
|
GPMI_CTRL1_BCH_MODE);
|
|
|
|
return 0;
|
|
|
|
err3:
|
|
for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
|
|
mxs_dma_release(j);
|
|
err2:
|
|
for (--i; i >= 0; i--)
|
|
mxs_dma_desc_free(info->desc[i]);
|
|
free(info->desc);
|
|
err1:
|
|
if (ret == -ENOMEM)
|
|
printf("MXS NAND: Unable to allocate DMA descriptors\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* <1> Firstly, we should know what's the GPMI-clock means.
|
|
* The GPMI-clock is the internal clock in the gpmi nand controller.
|
|
* If you set 100MHz to gpmi nand controller, the GPMI-clock's period
|
|
* is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
|
|
*
|
|
* <2> Secondly, we should know what's the frequency on the nand chip pins.
|
|
* The frequency on the nand chip pins is derived from the GPMI-clock.
|
|
* We can get it from the following equation:
|
|
*
|
|
* F = G / (DS + DH)
|
|
*
|
|
* F : the frequency on the nand chip pins.
|
|
* G : the GPMI clock, such as 100MHz.
|
|
* DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
|
|
* DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
|
|
*
|
|
* <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
|
|
* the nand EDO(extended Data Out) timing could be applied.
|
|
* The GPMI implements a feedback read strobe to sample the read data.
|
|
* The feedback read strobe can be delayed to support the nand EDO timing
|
|
* where the read strobe may deasserts before the read data is valid, and
|
|
* read data is valid for some time after read strobe.
|
|
*
|
|
* The following figure illustrates some aspects of a NAND Flash read:
|
|
*
|
|
* |<---tREA---->|
|
|
* | |
|
|
* | | |
|
|
* |<--tRP-->| |
|
|
* | | |
|
|
* __ ___|__________________________________
|
|
* RDN \________/ |
|
|
* |
|
|
* /---------\
|
|
* Read Data --------------< >---------
|
|
* \---------/
|
|
* | |
|
|
* |<-D->|
|
|
* FeedbackRDN ________ ____________
|
|
* \___________/
|
|
*
|
|
* D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
|
|
*
|
|
*
|
|
* <4> Now, we begin to describe how to compute the right RDN_DELAY.
|
|
*
|
|
* 4.1) From the aspect of the nand chip pins:
|
|
* Delay = (tREA + C - tRP) {1}
|
|
*
|
|
* tREA : the maximum read access time.
|
|
* C : a constant to adjust the delay. default is 4000ps.
|
|
* tRP : the read pulse width, which is exactly:
|
|
* tRP = (GPMI-clock-period) * DATA_SETUP
|
|
*
|
|
* 4.2) From the aspect of the GPMI nand controller:
|
|
* Delay = RDN_DELAY * 0.125 * RP {2}
|
|
*
|
|
* RP : the DLL reference period.
|
|
* if (GPMI-clock-period > DLL_THRETHOLD)
|
|
* RP = GPMI-clock-period / 2;
|
|
* else
|
|
* RP = GPMI-clock-period;
|
|
*
|
|
* Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
|
|
* is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
|
|
* is 16000ps, but in mx6q, we use 12000ps.
|
|
*
|
|
* 4.3) since {1} equals {2}, we get:
|
|
*
|
|
* (tREA + 4000 - tRP) * 8
|
|
* RDN_DELAY = ----------------------- {3}
|
|
* RP
|
|
*/
|
|
static void mxs_compute_timings(struct nand_chip *chip,
|
|
const struct nand_sdr_timings *sdr)
|
|
{
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
unsigned long clk_rate;
|
|
unsigned int dll_wait_time_us;
|
|
unsigned int dll_threshold_ps = nand_info->max_chain_delay;
|
|
unsigned int period_ps, reference_period_ps;
|
|
unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
|
|
unsigned int tRP_ps;
|
|
bool use_half_period;
|
|
int sample_delay_ps, sample_delay_factor;
|
|
u16 busy_timeout_cycles;
|
|
u8 wrn_dly_sel;
|
|
u32 timing0;
|
|
u32 timing1;
|
|
u32 ctrl1n;
|
|
|
|
if (sdr->tRC_min >= 30000) {
|
|
/* ONFI non-EDO modes [0-3] */
|
|
clk_rate = 22000000;
|
|
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
|
|
} else if (sdr->tRC_min >= 25000) {
|
|
/* ONFI EDO mode 4 */
|
|
clk_rate = 80000000;
|
|
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
|
|
debug("%s, setting ONFI onfi edo 4\n", __func__);
|
|
} else {
|
|
/* ONFI EDO mode 5 */
|
|
clk_rate = 100000000;
|
|
wrn_dly_sel = GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
|
|
debug("%s, setting ONFI onfi edo 5\n", __func__);
|
|
}
|
|
|
|
/* SDR core timings are given in picoseconds */
|
|
period_ps = div_u64((u64)NSEC_PER_SEC * 1000, clk_rate);
|
|
|
|
addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
|
|
data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
|
|
data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
|
|
busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
|
|
|
|
timing0 = (addr_setup_cycles << GPMI_TIMING0_ADDRESS_SETUP_OFFSET) |
|
|
(data_hold_cycles << GPMI_TIMING0_DATA_HOLD_OFFSET) |
|
|
(data_setup_cycles << GPMI_TIMING0_DATA_SETUP_OFFSET);
|
|
timing1 = (busy_timeout_cycles * 4096) << GPMI_TIMING1_DEVICE_BUSY_TIMEOUT_OFFSET;
|
|
|
|
/*
|
|
* Derive NFC ideal delay from {3}:
|
|
*
|
|
* (tREA + 4000 - tRP) * 8
|
|
* RDN_DELAY = -----------------------
|
|
* RP
|
|
*/
|
|
if (period_ps > dll_threshold_ps) {
|
|
use_half_period = true;
|
|
reference_period_ps = period_ps / 2;
|
|
} else {
|
|
use_half_period = false;
|
|
reference_period_ps = period_ps;
|
|
}
|
|
|
|
tRP_ps = data_setup_cycles * period_ps;
|
|
sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
|
|
if (sample_delay_ps > 0)
|
|
sample_delay_factor = sample_delay_ps / reference_period_ps;
|
|
else
|
|
sample_delay_factor = 0;
|
|
|
|
ctrl1n = (wrn_dly_sel << GPMI_CTRL1_WRN_DLY_SEL_OFFSET);
|
|
if (sample_delay_factor)
|
|
ctrl1n |= (sample_delay_factor << GPMI_CTRL1_RDN_DELAY_OFFSET) |
|
|
GPMI_CTRL1_DLL_ENABLE |
|
|
(use_half_period ? GPMI_CTRL1_HALF_PERIOD : 0);
|
|
|
|
writel(timing0, &nand_info->gpmi_regs->hw_gpmi_timing0);
|
|
writel(timing1, &nand_info->gpmi_regs->hw_gpmi_timing1);
|
|
|
|
/*
|
|
* Clear several CTRL1 fields, DLL must be disabled when setting
|
|
* RDN_DELAY or HALF_PERIOD.
|
|
*/
|
|
writel(GPMI_CTRL1_CLEAR_MASK, &nand_info->gpmi_regs->hw_gpmi_ctrl1_clr);
|
|
writel(ctrl1n, &nand_info->gpmi_regs->hw_gpmi_ctrl1_set);
|
|
|
|
clk_set_rate(nand_info->gpmi_clk, clk_rate);
|
|
|
|
/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
|
|
dll_wait_time_us = USEC_PER_SEC / clk_rate * 64;
|
|
if (!dll_wait_time_us)
|
|
dll_wait_time_us = 1;
|
|
|
|
/* Wait for the DLL to settle. */
|
|
udelay(dll_wait_time_us);
|
|
}
|
|
|
|
static int mxs_nand_setup_interface(struct mtd_info *mtd, int chipnr,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
const struct nand_sdr_timings *sdr;
|
|
|
|
sdr = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
/* Stop here if this call was just a check */
|
|
if (chipnr < 0)
|
|
return 0;
|
|
|
|
/* Do the actual derivation of the controller timings */
|
|
mxs_compute_timings(chip, sdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mxs_nand_init_spl(struct nand_chip *nand)
|
|
{
|
|
struct mxs_nand_info *nand_info;
|
|
int err;
|
|
|
|
nand_info = malloc(sizeof(struct mxs_nand_info));
|
|
if (!nand_info) {
|
|
printf("MXS NAND: Failed to allocate private data\n");
|
|
return -ENOMEM;
|
|
}
|
|
memset(nand_info, 0, sizeof(struct mxs_nand_info));
|
|
|
|
nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
|
|
nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
|
|
if (is_mx6sx() || is_mx7() || is_imx8() || is_imx8m())
|
|
nand_info->max_ecc_strength_supported = 62;
|
|
else
|
|
nand_info->max_ecc_strength_supported = 40;
|
|
|
|
if (IS_ENABLED(CONFIG_NAND_MXS_USE_MINIMUM_ECC))
|
|
nand_info->use_minimum_ecc = true;
|
|
|
|
err = mxs_nand_alloc_buffers(nand_info);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mxs_nand_init_dma(nand_info);
|
|
if (err)
|
|
return err;
|
|
|
|
nand_set_controller_data(nand, nand_info);
|
|
|
|
nand->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
nand->cmd_ctrl = mxs_nand_cmd_ctrl;
|
|
nand->dev_ready = mxs_nand_device_ready;
|
|
nand->select_chip = mxs_nand_select_chip;
|
|
|
|
nand->read_byte = mxs_nand_read_byte;
|
|
nand->read_buf = mxs_nand_read_buf;
|
|
|
|
nand->ecc.read_page = mxs_nand_ecc_read_page;
|
|
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
|
|
{
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand;
|
|
int err;
|
|
|
|
nand = &nand_info->chip;
|
|
mtd = nand_to_mtd(nand);
|
|
err = mxs_nand_alloc_buffers(nand_info);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mxs_nand_init_dma(nand_info);
|
|
if (err)
|
|
goto err_free_buffers;
|
|
|
|
memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
|
|
|
|
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
|
|
nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
|
|
#endif
|
|
|
|
nand_set_controller_data(nand, nand_info);
|
|
nand->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
if (nand_info->dev)
|
|
nand->flash_node = dev_ofnode(nand_info->dev);
|
|
|
|
nand->cmd_ctrl = mxs_nand_cmd_ctrl;
|
|
|
|
nand->dev_ready = mxs_nand_device_ready;
|
|
nand->select_chip = mxs_nand_select_chip;
|
|
nand->block_bad = mxs_nand_block_bad;
|
|
|
|
nand->read_byte = mxs_nand_read_byte;
|
|
|
|
nand->read_buf = mxs_nand_read_buf;
|
|
nand->write_buf = mxs_nand_write_buf;
|
|
|
|
if (nand_info->gpmi_clk)
|
|
nand->setup_data_interface = mxs_nand_setup_interface;
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
|
|
goto err_free_buffers;
|
|
|
|
if (mxs_nand_setup_ecc(mtd))
|
|
goto err_free_buffers;
|
|
|
|
nand->ecc.read_page = mxs_nand_ecc_read_page;
|
|
nand->ecc.write_page = mxs_nand_ecc_write_page;
|
|
nand->ecc.read_oob = mxs_nand_ecc_read_oob;
|
|
nand->ecc.write_oob = mxs_nand_ecc_write_oob;
|
|
|
|
nand->ecc.layout = &fake_ecc_layout;
|
|
nand->ecc.mode = NAND_ECC_HW;
|
|
nand->ecc.size = nand_info->bch_geometry.ecc_chunkn_size;
|
|
nand->ecc.strength = nand_info->bch_geometry.ecc_strength;
|
|
|
|
/* second phase scan */
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
goto err_free_buffers;
|
|
|
|
/* Hook some operations at the MTD level. */
|
|
if (mtd->_read_oob != mxs_nand_hook_read_oob) {
|
|
nand_info->hooked_read_oob = mtd->_read_oob;
|
|
mtd->_read_oob = mxs_nand_hook_read_oob;
|
|
}
|
|
|
|
if (mtd->_write_oob != mxs_nand_hook_write_oob) {
|
|
nand_info->hooked_write_oob = mtd->_write_oob;
|
|
mtd->_write_oob = mxs_nand_hook_write_oob;
|
|
}
|
|
|
|
if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
|
|
nand_info->hooked_block_markbad = mtd->_block_markbad;
|
|
mtd->_block_markbad = mxs_nand_hook_block_markbad;
|
|
}
|
|
|
|
err = nand_register(0, mtd);
|
|
if (err)
|
|
goto err_free_buffers;
|
|
|
|
return 0;
|
|
|
|
err_free_buffers:
|
|
free(nand_info->data_buf);
|
|
free(nand_info->cmd_buf);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifndef CONFIG_NAND_MXS_DT
|
|
void board_nand_init(void)
|
|
{
|
|
struct mxs_nand_info *nand_info;
|
|
|
|
nand_info = malloc(sizeof(struct mxs_nand_info));
|
|
if (!nand_info) {
|
|
printf("MXS NAND: Failed to allocate private data\n");
|
|
return;
|
|
}
|
|
memset(nand_info, 0, sizeof(struct mxs_nand_info));
|
|
|
|
nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
|
|
nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
|
|
/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
|
|
if (is_mx6sx() || is_mx7())
|
|
nand_info->max_ecc_strength_supported = 62;
|
|
else
|
|
nand_info->max_ecc_strength_supported = 40;
|
|
|
|
#ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
|
|
nand_info->use_minimum_ecc = true;
|
|
#endif
|
|
|
|
if (mxs_nand_init_ctrl(nand_info) < 0)
|
|
goto err;
|
|
|
|
return;
|
|
|
|
err:
|
|
free(nand_info);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read NAND layout for FCB block generation.
|
|
*/
|
|
void mxs_nand_get_layout(struct mtd_info *mtd, struct mxs_nand_layout *l)
|
|
{
|
|
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
u32 tmp;
|
|
|
|
tmp = readl(&bch_regs->hw_bch_flash0layout0);
|
|
l->nblocks = (tmp & BCH_FLASHLAYOUT0_NBLOCKS_MASK) >>
|
|
BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
|
|
l->meta_size = (tmp & BCH_FLASHLAYOUT0_META_SIZE_MASK) >>
|
|
BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
|
|
|
|
tmp = readl(&bch_regs->hw_bch_flash0layout1);
|
|
l->data0_size = 4 * ((tmp & BCH_FLASHLAYOUT0_DATA0_SIZE_MASK) >>
|
|
BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET);
|
|
l->ecc0 = (tmp & BCH_FLASHLAYOUT0_ECC0_MASK) >>
|
|
BCH_FLASHLAYOUT0_ECC0_OFFSET;
|
|
l->datan_size = 4 * ((tmp & BCH_FLASHLAYOUT1_DATAN_SIZE_MASK) >>
|
|
BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET);
|
|
l->eccn = (tmp & BCH_FLASHLAYOUT1_ECCN_MASK) >>
|
|
BCH_FLASHLAYOUT1_ECCN_OFFSET;
|
|
l->gf_len = (tmp & BCH_FLASHLAYOUT1_GF13_0_GF14_1_MASK) >>
|
|
BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
|
|
}
|
|
|
|
/*
|
|
* Set BCH to specific layout used by ROM bootloader to read FCB.
|
|
*/
|
|
void mxs_nand_mode_fcb_62bit(struct mtd_info *mtd)
|
|
{
|
|
u32 tmp;
|
|
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
|
|
nand_info->en_randomizer = 1;
|
|
|
|
mtd->writesize = 1024;
|
|
mtd->oobsize = 1862 - 1024;
|
|
|
|
/* 8 ecc_chunks_*/
|
|
tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
|
|
/* 32 bytes for metadata */
|
|
tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
|
|
/* using ECC62 level to be performed */
|
|
tmp |= 0x1F << BCH_FLASHLAYOUT0_ECC0_OFFSET;
|
|
/* 0x20 * 4 bytes of the data0 block */
|
|
tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET;
|
|
tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout0);
|
|
|
|
/* 1024 for data + 838 for OOB */
|
|
tmp = 1862 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
|
|
/* using ECC62 level to be performed */
|
|
tmp |= 0x1F << BCH_FLASHLAYOUT1_ECCN_OFFSET;
|
|
/* 0x20 * 4 bytes of the data0 block */
|
|
tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET;
|
|
tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout1);
|
|
}
|
|
|
|
/*
|
|
* Set BCH to specific layout used by ROM bootloader to read FCB.
|
|
*/
|
|
void mxs_nand_mode_fcb_40bit(struct mtd_info *mtd)
|
|
{
|
|
u32 tmp;
|
|
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
|
|
/* no randomizer in this setting*/
|
|
nand_info->en_randomizer = 0;
|
|
|
|
mtd->writesize = 1024;
|
|
mtd->oobsize = 1576 - 1024;
|
|
|
|
/* 8 ecc_chunks_*/
|
|
tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
|
|
/* 32 bytes for metadata */
|
|
tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
|
|
/* using ECC40 level to be performed */
|
|
tmp |= 0x14 << BCH_FLASHLAYOUT0_ECC0_OFFSET;
|
|
/* 0x20 * 4 bytes of the data0 block */
|
|
tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET;
|
|
tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout0);
|
|
|
|
/* 1024 for data + 552 for OOB */
|
|
tmp = 1576 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
|
|
/* using ECC40 level to be performed */
|
|
tmp |= 0x14 << BCH_FLASHLAYOUT1_ECCN_OFFSET;
|
|
/* 0x20 * 4 bytes of the data0 block */
|
|
tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET;
|
|
tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
|
|
writel(tmp, &bch_regs->hw_bch_flash0layout1);
|
|
}
|
|
|
|
/*
|
|
* Restore BCH to normal settings.
|
|
*/
|
|
void mxs_nand_mode_normal(struct mtd_info *mtd)
|
|
{
|
|
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
|
|
|
|
nand_info->en_randomizer = 0;
|
|
|
|
mtd->writesize = nand_info->writesize;
|
|
mtd->oobsize = nand_info->oobsize;
|
|
|
|
writel(nand_info->bch_flash0layout0, &bch_regs->hw_bch_flash0layout0);
|
|
writel(nand_info->bch_flash0layout1, &bch_regs->hw_bch_flash0layout1);
|
|
}
|
|
|
|
uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
|
|
return geo->block_mark_byte_offset;
|
|
}
|
|
|
|
uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
|
|
struct bch_geometry *geo = &nand_info->bch_geometry;
|
|
|
|
return geo->block_mark_bit_offset;
|
|
}
|