u-boot/board/ait/cam_enc_4xx/cam_enc_4xx.c
Simon Glass e1bf824dfd Add cli_ prefix to readline functions
This makes it clear where the code resides.

Signed-off-by: Simon Glass <sjg@chromium.org>
2014-05-29 17:45:31 -04:00

1106 lines
22 KiB
C

/*
* Copyright (C) 2009 Texas Instruments Incorporated
*
* Copyright (C) 2011
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <cli.h>
#include <errno.h>
#include <linux/mtd/nand.h>
#include <nand.h>
#include <miiphy.h>
#include <netdev.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/nand_defs.h>
#include <asm/arch/davinci_misc.h>
#ifdef CONFIG_DAVINCI_MMC
#include <mmc.h>
#include <asm/arch/sdmmc_defs.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SPL_BUILD
static struct davinci_timer *timer =
(struct davinci_timer *)DAVINCI_TIMER3_BASE;
static unsigned long get_timer_val(void)
{
unsigned long now = readl(&timer->tim34);
return now;
}
static int timer_running(void)
{
return readl(&timer->tcr) &
(DV_TIMER_TCR_ENAMODE_MASK << DV_TIMER_TCR_ENAMODE34_SHIFT);
}
static void stop_timer(void)
{
writel(0x0, &timer->tcr);
return;
}
int checkboard(void)
{
printf("Board: AIT CAM ENC 4XX\n");
return 0;
}
int board_init(void)
{
gd->bd->bi_boot_params = PHYS_SDRAM_1 + 0x100;
return 0;
}
#ifdef CONFIG_DRIVER_TI_EMAC
static int cam_enc_4xx_check_network(void)
{
char *s;
s = getenv("ethaddr");
if (!s)
return -EINVAL;
if (!is_valid_ether_addr((const u8 *)s))
return -EINVAL;
s = getenv("ipaddr");
if (!s)
return -EINVAL;
s = getenv("netmask");
if (!s)
return -EINVAL;
s = getenv("serverip");
if (!s)
return -EINVAL;
s = getenv("gatewayip");
if (!s)
return -EINVAL;
return 0;
}
int board_eth_init(bd_t *bis)
{
int ret;
ret = cam_enc_4xx_check_network();
if (ret)
return ret;
davinci_emac_initialize();
return 0;
}
#endif
#ifdef CONFIG_NAND_DAVINCI
static int
davinci_std_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct nand_chip *this = mtd->priv;
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
chip->read_buf(mtd, oob, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, page & this->pagemask);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, p, eccsize);
chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
if (chip->ecc.prepad)
oob += chip->ecc.prepad;
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat == -1)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
oob += eccbytes;
if (chip->ecc.postpad)
oob += chip->ecc.postpad;
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->read_buf(mtd, oob, i);
return 0;
}
static int davinci_std_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf,
int oob_required)
{
unsigned char davinci_ecc_buf[NAND_MAX_OOBSIZE];
struct nand_chip *this = mtd->priv;
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int offset = 0;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
chip->write_buf(mtd, p, eccsize);
/* Calculate ECC without prepad */
chip->ecc.calculate(mtd, p, oob + chip->ecc.prepad);
if (chip->ecc.prepad) {
offset = (chip->ecc.steps - eccsteps) * chunk;
memcpy(&davinci_ecc_buf[offset], oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
offset = ((chip->ecc.steps - eccsteps) * chunk) +
chip->ecc.prepad;
memcpy(&davinci_ecc_buf[offset], oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
offset = ((chip->ecc.steps - eccsteps) * chunk) +
chip->ecc.prepad + eccbytes;
memcpy(&davinci_ecc_buf[offset], oob,
chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/*
* Write the sparebytes into the page once
* all eccsteps have been covered
*/
for (i = 0; i < mtd->oobsize; i++)
writeb(davinci_ecc_buf[i], this->IO_ADDR_W);
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
return 0;
}
static int davinci_std_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int pos, status = 0;
const uint8_t *bufpoi = chip->oob_poi;
pos = mtd->writesize;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
chip->write_buf(mtd, bufpoi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -1 : 0;
}
static int davinci_std_read_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
struct nand_chip *this = mtd->priv;
uint8_t *buf = chip->oob_poi;
uint8_t *bufpoi = buf;
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
chip->read_buf(mtd, bufpoi, mtd->oobsize);
return 0;
}
static void nand_dm365evm_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *this = mtd->priv;
unsigned long wbase = (unsigned long) this->IO_ADDR_W;
unsigned long rbase = (unsigned long) this->IO_ADDR_R;
if (chip == 1) {
__set_bit(14, &wbase);
__set_bit(14, &rbase);
} else {
__clear_bit(14, &wbase);
__clear_bit(14, &rbase);
}
this->IO_ADDR_W = (void *)wbase;
this->IO_ADDR_R = (void *)rbase;
}
int board_nand_init(struct nand_chip *nand)
{
davinci_nand_init(nand);
nand->select_chip = nand_dm365evm_select_chip;
return 0;
}
struct nand_ecc_ctrl org_ecc;
static int notsaved = 1;
static int nand_switch_hw_func(int mode)
{
struct nand_chip *nand;
struct mtd_info *mtd;
if (nand_curr_device < 0 ||
nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE ||
!nand_info[nand_curr_device].name) {
printf("Error: Can't switch hw functions," \
" no devices available\n");
return -1;
}
mtd = &nand_info[nand_curr_device];
nand = mtd->priv;
if (mode == 0) {
if (notsaved == 0) {
printf("switching to uboot hw functions.\n");
memcpy(&nand->ecc, &org_ecc,
sizeof(struct nand_ecc_ctrl));
}
} else {
/* RBL */
printf("switching to RBL hw functions.\n");
if (notsaved == 1) {
memcpy(&org_ecc, &nand->ecc,
sizeof(struct nand_ecc_ctrl));
notsaved = 0;
}
nand->ecc.mode = NAND_ECC_HW_SYNDROME;
nand->ecc.prepad = 6;
nand->ecc.read_page = davinci_std_read_page_syndrome;
nand->ecc.write_page = davinci_std_write_page_syndrome;
nand->ecc.read_oob = davinci_std_read_oob_syndrome;
nand->ecc.write_oob = davinci_std_write_oob_syndrome;
}
return mode;
}
static int hwmode;
static int do_switch_ecc(cmd_tbl_t *cmdtp, int flag, int argc,
char *const argv[])
{
if (argc != 2)
goto usage;
if (strncmp(argv[1], "rbl", 2) == 0)
hwmode = nand_switch_hw_func(1);
else if (strncmp(argv[1], "uboot", 2) == 0)
hwmode = nand_switch_hw_func(0);
else
goto usage;
return 0;
usage:
printf("Usage: nandrbl %s\n", cmdtp->usage);
return 1;
}
U_BOOT_CMD(
nandrbl, 2, 1, do_switch_ecc,
"switch between rbl/uboot NAND ECC calculation algorithm",
"[rbl/uboot] - Switch between rbl/uboot NAND ECC algorithm"
);
#endif /* #ifdef CONFIG_NAND_DAVINCI */
#ifdef CONFIG_DAVINCI_MMC
static struct davinci_mmc mmc_sd0 = {
.reg_base = (struct davinci_mmc_regs *)DAVINCI_MMC_SD0_BASE,
.input_clk = 121500000,
.host_caps = MMC_MODE_4BIT,
.voltages = MMC_VDD_32_33 | MMC_VDD_33_34,
.version = MMC_CTLR_VERSION_2,
};
int board_mmc_init(bd_t *bis)
{
int err;
/* Add slot-0 to mmc subsystem */
err = davinci_mmc_init(bis, &mmc_sd0);
return err;
}
#endif
int board_late_init(void)
{
struct davinci_gpio *gpio = davinci_gpio_bank45;
/* 24MHz InputClock / 15 prediv -> 1.6 MHz timer running */
while ((get_timer_val() < CONFIG_AIT_TIMER_TIMEOUT) &&
timer_running())
;
/* 1 sec reached -> stop timer, clear all LED */
stop_timer();
clrbits_le32(&gpio->out_data, CONFIG_CAM_ENC_LED_MASK);
return 0;
}
void reset_phy(void)
{
char *name = "GENERIC @ 0x00";
/* reset the phy */
miiphy_reset(name, 0x0);
}
#else /* #ifndef CONFIG_SPL_BUILD */
static void cam_enc_4xx_set_all_led(void)
{
struct davinci_gpio *gpio = davinci_gpio_bank45;
setbits_le32(&gpio->out_data, CONFIG_CAM_ENC_LED_MASK);
}
/*
* TIMER 0 is used for tick
*/
static struct davinci_timer *timer =
(struct davinci_timer *)DAVINCI_TIMER3_BASE;
#define TIMER_LOAD_VAL 0xffffffff
#define TIM_CLK_DIV 16
static int cam_enc_4xx_timer_init(void)
{
/* We are using timer34 in unchained 32-bit mode, full speed */
writel(0x0, &timer->tcr);
writel(0x0, &timer->tgcr);
writel(0x06 | ((TIM_CLK_DIV - 1) << 8), &timer->tgcr);
writel(0x0, &timer->tim34);
writel(TIMER_LOAD_VAL, &timer->prd34);
writel(2 << 22, &timer->tcr);
return 0;
}
void board_gpio_init(void)
{
struct davinci_gpio *gpio;
cam_enc_4xx_set_all_led();
cam_enc_4xx_timer_init();
gpio = davinci_gpio_bank01;
clrbits_le32(&gpio->dir, ~0xfdfffffe);
/* clear LED D14 = GPIO25 */
clrbits_le32(&gpio->out_data, 0x02000000);
gpio = davinci_gpio_bank23;
clrbits_le32(&gpio->dir, ~0x5ff0afef);
/* set GPIO61 to 1 -> intern UART0 as Console */
setbits_le32(&gpio->out_data, 0x20000000);
/*
* PHY out of reset GIO 50 = 1
* NAND WP off GIO 51 = 1
*/
setbits_le32(&gpio->out_data, 0x000c0004);
gpio = davinci_gpio_bank45;
clrbits_le32(&gpio->dir, ~(0xdb2fffff) | CONFIG_CAM_ENC_LED_MASK);
/*
* clear LED:
* D17 = GPIO86
* D11 = GPIO87
* GPIO88
* GPIO89
* D13 = GPIO90
* GPIO91
*/
clrbits_le32(&gpio->out_data, CONFIG_CAM_ENC_LED_MASK);
gpio = davinci_gpio_bank67;
clrbits_le32(&gpio->dir, ~0x000007ff);
}
/*
* functions for the post memory test.
*/
int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
*vstart = CONFIG_SYS_SDRAM_BASE;
*size = PHYS_SDRAM_1_SIZE;
*phys_offset = 0;
return 0;
}
void arch_memory_failure_handle(void)
{
cam_enc_4xx_set_all_led();
puts("mem failure\n");
while (1)
;
}
#endif
#if defined(CONFIG_MENU)
#include "menu.h"
#define MENU_EXIT -1
#define MENU_EXIT_BOOTCMD -2
#define MENU_STAY 0
#define MENU_MAIN 1
#define MENU_UPDATE 2
#define MENU_NETWORK 3
#define MENU_LOAD 4
static int menu_start;
#define FIT_SUBTYPE_UNKNOWN 0
#define FIT_SUBTYPE_UBL_HEADER 1
#define FIT_SUBTYPE_SPL_IMAGE 2
#define FIT_SUBTYPE_UBOOT_IMAGE 3
#define FIT_SUBTYPE_DF_ENV_IMAGE 4
#define FIT_SUBTYPE_RAMDISK_IMAGE 5
struct fit_images_info {
u_int8_t type;
int subtype;
char desc[200];
const void *data;
size_t size;
};
static struct fit_images_info imgs[10];
struct menu_display {
char title[50];
int timeout; /* in sec */
int id; /* MENU_* */
char **menulist;
int (*menu_evaluate)(char *choice);
};
char *menu_main[] = {
"(1) Boot",
"(2) Update Software",
"(3) Reset to default setting and boot",
"(4) Enter U-Boot console",
NULL
};
char *menu_update[] = {
"(1) Network settings",
"(2) load image",
"(3) back to main",
NULL
};
char *menu_load[] = {
"(1) install image",
"(2) cancel",
NULL
};
char *menu_network[] = {
"(1) ipaddr ",
"(2) netmask ",
"(3) serverip ",
"(4) gatewayip",
"(5) tftp image name",
"(6) back to update software",
NULL
};
static void ait_menu_print(void *data)
{
printf("%s\n", (char *)data);
return;
}
static char *menu_handle(struct menu_display *display)
{
struct menu *m;
int i;
void *choice = NULL;
char key[2];
int ret;
char *s;
char temp[6][200];
m = menu_create(display->title, display->timeout, 1, ait_menu_print,
NULL, NULL);
for (i = 0; display->menulist[i]; i++) {
sprintf(key, "%d", i + 1);
if (display->id == MENU_NETWORK) {
switch (i) {
case 0:
s = getenv("ipaddr");
break;
case 1:
s = getenv("netmask");
break;
case 2:
s = getenv("serverip");
break;
case 3:
s = getenv("gatewayip");
break;
case 4:
s = getenv("img_file");
break;
default:
s = NULL;
break;
}
if (s) {
sprintf(temp[i], "%s: %s",
display->menulist[i], s);
ret = menu_item_add(m, key, temp[i]);
} else {
ret = menu_item_add(m, key,
display->menulist[i]);
}
} else {
ret = menu_item_add(m, key, display->menulist[i]);
}
if (ret != 1) {
printf("failed to add item!");
menu_destroy(m);
return NULL;
}
}
sprintf(key, "%d", 1);
menu_default_set(m, key);
if (menu_get_choice(m, &choice) != 1)
debug("Problem picking a choice!\n");
menu_destroy(m);
return choice;
}
static int ait_menu_show(struct menu_display *display, int bootdelay)
{
int end = MENU_STAY;
char *choice;
if ((menu_start == 0) && (display->id == MENU_MAIN))
display->timeout = bootdelay;
else
display->timeout = 0;
while (end == MENU_STAY) {
choice = menu_handle(display);
if (choice)
end = display->menu_evaluate(choice);
if (end == display->id)
end = MENU_STAY;
if (display->id == MENU_MAIN) {
if (menu_start == 0)
end = MENU_EXIT_BOOTCMD;
else
display->timeout = 0;
}
}
return end;
}
static int ait_writeublheader(void)
{
char s[20];
unsigned long i;
int ret;
for (i = CONFIG_SYS_NAND_BLOCK_SIZE;
i < CONFIG_SYS_NAND_U_BOOT_OFFS;
i += CONFIG_SYS_NAND_BLOCK_SIZE) {
sprintf(s, "%lx", i);
ret = setenv("header_addr", s);
if (ret == 0)
ret = run_command("run img_writeheader", 0);
if (ret != 0)
break;
}
return ret;
}
static int ait_menu_install_images(void)
{
int ret = 0;
int count = 0;
char s[100];
char *t;
/*
* possible image types:
* FIT_SUBTYPE_UNKNOWN
* FIT_SUBTYPE_UBL_HEADER
* FIT_SUBTYPE_SPL_IMAGE
* FIT_SUBTYPE_UBOOT_IMAGE
* FIT_SUBTYPE_DF_ENV_IMAGE
* FIT_SUBTYPE_RAMDISK_IMAGE
*
* use Envvariables:
* img_addr_r: image start addr
* header_addr: addr where to write to UBL header
* img_writeheader: write ubl header to nand
* img_writespl: write spl to nand
* img_writeuboot: write uboot to nand
* img_writedfenv: write default environment to ubi volume
* img_volume: which ubi volume should be updated with img_writeramdisk
* filesize: size of data for updating ubi volume
* img_writeramdisk: write ramdisk to ubi volume
*/
while (imgs[count].type != IH_TYPE_INVALID) {
printf("Installing %s\n",
genimg_get_type_name(imgs[count].type));
sprintf(s, "%p", imgs[count].data);
setenv("img_addr_r", s);
sprintf(s, "%lx", (unsigned long)imgs[count].size);
setenv("filesize", s);
switch (imgs[count].subtype) {
case FIT_SUBTYPE_DF_ENV_IMAGE:
ret = run_command("run img_writedfenv", 0);
break;
case FIT_SUBTYPE_RAMDISK_IMAGE:
t = getenv("img_volume");
if (!t) {
ret = setenv("img_volume", "rootfs1");
} else {
/* switch to other volume */
if (strncmp(t, "rootfs1", 7) == 0)
ret = setenv("img_volume", "rootfs2");
else
ret = setenv("img_volume", "rootfs1");
}
if (ret != 0)
break;
ret = run_command("run img_writeramdisk", 0);
break;
case FIT_SUBTYPE_SPL_IMAGE:
ret = run_command("run img_writespl", 0);
break;
case FIT_SUBTYPE_UBL_HEADER:
ret = ait_writeublheader();
break;
case FIT_SUBTYPE_UBOOT_IMAGE:
ret = run_command("run img_writeuboot", 0);
break;
default:
/* not supported type */
break;
}
count++;
}
/* now save dvn_* and img_volume env vars to new values */
if (ret == 0) {
t = getenv("x_dvn_boot_vers");
if (t)
setenv("dvn_boot_vers", t);
t = getenv("x_dvn_app_vers");
if (t)
setenv("dvn_boot_vers", t);
setenv("x_dvn_boot_vers", NULL);
setenv("x_dvn_app_vers", NULL);
ret = run_command("run savenewvers", 0);
}
return ret;
}
static int ait_menu_evaluate_load(char *choice)
{
if (!choice)
return -1;
switch (choice[1]) {
case '1':
/* install image */
ait_menu_install_images();
break;
case '2':
/* cancel, back to main */
setenv("x_dvn_boot_vers", NULL);
setenv("x_dvn_app_vers", NULL);
break;
}
return MENU_MAIN;
}
struct menu_display ait_load = {
.title = "AIT load image",
.timeout = 0,
.id = MENU_LOAD,
.menulist = menu_load,
.menu_evaluate = ait_menu_evaluate_load,
};
static void ait_menu_read_env(char *name)
{
char output[CONFIG_SYS_CBSIZE];
char cbuf[CONFIG_SYS_CBSIZE];
int readret;
int ret;
sprintf(output, "%s old: %s value: ", name, getenv(name));
memset(cbuf, 0, CONFIG_SYS_CBSIZE);
readret = cli_readline_into_buffer(output, cbuf, 0);
if (readret >= 0) {
ret = setenv(name, cbuf);
if (ret) {
printf("Error setting %s\n", name);
return;
}
}
return;
}
static int ait_menu_evaluate_network(char *choice)
{
if (!choice)
return MENU_MAIN;
switch (choice[1]) {
case '1':
ait_menu_read_env("ipaddr");
break;
case '2':
ait_menu_read_env("netmask");
break;
case '3':
ait_menu_read_env("serverip");
break;
case '4':
ait_menu_read_env("gatewayip");
break;
case '5':
ait_menu_read_env("img_file");
break;
case '6':
return MENU_UPDATE;
break;
}
return MENU_STAY;
}
struct menu_display ait_network = {
.title = "AIT network settings",
.timeout = 0,
.id = MENU_NETWORK,
.menulist = menu_network,
.menu_evaluate = ait_menu_evaluate_network,
};
static int fit_get_subtype(const void *fit, int noffset, char **subtype)
{
int len;
*subtype = (char *)fdt_getprop(fit, noffset, "subtype", &len);
if (*subtype == NULL)
return -1;
return 0;
}
static int ait_subtype_nr(char *subtype)
{
int ret = FIT_SUBTYPE_UNKNOWN;
if (!strncmp("ublheader", subtype, strlen("ublheader")))
return FIT_SUBTYPE_UBL_HEADER;
if (!strncmp("splimage", subtype, strlen("splimage")))
return FIT_SUBTYPE_SPL_IMAGE;
if (!strncmp("ubootimage", subtype, strlen("ubootimage")))
return FIT_SUBTYPE_UBOOT_IMAGE;
if (!strncmp("dfenvimage", subtype, strlen("dfenvimage")))
return FIT_SUBTYPE_DF_ENV_IMAGE;
return ret;
}
static int ait_menu_check_image(void)
{
char *s;
unsigned long fit_addr;
void *addr;
int format;
char *desc;
char *subtype;
int images_noffset;
int noffset;
int ndepth;
int count = 0;
int ret;
int i;
int found_uboot = -1;
int found_ramdisk = -1;
memset(imgs, 0, sizeof(imgs));
s = getenv("fit_addr_r");
fit_addr = s ? (unsigned long)simple_strtol(s, NULL, 16) : \
CONFIG_BOARD_IMG_ADDR_R;
addr = (void *)fit_addr;
/* check if it is a FIT image */
format = genimg_get_format(addr);
if (format != IMAGE_FORMAT_FIT)
return -EINVAL;
if (!fit_check_format(addr))
return -EINVAL;
/* print the FIT description */
ret = fit_get_desc(addr, 0, &desc);
printf("FIT description: ");
if (ret)
printf("unavailable\n");
else
printf("%s\n", desc);
/* find images */
images_noffset = fdt_path_offset(addr, FIT_IMAGES_PATH);
if (images_noffset < 0) {
printf("Can't find images parent node '%s' (%s)\n",
FIT_IMAGES_PATH, fdt_strerror(images_noffset));
return -EINVAL;
}
/* Process its subnodes, print out component images details */
for (ndepth = 0, count = 0,
noffset = fdt_next_node(addr, images_noffset, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(addr, noffset, &ndepth)) {
if (ndepth == 1) {
/*
* Direct child node of the images parent node,
* i.e. component image node.
*/
printf("Image %u (%s)\n", count,
fit_get_name(addr, noffset, NULL));
fit_image_print(addr, noffset, "");
fit_image_get_type(addr, noffset,
&imgs[count].type);
/* Mandatory properties */
ret = fit_get_desc(addr, noffset, &desc);
printf("Description: ");
if (ret)
printf("unavailable\n");
else
printf("%s\n", desc);
ret = fit_get_subtype(addr, noffset, &subtype);
printf("Subtype: ");
if (ret) {
printf("unavailable\n");
} else {
imgs[count].subtype = ait_subtype_nr(subtype);
printf("%s %d\n", subtype,
imgs[count].subtype);
}
sprintf(imgs[count].desc, "%s", desc);
ret = fit_image_get_data(addr, noffset,
&imgs[count].data,
&imgs[count].size);
printf("Data Size: ");
if (ret)
printf("unavailable\n");
else
genimg_print_size(imgs[count].size);
printf("Data @ %p\n", imgs[count].data);
count++;
}
}
for (i = 0; i < count; i++) {
if (imgs[i].subtype == FIT_SUBTYPE_UBOOT_IMAGE)
found_uboot = i;
if (imgs[i].type == IH_TYPE_RAMDISK) {
found_ramdisk = i;
imgs[i].subtype = FIT_SUBTYPE_RAMDISK_IMAGE;
}
}
/* dvn_* env var update, if the FIT descriptors are different */
if (found_uboot >= 0) {
s = getenv("dvn_boot_vers");
if (s) {
ret = strcmp(s, imgs[found_uboot].desc);
if (ret != 0) {
setenv("x_dvn_boot_vers",
imgs[found_uboot].desc);
} else {
found_uboot = -1;
printf("no new uboot version\n");
}
} else {
setenv("dvn_boot_vers", imgs[found_uboot].desc);
}
}
if (found_ramdisk >= 0) {
s = getenv("dvn_app_vers");
if (s) {
ret = strcmp(s, imgs[found_ramdisk].desc);
if (ret != 0) {
setenv("x_dvn_app_vers",
imgs[found_ramdisk].desc);
} else {
found_ramdisk = -1;
printf("no new ramdisk version\n");
}
} else {
setenv("dvn_app_vers", imgs[found_ramdisk].desc);
}
}
if ((found_uboot == -1) && (found_ramdisk == -1))
return -EINVAL;
return 0;
}
static int ait_menu_evaluate_update(char *choice)
{
int ret;
if (!choice)
return MENU_MAIN;
switch (choice[1]) {
case '1':
return ait_menu_show(&ait_network, 0);
break;
case '2':
/* load image */
ret = run_command("run load_img", 0);
printf("ret: %d\n", ret);
if (ret)
return MENU_UPDATE;
ret = ait_menu_check_image();
if (ret)
return MENU_UPDATE;
return ait_menu_show(&ait_load, 0);
break;
case '3':
return MENU_MAIN;
break;
}
return MENU_MAIN;
}
struct menu_display ait_update = {
.title = "AIT Update Software",
.timeout = 0,
.id = MENU_UPDATE,
.menulist = menu_update,
.menu_evaluate = ait_menu_evaluate_update,
};
static int ait_menu_evaluate_main(char *choice)
{
if (!choice)
return MENU_STAY;
menu_start = 1;
switch (choice[1]) {
case '1':
/* run bootcmd */
return MENU_EXIT_BOOTCMD;
break;
case '2':
return ait_menu_show(&ait_update, 0);
break;
case '3':
/* reset to default settings */
setenv("app_reset", "yes");
return MENU_EXIT_BOOTCMD;
break;
case '4':
/* u-boot shell */
return MENU_EXIT;
break;
}
return MENU_EXIT;
}
struct menu_display ait_main = {
.title = "AIT Main",
.timeout = CONFIG_BOOTDELAY,
.id = MENU_MAIN,
.menulist = menu_main,
.menu_evaluate = ait_menu_evaluate_main,
};
int menu_show(int bootdelay)
{
int ret;
run_command("run saveparms", 0);
ret = ait_menu_show(&ait_main, bootdelay);
run_command("run restoreparms", 0);
if (ret == MENU_EXIT_BOOTCMD)
return 0;
return MENU_EXIT;
}
void menu_display_statusline(struct menu *m)
{
char *s1, *s2;
s1 = getenv("x_dvn_boot_vers");
if (!s1)
s1 = getenv("dvn_boot_vers");
s2 = getenv("x_dvn_app_vers");
if (!s2)
s2 = getenv("dvn_app_vers");
printf("State: dvn_boot_vers: %s dvn_app_vers: %s\n", s1, s2);
return;
}
#endif