u-boot/drivers/ram/rockchip/dmc-rk3368.c
Philipp Tomsich 1d70f0ac88 rockchip: rk3368: adjust DMC driver for 32/64bit-aware OF_PLATDATA
With the new 32/64bit-aware dtoc, the type of reg is fdt64_t and the
OF_PLATDATA structure layout changes.  This adjusts the DMC driver for
the RK3368 to track these changes.

For the time being (i.e. until regmap_init_mem_platdata works for the
64bit case), we won't use regmap_init_mem_platdata here and simply
access of_plat.reg[] directly.

Signed-off-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Acked-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
2017-09-18 20:40:38 +02:00

1000 lines
27 KiB
C

/*
* (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dt-bindings/memory/rk3368-dmc.h>
#include <dt-structs.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3368.h>
#include <asm/arch/grf_rk3368.h>
#include <asm/arch/ddr_rk3368.h>
#include <asm/arch/sdram.h>
#include <asm/arch/sdram_common.h>
DECLARE_GLOBAL_DATA_PTR;
struct dram_info {
struct ram_info info;
struct clk ddr_clk;
struct rk3368_cru *cru;
struct rk3368_grf *grf;
struct rk3368_ddr_pctl *pctl;
struct rk3368_ddrphy *phy;
struct rk3368_pmu_grf *pmugrf;
struct rk3368_msch *msch;
};
struct rk3368_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3368_dmc of_plat;
#endif
struct rk3288_sdram_pctl_timing pctl_timing;
u32 trefi_mem_ddr3;
struct rk3288_sdram_channel chan;
struct regmap *map;
u32 ddr_freq;
u32 memory_schedule;
u32 ddr_speed_bin;
u32 tfaw_mult;
};
/* PTCL bits */
enum {
/* PCTL_DFISTCFG0 */
DFI_INIT_START = BIT(0),
DFI_DATA_BYTE_DISABLE_EN = BIT(2),
/* PCTL_DFISTCFG1 */
DFI_DRAM_CLK_SR_EN = BIT(0),
DFI_DRAM_CLK_DPD_EN = BIT(1),
ODT_LEN_BL8_W_SHIFT = 16,
/* PCTL_DFISTCFG2 */
DFI_PARITY_INTR_EN = BIT(0),
DFI_PARITY_EN = BIT(1),
/* PCTL_DFILPCFG0 */
TLP_RESP_TIME_SHIFT = 16,
LP_SR_EN = BIT(8),
LP_PD_EN = BIT(0),
/* PCTL_DFIODTCFG */
RANK0_ODT_WRITE_SEL = BIT(3),
RANK1_ODT_WRITE_SEL = BIT(11),
/* PCTL_SCFG */
HW_LOW_POWER_EN = BIT(0),
/* PCTL_MCMD */
START_CMD = BIT(31),
MCMD_RANK0 = BIT(20),
MCMD_RANK1 = BIT(21),
DESELECT_CMD = 0,
PREA_CMD,
REF_CMD,
MRS_CMD,
ZQCS_CMD,
ZQCL_CMD,
RSTL_CMD,
MRR_CMD = 8,
DPDE_CMD,
/* PCTL_POWCTL */
POWER_UP_START = BIT(0),
/* PCTL_POWSTAT */
POWER_UP_DONE = BIT(0),
/* PCTL_SCTL */
INIT_STATE = 0,
CFG_STATE,
GO_STATE,
SLEEP_STATE,
WAKEUP_STATE,
/* PCTL_STAT */
LP_TRIG_SHIFT = 4,
LP_TRIG_MASK = 7,
PCTL_STAT_MSK = 7,
INIT_MEM = 0,
CONFIG,
CONFIG_REQ,
ACCESS,
ACCESS_REQ,
LOW_POWER,
LOW_POWER_ENTRY_REQ,
LOW_POWER_EXIT_REQ,
/* PCTL_MCFG */
DDR2_DDR3_BL_8 = BIT(0),
DDR3_EN = BIT(5),
TFAW_TRRD_MULT4 = (0 << 18),
TFAW_TRRD_MULT5 = (1 << 18),
TFAW_TRRD_MULT6 = (2 << 18),
};
#define DDR3_MR0_WR(n) \
((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
#define DDR3_MR0_CL(n) \
((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
#define DDR3_MR0_BL8 \
(0 << 0)
#define DDR3_MR0_DLL_RESET \
(1 << 8)
#define DDR3_MR1_RTT120OHM \
((0 << 9) | (1 << 6) | (0 << 2))
#define DDR3_MR2_TWL(n) \
(((n - 5) & 0x7) << 3)
#ifdef CONFIG_TPL_BUILD
static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
{
if (enable)
rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
else
rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
}
static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
{
if (ddr3_mode)
rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
else
rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
}
static void ddrphy_config(struct rk3368_ddrphy *phy,
u32 tcl, u32 tal, u32 tcwl)
{
int i;
/* Set to DDR3 mode */
clrsetbits_le32(&phy->reg[1], 0x3, 0x0);
/* DDRPHY_REGB: CL, AL */
clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
/* DDRPHY_REGC: CWL */
clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);
/* Update drive-strength */
writel(0xcc, &phy->reg[0x11]);
writel(0xaa, &phy->reg[0x16]);
/*
* Update NRCOMP/PRCOMP for all 4 channels (for details of all
* affected registers refer to the documentation of DDRPHY_REG20
* and DDRPHY_REG21 in the RK3368 TRM.
*/
for (i = 0; i < 4; ++i) {
writel(0xcc, &phy->reg[0x20 + i * 0x10]);
writel(0x44, &phy->reg[0x21 + i * 0x10]);
}
/* Enable write-leveling calibration bypass */
setbits_le32(&phy->reg[2], BIT(3));
}
static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++)
writel(*src++, dest++);
}
static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
{
u32 mcmd = START_CMD | cmd | rank;
debug("%s: writing %x to MCMD\n", __func__, mcmd);
writel(mcmd, &pctl->mcmd);
while (readl(&pctl->mcmd) & START_CMD)
/* spin */;
}
static void send_mrs(struct rk3368_ddr_pctl *pctl,
u32 rank, u32 mr_num, u32 mr_data)
{
u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);
debug("%s: writing %x to MCMD\n", __func__, mcmd);
writel(mcmd, &pctl->mcmd);
while (readl(&pctl->mcmd) & START_CMD)
/* spin */;
}
static int memory_init(struct rk3368_ddr_pctl *pctl,
struct rk3368_sdram_params *params)
{
u32 mr[4];
const ulong timeout_ms = 500;
ulong tmp;
/*
* Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
* wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
* of PCTL.
*/
writel(POWER_UP_START, &pctl->powctl);
tmp = get_timer(0);
do {
if (get_timer(tmp) > timeout_ms) {
error("%s: POWER_UP_START did not complete in %ld ms\n",
__func__, timeout_ms);
return -ETIME;
}
} while (!(readl(&pctl->powstat) & POWER_UP_DONE));
/* Configure MR0 through MR3 */
mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
DDR3_MR0_CL(params->pctl_timing.tcl) |
DDR3_MR0_DLL_RESET;
mr[1] = DDR3_MR1_RTT120OHM;
mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
mr[3] = 0;
/*
* Also see RK3368 Technical Reference Manual:
* "16.6.2 Initialization (DDR3 Initialization Sequence)"
*/
send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
udelay(1);
send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);
return 0;
}
static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
{
/*
* Also see RK3368 Technical Reference Manual:
* "16.6.1 State transition of PCTL (Moving to Config State)"
*/
u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
/* spin */;
/* fall-through */
case ACCESS:
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
/* spin */;
break;
case CONFIG:
return;
default:
break;
}
}
static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
{
/*
* Also see RK3368 Technical Reference Manual:
* "16.6.1 State transition of PCTL (Moving to Access State)"
*/
u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
LP_TRIG_MASK) == 1)
return;
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
/* spin */;
/* fall-through */
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
/* spin */;
/* fall-through */
case CONFIG:
writel(GO_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
/* spin */;
break;
case ACCESS:
return;
default:
break;
}
}
static void ddrctl_reset(struct rk3368_cru *cru)
{
const u32 ctl_reset = BIT(3) | BIT(2);
const u32 phy_reset = BIT(1) | BIT(0);
/*
* The PHY reset should be released before the PCTL reset.
*
* Note that the following sequence (including the number of
* us to delay between releasing the PHY and PCTL reset) has
* been adapted per feedback received from Rockchips, so do
* not try to optimise.
*/
rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
udelay(1);
rk_clrreg(&cru->softrst_con[10], phy_reset);
udelay(5);
rk_clrreg(&cru->softrst_con[10], ctl_reset);
}
static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
{
/*
* The analog part of the PHY should be release at least 1000
* DRAM cycles before the digital part of the PHY (waiting for
* 5us will ensure this for a DRAM clock as low as 200MHz).
*/
clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
udelay(1);
setbits_le32(&ddrphy->reg[0], BIT(2));
udelay(5);
setbits_le32(&ddrphy->reg[0], BIT(3));
}
static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
{
u32 dqs_dll_delay;
setbits_le32(&ddrphy->reg[0x13], BIT(4));
clrbits_le32(&ddrphy->reg[0x14], BIT(3));
setbits_le32(&ddrphy->reg[0x26], BIT(4));
clrbits_le32(&ddrphy->reg[0x27], BIT(3));
setbits_le32(&ddrphy->reg[0x36], BIT(4));
clrbits_le32(&ddrphy->reg[0x37], BIT(3));
setbits_le32(&ddrphy->reg[0x46], BIT(4));
clrbits_le32(&ddrphy->reg[0x47], BIT(3));
setbits_le32(&ddrphy->reg[0x56], BIT(4));
clrbits_le32(&ddrphy->reg[0x57], BIT(3));
if (freq <= 400000000)
setbits_le32(&ddrphy->reg[0xa4], 0x1f);
else
clrbits_le32(&ddrphy->reg[0xa4], 0x1f);
if (freq < 681000000)
dqs_dll_delay = 3; /* 67.5 degree delay */
else
dqs_dll_delay = 2; /* 45 degree delay */
writel(dqs_dll_delay, &ddrphy->reg[0x28]);
writel(dqs_dll_delay, &ddrphy->reg[0x38]);
writel(dqs_dll_delay, &ddrphy->reg[0x48]);
writel(dqs_dll_delay, &ddrphy->reg[0x58]);
}
static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
{
const ulong timeout_ms = 200;
ulong tmp;
writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);
writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
&pctl->dfistcfg1);
writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
&pctl->dfilpcfg0);
writel(1, &pctl->dfitphyupdtype0);
writel(0x1f, &pctl->dfitphyrdlat);
writel(0, &pctl->dfitphywrdata);
writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */
setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);
tmp = get_timer(0);
do {
if (get_timer(tmp) > timeout_ms) {
error("%s: DFI init did not complete within %ld ms\n",
__func__, timeout_ms);
return -ETIME;
}
} while ((readl(&pctl->dfiststat0) & 1) == 0);
return 0;
}
static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
{
const ulong MHz = 1000000;
return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
}
static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
{
return ps_to_tCK(ns * 1000, freq);
}
static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
{
const ulong MHz = 1000000;
return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
}
static int pctl_calc_timings(struct rk3368_sdram_params *params,
ulong freq)
{
struct rk3288_sdram_pctl_timing *pctl_timing = &params->pctl_timing;
const ulong MHz = 1000000;
u32 tccd;
u32 tfaw_as_ps;
if (params->ddr_speed_bin != DDR3_1600K) {
error("%s: unimplemented DDR3 speed bin %d\n",
__func__, params->ddr_speed_bin);
return -1;
}
/* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);
pctl_timing->tinit = 200; /* 200 usec */
pctl_timing->trsth = 500; /* 500 usec */
pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */
params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);
if (freq <= (400 * MHz)) {
pctl_timing->tcl = 6;
pctl_timing->tcwl = 10;
} else if (freq <= (533 * MHz)) {
pctl_timing->tcl = 8;
pctl_timing->tcwl = 6;
} else if (freq <= (666 * MHz)) {
pctl_timing->tcl = 10;
pctl_timing->tcwl = 7;
} else {
pctl_timing->tcl = 11;
pctl_timing->tcwl = 8;
}
pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */
pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
/*
* JESD-79:
* READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
*/
tccd = 4;
pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
pctl_timing->tal = 0;
pctl_timing->tras = ps_to_tCK(35000, freq);
pctl_timing->trc = ps_to_tCK(48750, freq);
pctl_timing->trcd = ps_to_tCK(13750, freq);
pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
pctl_timing->twr = ps_to_tCK(15000, freq);
/* The DDR3 mode-register does only support even values for tWR > 8. */
if (pctl_timing->twr > 8)
pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */
pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
pctl_timing->tzqcsi = 10000; /* as used by Rockchip */
pctl_timing->tdqs = 1; /* fixed for DDR3 */
pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
pctl_timing->trstl = ns_to_tCK(100, freq);
pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */
pctl_timing->tmrr = 0;
pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */
pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */
/*
* The controller can represent tFAW as 4x, 5x or 6x tRRD only.
* We want to use the smallest multiplier that satisfies the tFAW
* requirements of the given speed-bin. If necessary, we stretch out
* tRRD to allow us to operate on a 6x multiplier for tFAW.
*/
tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
/* If tFAW is > 6 x tRRD, we need to stretch tRRD */
pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
params->tfaw_mult = TFAW_TRRD_MULT6;
} else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
params->tfaw_mult = TFAW_TRRD_MULT6;
} else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
params->tfaw_mult = TFAW_TRRD_MULT5;
} else {
params->tfaw_mult = TFAW_TRRD_MULT4;
}
return 0;
}
static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
struct rk3368_sdram_params *params,
struct rk3368_grf *grf)
{
/* Configure PCTL timing registers */
params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */
copy_to_reg(&pctl->togcnt1u, &params->pctl_timing.togcnt1u,
sizeof(params->pctl_timing));
writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);
/* Set up ODT write selector and ODT write length */
writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
/* Set up the CL/CWL-dependent timings of DFI */
writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);
/* DDR3 */
writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
writel(0x001c0004, &grf->ddrc0_con0);
setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
}
static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
struct rk3368_ddrphy *ddrphy)
{
const u32 trefi = readl(&pctl->trefi);
const ulong timeout_ms = 500;
ulong tmp;
/* disable auto-refresh */
writel(0 | BIT(31), &pctl->trefi);
clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);
tmp = get_timer(0);
do {
if (get_timer(tmp) > timeout_ms) {
error("%s: did not complete within %ld ms\n",
__func__, timeout_ms);
return -ETIME;
}
} while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);
send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
/* resume auto-refresh */
writel(trefi | BIT(31), &pctl->trefi);
return 0;
}
static int sdram_col_row_detect(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rk3368_sdram_params *params = dev_get_platdata(dev);
struct rk3368_ddr_pctl *pctl = priv->pctl;
struct rk3368_msch *msch = priv->msch;
const u32 test_pattern = 0x5aa5f00f;
int row, col;
uintptr_t addr;
move_to_config_state(pctl);
writel(6, &msch->ddrconf);
move_to_access_state(pctl);
/* Detect col */
for (col = 11; col >= 9; col--) {
writel(0, CONFIG_SYS_SDRAM_BASE);
addr = CONFIG_SYS_SDRAM_BASE +
(1 << (col + params->chan.bw - 1));
writel(test_pattern, addr);
if ((readl(addr) == test_pattern) &&
(readl(CONFIG_SYS_SDRAM_BASE) == 0))
break;
}
if (col == 8) {
error("%s: col detect error\n", __func__);
return -EINVAL;
}
move_to_config_state(pctl);
writel(15, &msch->ddrconf);
move_to_access_state(pctl);
/* Detect row*/
for (row = 16; row >= 12; row--) {
writel(0, CONFIG_SYS_SDRAM_BASE);
addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
writel(test_pattern, addr);
if ((readl(addr) == test_pattern) &&
(readl(CONFIG_SYS_SDRAM_BASE) == 0))
break;
}
if (row == 11) {
error("%s: row detect error\n", __func__);
return -EINVAL;
}
/* Record results */
debug("%s: col %d, row %d\n", __func__, col, row);
params->chan.col = col;
params->chan.cs0_row = row;
params->chan.cs1_row = row;
params->chan.row_3_4 = 0;
return 0;
}
static int msch_niu_config(struct rk3368_msch *msch,
struct rk3368_sdram_params *params)
{
int i;
const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
const u8 rows = params->chan.cs0_row;
/*
* The DDR address-translation table always assumes a 32bit
* bus and the comparison below takes care of adjusting for
* a 16bit bus (i.e. one column-address is consumed).
*/
const struct {
u8 rows;
u8 columns;
u8 type;
} ddrconf_table[] = {
/*
* C-B-R-D patterns are first. For these we require an
* exact match for the columns and rows (as there's
* one entry per possible configuration).
*/
[0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
[1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
[2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
[3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
[4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
[5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
[6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
[7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
[8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
[9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
[10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
/*
* 11 through 13 are C-R-B-D patterns. These are
* matched for an exact number of columns and to
* ensure that the hardware uses at least as many rows
* as the pattern requires (i.e. we make sure that
* there's no gaps up until we hit the device/chip-select;
* however, these patterns can accept up to 16 rows,
* as the row-address continues right after the CS
* switching)
*/
[11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
[12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
[13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
/*
* 14 and 15 are catch-all variants using a C-B-D-R
* scheme (i.e. alternating the chip-select every time
* C-B overflows) and stuffing the remaining C-bits
* into the top. Matching needs to make sure that the
* number of columns is either an exact match (i.e. we
* can use less the the maximum number of rows) -or-
* that the columns exceed what is given in this table
* and the rows are an exact match (in which case the
* remaining C-bits will be stuffed onto the top after
* the device/chip-select switches).
*/
[14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
[15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
};
/*
* For C-B-R-D, we need an exact match (i.e. both for the number of
* columns and rows), while for C-B-D-R, only the the number of
* columns needs to match.
*/
for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
bool match = false;
/* If this entry if for a different matcher, then skip it */
if (ddrconf_table[i].type != params->memory_schedule)
continue;
/*
* Match according to the rules (exact/inexact/at-least)
* documented in the ddrconf_table above.
*/
switch (params->memory_schedule) {
case DMC_MSCH_CBRD:
match = (ddrconf_table[i].columns == cols) &&
(ddrconf_table[i].rows == rows);
break;
case DMC_MSCH_CRBD:
match = (ddrconf_table[i].columns == cols) &&
(ddrconf_table[i].rows <= rows);
break;
case DMC_MSCH_CBDR:
match = (ddrconf_table[i].columns == cols) ||
((ddrconf_table[i].columns <= cols) &&
(ddrconf_table[i].rows == rows));
break;
default:
break;
}
if (match) {
debug("%s: setting ddrconf 0x%x\n", __func__, i);
writel(i, &msch->ddrconf);
return 0;
}
}
error("%s: ddrconf (NIU config) not found\n", __func__);
return -EINVAL;
}
static void dram_all_config(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
struct rk3368_sdram_params *params = dev_get_platdata(dev);
const struct rk3288_sdram_channel *info = &params->chan;
u32 sys_reg = 0;
const int chan = 0;
sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;
sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
writel(sys_reg, &pmugrf->os_reg[2]);
}
static int setup_sdram(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rk3368_sdram_params *params = dev_get_platdata(dev);
struct rk3368_ddr_pctl *pctl = priv->pctl;
struct rk3368_ddrphy *ddrphy = priv->phy;
struct rk3368_cru *cru = priv->cru;
struct rk3368_grf *grf = priv->grf;
struct rk3368_msch *msch = priv->msch;
int ret;
/* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
if (ret < 0) {
debug("%s: could not set DDR clock: %d\n", __func__, ret);
return ret;
}
/* Update the read-latency for the RK3368 */
writel(0x32, &msch->readlatency);
/* Initialise the DDR PCTL and DDR PHY */
ddrctl_reset(cru);
ddrphy_reset(ddrphy);
ddrphy_config_delays(ddrphy, params->ddr_freq);
dfi_cfg(pctl);
/* Configure relative system information of grf_ddrc0_con0 register */
ddr_set_ddr3_mode(grf, true);
ddr_set_noc_spr_err_stall(grf, true);
/* Calculate timings */
pctl_calc_timings(params, params->ddr_freq);
/* Initialise the device timings in protocol controller */
pctl_cfg(pctl, params, grf);
/* Configure AL, CL ... information of PHY registers */
ddrphy_config(ddrphy,
params->pctl_timing.tcl,
params->pctl_timing.tal,
params->pctl_timing.tcwl);
/* Initialize DRAM and configure with mode-register values */
ret = memory_init(pctl, params);
if (ret)
goto error;
move_to_config_state(pctl);
/* Perform data-training */
ddrphy_data_training(pctl, ddrphy);
move_to_access_state(pctl);
/* TODO(prt): could detect rank in training... */
params->chan.rank = 2;
/* TODO(prt): bus width is not auto-detected (yet)... */
params->chan.bw = 2; /* 32bit wide bus */
params->chan.dbw = params->chan.dbw; /* 32bit wide bus */
/* DDR3 is always 8 bank */
params->chan.bk = 3;
/* Detect col and row number */
ret = sdram_col_row_detect(dev);
if (ret)
goto error;
/* Configure NIU DDR configuration */
ret = msch_niu_config(msch, params);
if (ret)
goto error;
/* set up OS_REG to communicate w/ next stage and OS */
dram_all_config(dev);
return 0;
error:
printf("DRAM init failed!\n");
hang();
}
#endif
static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev)
{
int ret = 0;
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3368_sdram_params *plat = dev_get_platdata(dev);
ret = regmap_init_mem(dev, &plat->map);
if (ret)
return ret;
#endif
return ret;
}
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
struct rk3368_sdram_params *plat = dev_get_platdata(dev);
struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;
plat->ddr_freq = of_plat->rockchip_ddr_frequency;
plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
plat->memory_schedule = of_plat->rockchip_memory_schedule;
return 0;
}
#endif
static int rk3368_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_TPL_BUILD
struct rk3368_sdram_params *plat = dev_get_platdata(dev);
struct rk3368_ddr_pctl *pctl;
struct rk3368_ddrphy *ddrphy;
struct rk3368_cru *cru;
struct rk3368_grf *grf;
struct rk3368_msch *msch;
int ret;
struct udevice *dev_clk;
#endif
struct dram_info *priv = dev_get_priv(dev);
#if CONFIG_IS_ENABLED(OF_PLATDATA)
ret = conv_of_platdata(dev);
if (ret)
return ret;
#endif
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);
#ifdef CONFIG_TPL_BUILD
pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
priv->pctl = pctl;
priv->phy = ddrphy;
priv->msch = msch;
priv->grf = grf;
ret = rockchip_get_clk(&dev_clk);
if (ret)
return ret;
priv->ddr_clk.id = CLK_DDR;
ret = clk_request(dev_clk, &priv->ddr_clk);
if (ret)
return ret;
cru = rockchip_get_cru();
priv->cru = cru;
if (IS_ERR(priv->cru))
return PTR_ERR(priv->cru);
ret = setup_sdram(dev);
if (ret)
return ret;
#endif
priv->info.base = 0;
priv->info.size =
rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
/*
* we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
* is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
* inaccessible for some IP controller.
*/
priv->info.size = min(priv->info.size, (size_t)0xfe000000);
return 0;
}
static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3368_dmc_ops = {
.get_info = rk3368_dmc_get_info,
};
static const struct udevice_id rk3368_dmc_ids[] = {
{ .compatible = "rockchip,rk3368-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_rk3368) = {
.name = "rockchip_rk3368_dmc",
.id = UCLASS_RAM,
.of_match = rk3368_dmc_ids,
.ops = &rk3368_dmc_ops,
.probe = rk3368_dmc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
.ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata,
.probe = rk3368_dmc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
.platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params),
};