u-boot/drivers/pci/pci_tegra.c
Stephen Warren d9eda6c441 pci: tegra: add/enable support for Tegra210
This needs a separate compatible value from Tegra124 since the new HW
version has bugs that would prevent a driver for previous HW versions
from operating at all.

Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
2015-11-12 09:21:05 -07:00

1214 lines
29 KiB
C

/*
* Copyright (c) 2010, CompuLab, Ltd.
* Author: Mike Rapoport <mike@compulab.co.il>
*
* Based on NVIDIA PCIe driver
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* Copyright (c) 2013-2014, NVIDIA Corporation.
*
* SPDX-License-Identifier: GPL-2.0
*/
#define DEBUG
#define pr_fmt(fmt) "tegra-pcie: " fmt
#include <common.h>
#include <errno.h>
#include <fdtdec.h>
#include <malloc.h>
#include <pci.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/powergate.h>
#include <asm/arch-tegra/xusb-padctl.h>
#include <linux/list.h>
#include <dt-bindings/pinctrl/pinctrl-tegra-xusb.h>
DECLARE_GLOBAL_DATA_PTR;
#define AFI_AXI_BAR0_SZ 0x00
#define AFI_AXI_BAR1_SZ 0x04
#define AFI_AXI_BAR2_SZ 0x08
#define AFI_AXI_BAR3_SZ 0x0c
#define AFI_AXI_BAR4_SZ 0x10
#define AFI_AXI_BAR5_SZ 0x14
#define AFI_AXI_BAR0_START 0x18
#define AFI_AXI_BAR1_START 0x1c
#define AFI_AXI_BAR2_START 0x20
#define AFI_AXI_BAR3_START 0x24
#define AFI_AXI_BAR4_START 0x28
#define AFI_AXI_BAR5_START 0x2c
#define AFI_FPCI_BAR0 0x30
#define AFI_FPCI_BAR1 0x34
#define AFI_FPCI_BAR2 0x38
#define AFI_FPCI_BAR3 0x3c
#define AFI_FPCI_BAR4 0x40
#define AFI_FPCI_BAR5 0x44
#define AFI_CACHE_BAR0_SZ 0x48
#define AFI_CACHE_BAR0_ST 0x4c
#define AFI_CACHE_BAR1_SZ 0x50
#define AFI_CACHE_BAR1_ST 0x54
#define AFI_MSI_BAR_SZ 0x60
#define AFI_MSI_FPCI_BAR_ST 0x64
#define AFI_MSI_AXI_BAR_ST 0x68
#define AFI_CONFIGURATION 0xac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0xb0
#define AFI_INTR_MASK 0xb4
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_SM_INTR_ENABLE 0xc4
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_AFI_INTR_ENABLE 0xc8
#define AFI_INTR_EN_INI_SLVERR (1 << 0)
#define AFI_INTR_EN_INI_DECERR (1 << 1)
#define AFI_INTR_EN_TGT_SLVERR (1 << 2)
#define AFI_INTR_EN_TGT_DECERR (1 << 3)
#define AFI_INTR_EN_TGT_WRERR (1 << 4)
#define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
#define AFI_INTR_EN_AXI_DECERR (1 << 6)
#define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
#define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_RST (1 << 0)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
#define AFI_PLLE_CONTROL 0x160
#define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
#define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
#define AFI_PEXBIAS_CTRL_0 0x168
#define PADS_CTL_SEL 0x0000009C
#define PADS_CTL 0x000000A0
#define PADS_CTL_IDDQ_1L (1 << 0)
#define PADS_CTL_TX_DATA_EN_1L (1 << 6)
#define PADS_CTL_RX_DATA_EN_1L (1 << 10)
#define PADS_PLL_CTL_TEGRA20 0x000000B8
#define PADS_PLL_CTL_TEGRA30 0x000000B4
#define PADS_PLL_CTL_RST_B4SM (0x1 << 1)
#define PADS_PLL_CTL_LOCKDET (0x1 << 8)
#define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0x0 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (0x1 << 16)
#define PADS_PLL_CTL_REFCLK_EXTERNAL (0x2 << 16)
#define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV10 (0x0 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV5 (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_BUF_EN (0x1 << 22)
#define PADS_REFCLK_CFG0 0x000000C8
#define PADS_REFCLK_CFG1 0x000000CC
/*
* Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
* entries, one entry per PCIe port. These field definitions and desired
* values aren't in the TRM, but do come from NVIDIA.
*/
#define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
#define PADS_REFCLK_CFG_E_TERM_SHIFT 7
#define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
#define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
/* Default value provided by HW engineering is 0xfa5c */
#define PADS_REFCLK_CFG_VALUE \
( \
(0x17 << PADS_REFCLK_CFG_TERM_SHIFT) | \
(0 << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
(0xa << PADS_REFCLK_CFG_PREDI_SHIFT) | \
(0xf << PADS_REFCLK_CFG_DRVI_SHIFT) \
)
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_VEND_CTL2 0x00000FA8
#define RP_VEND_CTL2_PCA_ENABLE (1 << 7)
#define RP_PRIV_MISC 0x00000FE0
#define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
#define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
struct tegra_pcie;
struct tegra_pcie_port {
struct tegra_pcie *pcie;
struct fdt_resource regs;
unsigned int num_lanes;
unsigned int index;
struct list_head list;
};
struct tegra_pcie_soc {
unsigned int num_ports;
unsigned long pads_pll_ctl;
unsigned long tx_ref_sel;
bool has_pex_clkreq_en;
bool has_pex_bias_ctrl;
bool has_cml_clk;
bool has_gen2;
bool force_pca_enable;
};
struct tegra_pcie {
struct pci_controller hose;
struct fdt_resource pads;
struct fdt_resource afi;
struct fdt_resource cs;
struct fdt_resource prefetch;
struct fdt_resource mem;
struct fdt_resource io;
struct list_head ports;
unsigned long xbar;
const struct tegra_pcie_soc *soc;
struct tegra_xusb_phy *phy;
};
static inline struct tegra_pcie *to_tegra_pcie(struct pci_controller *hose)
{
return container_of(hose, struct tegra_pcie, hose);
}
static void afi_writel(struct tegra_pcie *pcie, unsigned long value,
unsigned long offset)
{
writel(value, pcie->afi.start + offset);
}
static unsigned long afi_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->afi.start + offset);
}
static void pads_writel(struct tegra_pcie *pcie, unsigned long value,
unsigned long offset)
{
writel(value, pcie->pads.start + offset);
}
static unsigned long pads_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->pads.start + offset);
}
static unsigned long rp_readl(struct tegra_pcie_port *port,
unsigned long offset)
{
return readl(port->regs.start + offset);
}
static void rp_writel(struct tegra_pcie_port *port, unsigned long value,
unsigned long offset)
{
writel(value, port->regs.start + offset);
}
static unsigned long tegra_pcie_conf_offset(pci_dev_t bdf, int where)
{
return ((where & 0xf00) << 16) | (PCI_BUS(bdf) << 16) |
(PCI_DEV(bdf) << 11) | (PCI_FUNC(bdf) << 8) |
(where & 0xfc);
}
static int tegra_pcie_conf_address(struct tegra_pcie *pcie, pci_dev_t bdf,
int where, unsigned long *address)
{
unsigned int bus = PCI_BUS(bdf);
if (bus == 0) {
unsigned int dev = PCI_DEV(bdf);
struct tegra_pcie_port *port;
list_for_each_entry(port, &pcie->ports, list) {
if (port->index + 1 == dev) {
*address = port->regs.start + (where & ~3);
return 0;
}
}
} else {
*address = pcie->cs.start + tegra_pcie_conf_offset(bdf, where);
return 0;
}
return -1;
}
static int tegra_pcie_read_conf(struct pci_controller *hose, pci_dev_t bdf,
int where, u32 *value)
{
struct tegra_pcie *pcie = to_tegra_pcie(hose);
unsigned long address;
int err;
err = tegra_pcie_conf_address(pcie, bdf, where, &address);
if (err < 0) {
*value = 0xffffffff;
return 1;
}
*value = readl(address);
/* fixup root port class */
if (PCI_BUS(bdf) == 0) {
if (where == PCI_CLASS_REVISION) {
*value &= ~0x00ff0000;
*value |= PCI_CLASS_BRIDGE_PCI << 16;
}
}
return 0;
}
static int tegra_pcie_write_conf(struct pci_controller *hose, pci_dev_t bdf,
int where, u32 value)
{
struct tegra_pcie *pcie = to_tegra_pcie(hose);
unsigned long address;
int err;
err = tegra_pcie_conf_address(pcie, bdf, where, &address);
if (err < 0)
return 1;
writel(value, address);
return 0;
}
static int tegra_pcie_port_parse_dt(const void *fdt, int node,
struct tegra_pcie_port *port)
{
const u32 *addr;
int len;
addr = fdt_getprop(fdt, node, "assigned-addresses", &len);
if (!addr) {
error("property \"assigned-addresses\" not found");
return -FDT_ERR_NOTFOUND;
}
port->regs.start = fdt32_to_cpu(addr[2]);
port->regs.end = port->regs.start + fdt32_to_cpu(addr[4]);
return 0;
}
static int tegra_pcie_get_xbar_config(const void *fdt, int node, u32 lanes,
unsigned long *xbar)
{
enum fdt_compat_id id = fdtdec_lookup(fdt, node);
switch (id) {
case COMPAT_NVIDIA_TEGRA20_PCIE:
switch (lanes) {
case 0x00000004:
debug("single-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
return 0;
case 0x00000202:
debug("dual-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
return 0;
}
break;
case COMPAT_NVIDIA_TEGRA30_PCIE:
switch (lanes) {
case 0x00000204:
debug("4x1, 2x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
return 0;
case 0x00020202:
debug("2x3 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
return 0;
case 0x00010104:
debug("4x1, 1x2 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
return 0;
}
break;
case COMPAT_NVIDIA_TEGRA124_PCIE:
case COMPAT_NVIDIA_TEGRA210_PCIE:
switch (lanes) {
case 0x0000104:
debug("4x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
return 0;
case 0x0000102:
debug("2x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
return 0;
}
break;
default:
break;
}
return -FDT_ERR_NOTFOUND;
}
static int tegra_pcie_parse_dt_ranges(const void *fdt, int node,
struct tegra_pcie *pcie)
{
int parent, na_parent, na_pcie, ns_pcie;
const u32 *ptr, *end;
int len;
parent = fdt_parent_offset(fdt, node);
if (parent < 0) {
error("Can't find PCI parent node\n");
return -FDT_ERR_NOTFOUND;
}
na_parent = fdt_address_cells(fdt, parent);
if (na_parent < 1) {
error("bad #address-cells for PCIE parent\n");
return -FDT_ERR_NOTFOUND;
}
na_pcie = fdt_address_cells(fdt, node);
if (na_pcie < 1) {
error("bad #address-cells for PCIE\n");
return -FDT_ERR_NOTFOUND;
}
ns_pcie = fdt_size_cells(fdt, node);
if (ns_pcie < 1) {
error("bad #size-cells for PCIE\n");
return -FDT_ERR_NOTFOUND;
}
ptr = fdt_getprop(fdt, node, "ranges", &len);
if (!ptr) {
error("missing \"ranges\" property");
return -FDT_ERR_NOTFOUND;
}
end = ptr + len / 4;
while (ptr < end) {
struct fdt_resource *res = NULL;
u32 space = fdt32_to_cpu(*ptr);
switch ((space >> 24) & 0x3) {
case 0x01:
res = &pcie->io;
break;
case 0x02: /* 32 bit */
case 0x03: /* 64 bit */
if (space & (1 << 30))
res = &pcie->prefetch;
else
res = &pcie->mem;
break;
}
if (res) {
int start_low = na_pcie + (na_parent - 1);
int size_low = na_pcie + na_parent + (ns_pcie - 1);
res->start = fdt32_to_cpu(ptr[start_low]);
res->end = res->start + fdt32_to_cpu(ptr[size_low]);
}
ptr += na_pcie + na_parent + ns_pcie;
}
debug("PCI regions:\n");
debug(" I/O: %pa-%pa\n", &pcie->io.start, &pcie->io.end);
debug(" non-prefetchable memory: %pa-%pa\n", &pcie->mem.start,
&pcie->mem.end);
debug(" prefetchable memory: %pa-%pa\n", &pcie->prefetch.start,
&pcie->prefetch.end);
return 0;
}
static int tegra_pcie_parse_port_info(const void *fdt, int node,
unsigned int *index,
unsigned int *lanes)
{
struct fdt_pci_addr addr;
int err;
err = fdtdec_get_int(fdt, node, "nvidia,num-lanes", 0);
if (err < 0) {
error("failed to parse \"nvidia,num-lanes\" property");
return err;
}
*lanes = err;
err = fdtdec_get_pci_addr(fdt, node, 0, "reg", &addr);
if (err < 0) {
error("failed to parse \"reg\" property");
return err;
}
*index = PCI_DEV(addr.phys_hi) - 1;
return 0;
}
static int tegra_pcie_parse_dt(const void *fdt, int node,
struct tegra_pcie *pcie)
{
int err, subnode;
u32 lanes = 0;
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "pads",
&pcie->pads);
if (err < 0) {
error("resource \"pads\" not found");
return err;
}
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "afi",
&pcie->afi);
if (err < 0) {
error("resource \"afi\" not found");
return err;
}
err = fdt_get_named_resource(fdt, node, "reg", "reg-names", "cs",
&pcie->cs);
if (err < 0) {
error("resource \"cs\" not found");
return err;
}
pcie->phy = tegra_xusb_phy_get(TEGRA_XUSB_PADCTL_PCIE);
if (pcie->phy) {
err = tegra_xusb_phy_prepare(pcie->phy);
if (err < 0) {
error("failed to prepare PHY: %d", err);
return err;
}
}
err = tegra_pcie_parse_dt_ranges(fdt, node, pcie);
if (err < 0) {
error("failed to parse \"ranges\" property");
return err;
}
fdt_for_each_subnode(fdt, subnode, node) {
unsigned int index = 0, num_lanes = 0;
struct tegra_pcie_port *port;
err = tegra_pcie_parse_port_info(fdt, subnode, &index,
&num_lanes);
if (err < 0) {
error("failed to obtain root port info");
continue;
}
lanes |= num_lanes << (index << 3);
if (!fdtdec_get_is_enabled(fdt, subnode))
continue;
port = malloc(sizeof(*port));
if (!port)
continue;
memset(port, 0, sizeof(*port));
port->num_lanes = num_lanes;
port->index = index;
err = tegra_pcie_port_parse_dt(fdt, subnode, port);
if (err < 0) {
free(port);
continue;
}
list_add_tail(&port->list, &pcie->ports);
port->pcie = pcie;
}
err = tegra_pcie_get_xbar_config(fdt, node, lanes, &pcie->xbar);
if (err < 0) {
error("invalid lane configuration");
return err;
}
return 0;
}
int __weak tegra_pcie_board_init(void)
{
return 0;
}
static int tegra_pcie_power_on(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
unsigned long value;
int err;
/* reset PCIEXCLK logic, AFI controller and PCIe controller */
reset_set_enable(PERIPH_ID_PCIEXCLK, 1);
reset_set_enable(PERIPH_ID_AFI, 1);
reset_set_enable(PERIPH_ID_PCIE, 1);
err = tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
if (err < 0) {
error("failed to power off PCIe partition: %d", err);
return err;
}
err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
PERIPH_ID_PCIE);
if (err < 0) {
error("failed to power up PCIe partition: %d", err);
return err;
}
/* take AFI controller out of reset */
reset_set_enable(PERIPH_ID_AFI, 0);
/* enable AFI clock */
clock_enable(PERIPH_ID_AFI);
if (soc->has_cml_clk) {
/* enable CML clock */
value = readl(NV_PA_CLK_RST_BASE + 0x48c);
value |= (1 << 0);
value &= ~(1 << 1);
writel(value, NV_PA_CLK_RST_BASE + 0x48c);
}
err = tegra_plle_enable();
if (err < 0) {
error("failed to enable PLLE: %d\n", err);
return err;
}
return 0;
}
static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout)
{
const struct tegra_pcie_soc *soc = pcie->soc;
unsigned long start = get_timer(0);
u32 value;
while (get_timer(start) < timeout) {
value = pads_readl(pcie, soc->pads_pll_ctl);
if (value & PADS_PLL_CTL_LOCKDET)
return 0;
}
return -ETIMEDOUT;
}
static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
u32 value;
int err;
/* initialize internal PHY, enable up to 16 PCIe lanes */
pads_writel(pcie, 0, PADS_CTL_SEL);
/* override IDDQ to 1 on all 4 lanes */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/*
* Set up PHY PLL inputs select PLLE output as refclock, set TX
* ref sel to div10 (not div5).
*/
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* reset PLL */
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
udelay(20);
/* take PLL out of reset */
value = pads_readl(pcie, soc->pads_pll_ctl);
value |= PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* configure the reference clock driver */
value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
pads_writel(pcie, value, PADS_REFCLK_CFG0);
if (soc->num_ports > 2)
pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
/* wait for the PLL to lock */
err = tegra_pcie_pll_wait(pcie, 500);
if (err < 0) {
error("PLL failed to lock: %d", err);
return err;
}
/* turn off IDDQ override */
value = pads_readl(pcie, PADS_CTL);
value &= ~PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/* enable TX/RX data */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
pads_writel(pcie, value, PADS_CTL);
return 0;
}
static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc *soc = pcie->soc;
struct tegra_pcie_port *port;
u32 value;
int err;
if (pcie->phy) {
value = afi_readl(pcie, AFI_PLLE_CONTROL);
value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
afi_writel(pcie, value, AFI_PLLE_CONTROL);
}
if (soc->has_pex_bias_ctrl)
afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
value = afi_readl(pcie, AFI_PCIE_CONFIG);
value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar;
list_for_each_entry(port, &pcie->ports, list)
value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
afi_writel(pcie, value, AFI_PCIE_CONFIG);
value = afi_readl(pcie, AFI_FUSE);
if (soc->has_gen2)
value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
else
value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(pcie, value, AFI_FUSE);
if (pcie->phy)
err = tegra_xusb_phy_enable(pcie->phy);
else
err = tegra_pcie_phy_enable(pcie);
if (err < 0) {
error("failed to power on PHY: %d\n", err);
return err;
}
/* take the PCIEXCLK logic out of reset */
reset_set_enable(PERIPH_ID_PCIEXCLK, 0);
/* finally enable PCIe */
value = afi_readl(pcie, AFI_CONFIGURATION);
value |= AFI_CONFIGURATION_EN_FPCI;
afi_writel(pcie, value, AFI_CONFIGURATION);
/* disable all interrupts */
afi_writel(pcie, 0, AFI_AFI_INTR_ENABLE);
afi_writel(pcie, 0, AFI_SM_INTR_ENABLE);
afi_writel(pcie, 0, AFI_INTR_MASK);
afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
return 0;
}
static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
{
unsigned long fpci, axi, size;
/* BAR 0: type 1 extended configuration space */
fpci = 0xfe100000;
size = fdt_resource_size(&pcie->cs);
axi = pcie->cs.start;
afi_writel(pcie, axi, AFI_AXI_BAR0_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR0);
/* BAR 1: downstream I/O */
fpci = 0xfdfc0000;
size = fdt_resource_size(&pcie->io);
axi = pcie->io.start;
afi_writel(pcie, axi, AFI_AXI_BAR1_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR1);
/* BAR 2: prefetchable memory */
fpci = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = fdt_resource_size(&pcie->prefetch);
axi = pcie->prefetch.start;
afi_writel(pcie, axi, AFI_AXI_BAR2_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR2);
/* BAR 3: non-prefetchable memory */
fpci = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = fdt_resource_size(&pcie->mem);
axi = pcie->mem.start;
afi_writel(pcie, axi, AFI_AXI_BAR3_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
afi_writel(pcie, fpci, AFI_FPCI_BAR3);
/* NULL out the remaining BARs as they are not used */
afi_writel(pcie, 0, AFI_AXI_BAR4_START);
afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR4);
afi_writel(pcie, 0, AFI_AXI_BAR5_START);
afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR5);
/* map all upstream transactions as uncached */
afi_writel(pcie, NV_PA_SDRAM_BASE, AFI_CACHE_BAR0_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
/* MSI translations are setup only when needed */
afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
}
static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
{
unsigned long ret = 0;
switch (port->index) {
case 0:
ret = AFI_PEX0_CTRL;
break;
case 1:
ret = AFI_PEX1_CTRL;
break;
case 2:
ret = AFI_PEX2_CTRL;
break;
}
return ret;
}
static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* pulse reset signel */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
udelay(2000);
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
{
const struct tegra_pcie_soc *soc = port->pcie->soc;
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* enable reference clock */
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_REFCLK_EN;
if (port->pcie->soc->has_pex_clkreq_en)
value |= AFI_PEX_CTRL_CLKREQ_EN;
value |= AFI_PEX_CTRL_OVERRIDE_EN;
afi_writel(port->pcie, value, ctrl);
tegra_pcie_port_reset(port);
if (soc->force_pca_enable) {
value = rp_readl(port, RP_VEND_CTL2);
value |= RP_VEND_CTL2_PCA_ENABLE;
rp_writel(port, value, RP_VEND_CTL2);
}
}
static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
{
unsigned int retries = 3;
unsigned long value;
value = rp_readl(port, RP_PRIV_MISC);
value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
rp_writel(port, value, RP_PRIV_MISC);
do {
unsigned int timeout = 200;
do {
value = rp_readl(port, RP_VEND_XP);
if (value & RP_VEND_XP_DL_UP)
break;
udelay(2000);
} while (--timeout);
if (!timeout) {
debug("link %u down, retrying\n", port->index);
goto retry;
}
timeout = 200;
do {
value = rp_readl(port, RP_LINK_CONTROL_STATUS);
if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE)
return true;
udelay(2000);
} while (--timeout);
retry:
tegra_pcie_port_reset(port);
} while (--retries);
return false;
}
static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* assert port reset */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
/* disable reference clock */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_REFCLK_EN;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_free(struct tegra_pcie_port *port)
{
list_del(&port->list);
free(port);
}
static int tegra_pcie_enable(struct tegra_pcie *pcie)
{
struct tegra_pcie_port *port, *tmp;
list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
debug("probing port %u, using %u lanes\n", port->index,
port->num_lanes);
tegra_pcie_port_enable(port);
if (tegra_pcie_port_check_link(port))
continue;
debug("link %u down, ignoring\n", port->index);
tegra_pcie_port_disable(port);
tegra_pcie_port_free(port);
}
return 0;
}
static const struct tegra_pcie_soc tegra20_pcie_soc = {
.num_ports = 2,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
.has_pex_clkreq_en = false,
.has_pex_bias_ctrl = false,
.has_cml_clk = false,
.has_gen2 = false,
.force_pca_enable = false,
};
static const struct tegra_pcie_soc tegra30_pcie_soc = {
.num_ports = 3,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_cml_clk = true,
.has_gen2 = false,
.force_pca_enable = false,
};
static const struct tegra_pcie_soc tegra124_pcie_soc = {
.num_ports = 2,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_cml_clk = true,
.has_gen2 = true,
.force_pca_enable = false,
};
static const struct tegra_pcie_soc tegra210_pcie_soc = {
.num_ports = 2,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_cml_clk = true,
.has_gen2 = true,
.force_pca_enable = true,
};
static int process_nodes(const void *fdt, int nodes[], unsigned int count)
{
unsigned int i;
uint64_t dram_end;
uint32_t pci_dram_size;
/* Clip PCI-accessible DRAM to 32-bits */
dram_end = ((uint64_t)NV_PA_SDRAM_BASE) + gd->ram_size;
if (dram_end > 0x100000000)
dram_end = 0x100000000;
pci_dram_size = dram_end - NV_PA_SDRAM_BASE;
for (i = 0; i < count; i++) {
const struct tegra_pcie_soc *soc;
struct tegra_pcie *pcie;
enum fdt_compat_id id;
int err;
if (!fdtdec_get_is_enabled(fdt, nodes[i]))
continue;
id = fdtdec_lookup(fdt, nodes[i]);
switch (id) {
case COMPAT_NVIDIA_TEGRA20_PCIE:
soc = &tegra20_pcie_soc;
break;
case COMPAT_NVIDIA_TEGRA30_PCIE:
soc = &tegra30_pcie_soc;
break;
case COMPAT_NVIDIA_TEGRA124_PCIE:
soc = &tegra124_pcie_soc;
break;
case COMPAT_NVIDIA_TEGRA210_PCIE:
soc = &tegra210_pcie_soc;
break;
default:
error("unsupported compatible: %s",
fdtdec_get_compatible(id));
continue;
}
pcie = malloc(sizeof(*pcie));
if (!pcie) {
error("failed to allocate controller");
continue;
}
memset(pcie, 0, sizeof(*pcie));
pcie->soc = soc;
INIT_LIST_HEAD(&pcie->ports);
err = tegra_pcie_parse_dt(fdt, nodes[i], pcie);
if (err < 0) {
free(pcie);
continue;
}
err = tegra_pcie_power_on(pcie);
if (err < 0) {
error("failed to power on");
continue;
}
err = tegra_pcie_enable_controller(pcie);
if (err < 0) {
error("failed to enable controller");
continue;
}
tegra_pcie_setup_translations(pcie);
err = tegra_pcie_enable(pcie);
if (err < 0) {
error("failed to enable PCIe");
continue;
}
pcie->hose.first_busno = 0;
pcie->hose.current_busno = 0;
pcie->hose.last_busno = 0;
pci_set_region(&pcie->hose.regions[0], NV_PA_SDRAM_BASE,
NV_PA_SDRAM_BASE, pci_dram_size,
PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
pci_set_region(&pcie->hose.regions[1], pcie->io.start,
pcie->io.start, fdt_resource_size(&pcie->io),
PCI_REGION_IO);
pci_set_region(&pcie->hose.regions[2], pcie->mem.start,
pcie->mem.start, fdt_resource_size(&pcie->mem),
PCI_REGION_MEM);
pci_set_region(&pcie->hose.regions[3], pcie->prefetch.start,
pcie->prefetch.start,
fdt_resource_size(&pcie->prefetch),
PCI_REGION_MEM | PCI_REGION_PREFETCH);
pcie->hose.region_count = 4;
pci_set_ops(&pcie->hose,
pci_hose_read_config_byte_via_dword,
pci_hose_read_config_word_via_dword,
tegra_pcie_read_conf,
pci_hose_write_config_byte_via_dword,
pci_hose_write_config_word_via_dword,
tegra_pcie_write_conf);
pci_register_hose(&pcie->hose);
#ifdef CONFIG_PCI_SCAN_SHOW
printf("PCI: Enumerating devices...\n");
printf("---------------------------------------\n");
printf(" Device ID Description\n");
printf(" ------ -- -----------\n");
#endif
pcie->hose.last_busno = pci_hose_scan(&pcie->hose);
}
return 0;
}
void pci_init_board(void)
{
const void *fdt = gd->fdt_blob;
int count, nodes[1];
tegra_pcie_board_init();
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA210_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA124_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA30_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
count = fdtdec_find_aliases_for_id(fdt, "pcie-controller",
COMPAT_NVIDIA_TEGRA20_PCIE,
nodes, ARRAY_SIZE(nodes));
if (process_nodes(fdt, nodes, count))
return;
}
int pci_skip_dev(struct pci_controller *hose, pci_dev_t dev)
{
if (PCI_BUS(dev) != 0 && PCI_DEV(dev) > 0)
return 1;
return 0;
}