u-boot/drivers/mmc/zynq_sdhci.c
T Karthik Reddy a3e3d4698e mmc: zynq_sdhci: Add xilinx_pm_request weak function
Mini emmc does not use any pmufw and ZYNQMP_FIRMWARE is disabled.
xilinx_pm_request() will not be compiled and causes undefined reference to
`xilinx_pm_request' error. So add a weak function in zynq_sdhci.c file.

Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com>
Signed-off-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Link: https://lore.kernel.org/r/1633086518-32636-1-git-send-email-t.karthik.reddy@xilinx.com
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
2021-10-21 08:50:59 +02:00

836 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013 - 2015 Xilinx, Inc.
*
* Xilinx Zynq SD Host Controller Interface
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <linux/delay.h>
#include "mmc_private.h"
#include <log.h>
#include <dm/device_compat.h>
#include <linux/err.h>
#include <linux/libfdt.h>
#include <asm/cache.h>
#include <malloc.h>
#include <sdhci.h>
#include <zynqmp_firmware.h>
#define SDHCI_ARASAN_ITAPDLY_REGISTER 0xF0F8
#define SDHCI_ARASAN_ITAPDLY_SEL_MASK GENMASK(7, 0)
#define SDHCI_ARASAN_OTAPDLY_REGISTER 0xF0FC
#define SDHCI_ARASAN_OTAPDLY_SEL_MASK GENMASK(5, 0)
#define SDHCI_ITAPDLY_CHGWIN BIT(9)
#define SDHCI_ITAPDLY_ENABLE BIT(8)
#define SDHCI_OTAPDLY_ENABLE BIT(6)
#define SDHCI_TUNING_LOOP_COUNT 40
#define MMC_BANK2 0x2
#define SD_DLL_CTRL 0xFF180358
#define SD_ITAP_DLY 0xFF180314
#define SD_OTAP_DLY 0xFF180318
#define SD0_DLL_RST BIT(2)
#define SD1_DLL_RST BIT(18)
#define SD0_ITAPCHGWIN BIT(9)
#define SD1_ITAPCHGWIN BIT(25)
#define SD0_ITAPDLYENA BIT(8)
#define SD1_ITAPDLYENA BIT(24)
#define SD0_ITAPDLYSEL_MASK GENMASK(7, 0)
#define SD1_ITAPDLYSEL_MASK GENMASK(23, 16)
#define SD0_OTAPDLYSEL_MASK GENMASK(5, 0)
#define SD1_OTAPDLYSEL_MASK GENMASK(21, 16)
struct arasan_sdhci_clk_data {
int clk_phase_in[MMC_TIMING_MMC_HS400 + 1];
int clk_phase_out[MMC_TIMING_MMC_HS400 + 1];
};
struct arasan_sdhci_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct arasan_sdhci_priv {
struct sdhci_host *host;
struct arasan_sdhci_clk_data clk_data;
u8 deviceid;
u8 bank;
u8 no_1p8;
};
/* For Versal platforms zynqmp_mmio_write() won't be available */
__weak int zynqmp_mmio_write(const u32 address, const u32 mask, const u32 value)
{
return 0;
}
__weak int xilinx_pm_request(u32 api_id, u32 arg0, u32 arg1, u32 arg2,
u32 arg3, u32 *ret_payload)
{
return 0;
}
#if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL)
/* Default settings for ZynqMP Clock Phases */
static const u32 zynqmp_iclk_phases[] = {0, 63, 63, 0, 63, 0,
0, 183, 54, 0, 0};
static const u32 zynqmp_oclk_phases[] = {0, 72, 60, 0, 60, 72,
135, 48, 72, 135, 0};
/* Default settings for Versal Clock Phases */
static const u32 versal_iclk_phases[] = {0, 132, 132, 0, 132,
0, 0, 162, 90, 0, 0};
static const u32 versal_oclk_phases[] = {0, 60, 48, 0, 48, 72,
90, 36, 60, 90, 0};
static const u8 mode2timing[] = {
[MMC_LEGACY] = MMC_TIMING_LEGACY,
[MMC_HS] = MMC_TIMING_MMC_HS,
[SD_HS] = MMC_TIMING_SD_HS,
[MMC_HS_52] = MMC_TIMING_UHS_SDR50,
[MMC_DDR_52] = MMC_TIMING_UHS_DDR50,
[UHS_SDR12] = MMC_TIMING_UHS_SDR12,
[UHS_SDR25] = MMC_TIMING_UHS_SDR25,
[UHS_SDR50] = MMC_TIMING_UHS_SDR50,
[UHS_DDR50] = MMC_TIMING_UHS_DDR50,
[UHS_SDR104] = MMC_TIMING_UHS_SDR104,
[MMC_HS_200] = MMC_TIMING_MMC_HS200,
};
static inline int arasan_zynqmp_set_in_tapdelay(u8 node_id, u32 itap_delay)
{
int ret;
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0) {
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN,
SD0_ITAPCHGWIN);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYENA,
SD0_ITAPDLYENA);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPDLYSEL_MASK,
itap_delay);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD0_ITAPCHGWIN, 0);
if (ret)
return ret;
}
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN,
SD1_ITAPCHGWIN);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYENA,
SD1_ITAPDLYENA);
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPDLYSEL_MASK,
(itap_delay << 16));
if (ret)
return ret;
ret = zynqmp_mmio_write(SD_ITAP_DLY, SD1_ITAPCHGWIN, 0);
if (ret)
return ret;
} else {
return xilinx_pm_request(PM_IOCTL, (u32)node_id,
IOCTL_SET_SD_TAPDELAY,
PM_TAPDELAY_INPUT, itap_delay, NULL);
}
return 0;
}
static inline int arasan_zynqmp_set_out_tapdelay(u8 node_id, u32 otap_delay)
{
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0)
return zynqmp_mmio_write(SD_OTAP_DLY,
SD0_OTAPDLYSEL_MASK,
otap_delay);
return zynqmp_mmio_write(SD_OTAP_DLY, SD1_OTAPDLYSEL_MASK,
(otap_delay << 16));
} else {
return xilinx_pm_request(PM_IOCTL, (u32)node_id,
IOCTL_SET_SD_TAPDELAY,
PM_TAPDELAY_OUTPUT, otap_delay, NULL);
}
}
static inline int zynqmp_dll_reset(u8 node_id, u32 type)
{
if (IS_ENABLED(CONFIG_SPL_BUILD) || current_el() == 3) {
if (node_id == NODE_SD_0)
return zynqmp_mmio_write(SD_DLL_CTRL, SD0_DLL_RST,
type == PM_DLL_RESET_ASSERT ?
SD0_DLL_RST : 0);
return zynqmp_mmio_write(SD_DLL_CTRL, SD1_DLL_RST,
type == PM_DLL_RESET_ASSERT ?
SD1_DLL_RST : 0);
} else {
return xilinx_pm_request(PM_IOCTL, (u32)node_id,
IOCTL_SD_DLL_RESET, type, 0, NULL);
}
}
static int arasan_zynqmp_dll_reset(struct sdhci_host *host, u8 node_id)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
unsigned long timeout;
int ret;
u16 clk;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~(SDHCI_CLOCK_CARD_EN);
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Issue DLL Reset */
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_ASSERT);
if (ret) {
dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
return ret;
}
/* Allow atleast 1ms delay for proper DLL reset */
mdelay(1);
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_RELEASE);
if (ret) {
dev_err(dev, "dll_reset release failed with err: %d\n", ret);
return ret;
}
/* Wait max 20 ms */
timeout = 100;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
dev_err(dev, ": Internal clock never stabilised.\n");
return -EBUSY;
}
timeout--;
udelay(1000);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
return 0;
}
static int arasan_sdhci_execute_tuning(struct mmc *mmc, u8 opcode)
{
struct mmc_cmd cmd;
struct mmc_data data;
u32 ctrl;
struct sdhci_host *host;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
char tuning_loop_counter = SDHCI_TUNING_LOOP_COUNT;
u8 node_id = priv->deviceid ? NODE_SD_1 : NODE_SD_0;
debug("%s\n", __func__);
host = priv->host;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
mdelay(1);
arasan_zynqmp_dll_reset(host, node_id);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
do {
cmd.cmdidx = opcode;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
if (tuning_loop_counter-- == 0)
break;
if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200 &&
mmc->bus_width == 8)
data.blocksize = 128;
sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data.blocksize),
SDHCI_BLOCK_SIZE);
sdhci_writew(host, data.blocks, SDHCI_BLOCK_COUNT);
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
mmc_send_cmd(mmc, &cmd, NULL);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (cmd.cmdidx == MMC_CMD_SEND_TUNING_BLOCK)
udelay(1);
} while (ctrl & SDHCI_CTRL_EXEC_TUNING);
if (tuning_loop_counter < 0) {
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
sdhci_writel(host, ctrl, SDHCI_HOST_CONTROL2);
}
if (!(ctrl & SDHCI_CTRL_TUNED_CLK)) {
printf("%s:Tuning failed\n", __func__);
return -1;
}
udelay(1);
arasan_zynqmp_dll_reset(host, node_id);
/* Enable only interrupts served by the SD controller */
sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK,
SDHCI_INT_ENABLE);
/* Mask all sdhci interrupt sources */
sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE);
return 0;
}
/**
* sdhci_zynqmp_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Output Clock Tap Delays for Output path
*/
static int sdhci_zynqmp_sdcardclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
u8 node_id = priv->deviceid ? NODE_SD_1 : NODE_SD_0;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
int ret;
/*
* This is applicable for SDHCI_SPEC_300 and above
* ZynqMP does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit output tap_delay value to 6 bits */
tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
/* Set the Clock Phase */
ret = arasan_zynqmp_set_out_tapdelay(node_id, tap_delay);
if (ret) {
dev_err(dev, "Error setting output Tap Delay\n");
return ret;
}
/* Release DLL Reset */
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_RELEASE);
if (ret) {
dev_err(dev, "dll_reset release failed with err: %d\n", ret);
return ret;
}
return 0;
}
/**
* sdhci_zynqmp_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Input Clock Tap Delays for Input path
*/
static int sdhci_zynqmp_sampleclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
struct arasan_sdhci_priv *priv = dev_get_priv(mmc->dev);
u8 node_id = priv->deviceid ? NODE_SD_1 : NODE_SD_0;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
int ret;
/*
* This is applicable for SDHCI_SPEC_300 and above
* ZynqMP does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
/* Assert DLL Reset */
ret = zynqmp_dll_reset(node_id, PM_DLL_RESET_ASSERT);
if (ret) {
dev_err(dev, "dll_reset assert failed with err: %d\n", ret);
return ret;
}
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit input tap_delay value to 8 bits */
tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
ret = arasan_zynqmp_set_in_tapdelay(node_id, tap_delay);
if (ret) {
dev_err(dev, "Error setting Input Tap Delay\n");
return ret;
}
return 0;
}
/**
* sdhci_versal_sdcardclk_set_phase - Set the SD Output Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Output Clock Tap Delays for Output path
*/
static int sdhci_versal_sdcardclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
u32 regval;
/*
* This is applicable for SDHCI_SPEC_300 and above
* Versal does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 30 Taps are available */
tap_max = 30;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 15 Taps are available */
tap_max = 15;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 8 Taps are available */
tap_max = 8;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit output tap_delay value to 6 bits */
tap_delay &= SDHCI_ARASAN_OTAPDLY_SEL_MASK;
/* Set the Clock Phase */
regval = sdhci_readl(host, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval |= SDHCI_OTAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_OTAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_OTAPDLY_REGISTER);
return 0;
}
/**
* sdhci_versal_sampleclk_set_phase - Set the SD Input Clock Tap Delays
*
* @host: Pointer to the sdhci_host structure.
* @degrees: The clock phase shift between 0 - 359.
* Return: 0
*
* Set the SD Input Clock Tap Delays for Input path
*/
static int sdhci_versal_sampleclk_set_phase(struct sdhci_host *host,
int degrees)
{
struct mmc *mmc = (struct mmc *)host->mmc;
u8 tap_delay, tap_max = 0;
int timing = mode2timing[mmc->selected_mode];
u32 regval;
/*
* This is applicable for SDHCI_SPEC_300 and above
* Versal does not set phase for <=25MHz clock.
* If degrees is zero, no need to do anything.
*/
if (SDHCI_GET_VERSION(host) < SDHCI_SPEC_300)
return 0;
switch (timing) {
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
/* For 50MHz clock, 120 Taps are available */
tap_max = 120;
break;
case MMC_TIMING_UHS_SDR50:
/* For 100MHz clock, 60 Taps are available */
tap_max = 60;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* For 200MHz clock, 30 Taps are available */
tap_max = 30;
default:
break;
}
tap_delay = (degrees * tap_max) / 360;
/* Limit input tap_delay value to 8 bits */
tap_delay &= SDHCI_ARASAN_ITAPDLY_SEL_MASK;
/* Set the Clock Phase */
regval = sdhci_readl(host, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval |= SDHCI_ITAPDLY_ENABLE;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ARASAN_ITAPDLY_SEL_MASK;
regval |= tap_delay;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
regval &= ~SDHCI_ITAPDLY_CHGWIN;
sdhci_writel(host, regval, SDHCI_ARASAN_ITAPDLY_REGISTER);
return 0;
}
static int arasan_sdhci_set_tapdelay(struct sdhci_host *host)
{
struct arasan_sdhci_priv *priv = dev_get_priv(host->mmc->dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
struct mmc *mmc = (struct mmc *)host->mmc;
struct udevice *dev = mmc->dev;
u8 timing = mode2timing[mmc->selected_mode];
u32 iclk_phase = clk_data->clk_phase_in[timing];
u32 oclk_phase = clk_data->clk_phase_out[timing];
int ret;
dev_dbg(dev, "%s, host:%s, mode:%d\n", __func__, host->name, timing);
if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
ret = sdhci_zynqmp_sampleclk_set_phase(host, iclk_phase);
if (ret)
return ret;
ret = sdhci_zynqmp_sdcardclk_set_phase(host, oclk_phase);
if (ret)
return ret;
} else if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
device_is_compatible(dev, "xlnx,versal-8.9a")) {
ret = sdhci_versal_sampleclk_set_phase(host, iclk_phase);
if (ret)
return ret;
ret = sdhci_versal_sdcardclk_set_phase(host, oclk_phase);
if (ret)
return ret;
}
return 0;
}
static void arasan_dt_read_clk_phase(struct udevice *dev, unsigned char timing,
const char *prop)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
u32 clk_phase[2] = {0};
/*
* Read Tap Delay values from DT, if the DT does not contain the
* Tap Values then use the pre-defined values
*/
if (dev_read_u32_array(dev, prop, &clk_phase[0], 2)) {
dev_dbg(dev, "Using predefined clock phase for %s = %d %d\n",
prop, clk_data->clk_phase_in[timing],
clk_data->clk_phase_out[timing]);
return;
}
/* The values read are Input and Output Clock Delays in order */
clk_data->clk_phase_in[timing] = clk_phase[0];
clk_data->clk_phase_out[timing] = clk_phase[1];
}
/**
* arasan_dt_parse_clk_phases - Read Tap Delay values from DT
*
* @dev: Pointer to our struct udevice.
*
* Called at initialization to parse the values of Tap Delays.
*/
static void arasan_dt_parse_clk_phases(struct udevice *dev)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct arasan_sdhci_clk_data *clk_data = &priv->clk_data;
int i;
if (IS_ENABLED(CONFIG_ARCH_ZYNQMP) &&
device_is_compatible(dev, "xlnx,zynqmp-8.9a")) {
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = zynqmp_iclk_phases[i];
clk_data->clk_phase_out[i] = zynqmp_oclk_phases[i];
}
if (priv->bank == MMC_BANK2) {
clk_data->clk_phase_out[MMC_TIMING_UHS_SDR104] = 90;
clk_data->clk_phase_out[MMC_TIMING_MMC_HS200] = 90;
}
}
if (IS_ENABLED(CONFIG_ARCH_VERSAL) &&
device_is_compatible(dev, "xlnx,versal-8.9a")) {
for (i = 0; i <= MMC_TIMING_MMC_HS400; i++) {
clk_data->clk_phase_in[i] = versal_iclk_phases[i];
clk_data->clk_phase_out[i] = versal_oclk_phases[i];
}
}
arasan_dt_read_clk_phase(dev, MMC_TIMING_LEGACY,
"clk-phase-legacy");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS,
"clk-phase-mmc-hs");
arasan_dt_read_clk_phase(dev, MMC_TIMING_SD_HS,
"clk-phase-sd-hs");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR12,
"clk-phase-uhs-sdr12");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR25,
"clk-phase-uhs-sdr25");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR50,
"clk-phase-uhs-sdr50");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_SDR104,
"clk-phase-uhs-sdr104");
arasan_dt_read_clk_phase(dev, MMC_TIMING_UHS_DDR50,
"clk-phase-uhs-ddr50");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_DDR52,
"clk-phase-mmc-ddr52");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS200,
"clk-phase-mmc-hs200");
arasan_dt_read_clk_phase(dev, MMC_TIMING_MMC_HS400,
"clk-phase-mmc-hs400");
}
static const struct sdhci_ops arasan_ops = {
.platform_execute_tuning = &arasan_sdhci_execute_tuning,
.set_delay = &arasan_sdhci_set_tapdelay,
.set_control_reg = &sdhci_set_control_reg,
};
#endif
static int arasan_sdhci_probe(struct udevice *dev)
{
struct arasan_sdhci_plat *plat = dev_get_plat(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
struct sdhci_host *host;
struct clk clk;
unsigned long clock;
int ret;
host = priv->host;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
dev_err(dev, "failed to get clock\n");
return ret;
}
clock = clk_get_rate(&clk);
if (IS_ERR_VALUE(clock)) {
dev_err(dev, "failed to get rate\n");
return clock;
}
debug("%s: CLK %ld\n", __func__, clock);
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
host->quirks = SDHCI_QUIRK_WAIT_SEND_CMD |
SDHCI_QUIRK_BROKEN_R1B;
#ifdef CONFIG_ZYNQ_HISPD_BROKEN
host->quirks |= SDHCI_QUIRK_BROKEN_HISPD_MODE;
#endif
if (priv->no_1p8)
host->quirks |= SDHCI_QUIRK_NO_1_8_V;
plat->cfg.f_max = CONFIG_ZYNQ_SDHCI_MAX_FREQ;
ret = mmc_of_parse(dev, &plat->cfg);
if (ret)
return ret;
host->max_clk = clock;
host->mmc = &plat->mmc;
host->mmc->dev = dev;
host->mmc->priv = host;
ret = sdhci_setup_cfg(&plat->cfg, host, plat->cfg.f_max,
CONFIG_ZYNQ_SDHCI_MIN_FREQ);
if (ret)
return ret;
upriv->mmc = host->mmc;
/*
* WORKAROUND: Versal platforms have an issue with card detect state.
* Due to this, host controller is switching off voltage to sd card
* causing sd card timeout error. Workaround this by adding a wait for
* 1000msec till the card detect state gets stable.
*/
if (IS_ENABLED(CONFIG_ARCH_VERSAL)) {
u32 timeout = 1000;
while (((sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_STATE_STABLE) == 0) && timeout--) {
mdelay(1);
}
if (!timeout) {
dev_err(dev, "Sdhci card detect state not stable\n");
return -ETIMEDOUT;
}
}
return sdhci_probe(dev);
}
static int arasan_sdhci_of_to_plat(struct udevice *dev)
{
struct arasan_sdhci_priv *priv = dev_get_priv(dev);
priv->host = calloc(1, sizeof(struct sdhci_host));
if (!priv->host)
return -1;
priv->host->name = dev->name;
#if defined(CONFIG_ARCH_ZYNQMP) || defined(CONFIG_ARCH_VERSAL)
priv->host->ops = &arasan_ops;
arasan_dt_parse_clk_phases(dev);
#endif
priv->host->ioaddr = (void *)dev_read_addr(dev);
if (IS_ERR(priv->host->ioaddr))
return PTR_ERR(priv->host->ioaddr);
priv->deviceid = dev_read_u32_default(dev, "xlnx,device_id", -1);
priv->bank = dev_read_u32_default(dev, "xlnx,mio-bank", 0);
priv->no_1p8 = dev_read_bool(dev, "no-1-8-v");
return 0;
}
static int arasan_sdhci_bind(struct udevice *dev)
{
struct arasan_sdhci_plat *plat = dev_get_plat(dev);
return sdhci_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct udevice_id arasan_sdhci_ids[] = {
{ .compatible = "arasan,sdhci-8.9a" },
{ }
};
U_BOOT_DRIVER(arasan_sdhci_drv) = {
.name = "arasan_sdhci",
.id = UCLASS_MMC,
.of_match = arasan_sdhci_ids,
.of_to_plat = arasan_sdhci_of_to_plat,
.ops = &sdhci_ops,
.bind = arasan_sdhci_bind,
.probe = arasan_sdhci_probe,
.priv_auto = sizeof(struct arasan_sdhci_priv),
.plat_auto = sizeof(struct arasan_sdhci_plat),
};