u-boot/arch/arm/cpu/armv7/omap-common/clocks-common.c
Jassi Brar 02c41535b6 ARM: OMAP4/5: Remove dead code against CONFIG_SYS_CLOCKS_ENABLE_ALL
The commit
 f3f98bb0 : "ARM: OMAP4/5: Do not configure non essential pads, clocks, dplls"
removed the config option aimed towards moving that stuff into kernel, which
renders some code unreachable. Remove that code.

Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
2014-01-24 09:34:22 -05:00

733 lines
19 KiB
C

/*
*
* Clock initialization for OMAP4
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
*
* Based on previous work by:
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Rajendra Nayak <rnayak@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <i2c.h>
#include <asm/omap_common.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/utils.h>
#include <asm/omap_gpio.h>
#include <asm/emif.h>
#ifndef CONFIG_SPL_BUILD
/*
* printing to console doesn't work unless
* this code is executed from SPL
*/
#define printf(fmt, args...)
#define puts(s)
#endif
const u32 sys_clk_array[8] = {
12000000, /* 12 MHz */
20000000, /* 20 MHz */
16800000, /* 16.8 MHz */
19200000, /* 19.2 MHz */
26000000, /* 26 MHz */
27000000, /* 27 MHz */
38400000, /* 38.4 MHz */
};
static inline u32 __get_sys_clk_index(void)
{
s8 ind;
/*
* For ES1 the ROM code calibration of sys clock is not reliable
* due to hw issue. So, use hard-coded value. If this value is not
* correct for any board over-ride this function in board file
* From ES2.0 onwards you will get this information from
* CM_SYS_CLKSEL
*/
if (omap_revision() == OMAP4430_ES1_0)
ind = OMAP_SYS_CLK_IND_38_4_MHZ;
else {
/* SYS_CLKSEL - 1 to match the dpll param array indices */
ind = (readl((*prcm)->cm_sys_clksel) &
CM_SYS_CLKSEL_SYS_CLKSEL_MASK) - 1;
}
return ind;
}
u32 get_sys_clk_index(void)
__attribute__ ((weak, alias("__get_sys_clk_index")));
u32 get_sys_clk_freq(void)
{
u8 index = get_sys_clk_index();
return sys_clk_array[index];
}
void setup_post_dividers(u32 const base, const struct dpll_params *params)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
/* Setup post-dividers */
if (params->m2 >= 0)
writel(params->m2, &dpll_regs->cm_div_m2_dpll);
if (params->m3 >= 0)
writel(params->m3, &dpll_regs->cm_div_m3_dpll);
if (params->m4_h11 >= 0)
writel(params->m4_h11, &dpll_regs->cm_div_m4_h11_dpll);
if (params->m5_h12 >= 0)
writel(params->m5_h12, &dpll_regs->cm_div_m5_h12_dpll);
if (params->m6_h13 >= 0)
writel(params->m6_h13, &dpll_regs->cm_div_m6_h13_dpll);
if (params->m7_h14 >= 0)
writel(params->m7_h14, &dpll_regs->cm_div_m7_h14_dpll);
if (params->h21 >= 0)
writel(params->h21, &dpll_regs->cm_div_h21_dpll);
if (params->h22 >= 0)
writel(params->h22, &dpll_regs->cm_div_h22_dpll);
if (params->h23 >= 0)
writel(params->h23, &dpll_regs->cm_div_h23_dpll);
if (params->h24 >= 0)
writel(params->h24, &dpll_regs->cm_div_h24_dpll);
}
static inline void do_bypass_dpll(u32 const base)
{
struct dpll_regs *dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_FAST_RELOCK_BYPASS <<
CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_bypass(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, 0, &dpll_regs->cm_idlest_dpll,
LDELAY)) {
printf("Bypassing DPLL failed %x\n", base);
}
}
static inline void do_lock_dpll(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
clrsetbits_le32(&dpll_regs->cm_clkmode_dpll,
CM_CLKMODE_DPLL_DPLL_EN_MASK,
DPLL_EN_LOCK << CM_CLKMODE_DPLL_EN_SHIFT);
}
static inline void wait_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!wait_on_value(ST_DPLL_CLK_MASK, ST_DPLL_CLK_MASK,
&dpll_regs->cm_idlest_dpll, LDELAY)) {
printf("DPLL locking failed for %x\n", base);
hang();
}
}
inline u32 check_for_lock(u32 const base)
{
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
u32 lock = readl(&dpll_regs->cm_idlest_dpll) & ST_DPLL_CLK_MASK;
return lock;
}
const struct dpll_params *get_mpu_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->mpu[sysclk_ind];
}
const struct dpll_params *get_core_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->core[sysclk_ind];
}
const struct dpll_params *get_per_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->per[sysclk_ind];
}
const struct dpll_params *get_iva_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->iva[sysclk_ind];
}
const struct dpll_params *get_usb_dpll_params(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->usb[sysclk_ind];
}
const struct dpll_params *get_abe_dpll_params(struct dplls const *dpll_data)
{
#ifdef CONFIG_SYS_OMAP_ABE_SYSCK
u32 sysclk_ind = get_sys_clk_index();
return &dpll_data->abe[sysclk_ind];
#else
return dpll_data->abe;
#endif
}
static const struct dpll_params *get_ddr_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->ddr)
return NULL;
return &dpll_data->ddr[sysclk_ind];
}
#ifdef CONFIG_DRIVER_TI_CPSW
static const struct dpll_params *get_gmac_dpll_params
(struct dplls const *dpll_data)
{
u32 sysclk_ind = get_sys_clk_index();
if (!dpll_data->gmac)
return NULL;
return &dpll_data->gmac[sysclk_ind];
}
#endif
static void do_setup_dpll(u32 const base, const struct dpll_params *params,
u8 lock, char *dpll)
{
u32 temp, M, N;
struct dpll_regs *const dpll_regs = (struct dpll_regs *)base;
if (!params)
return;
temp = readl(&dpll_regs->cm_clksel_dpll);
if (check_for_lock(base)) {
/*
* The Dpll has already been locked by rom code using CH.
* Check if M,N are matching with Ideal nominal opp values.
* If matches, skip the rest otherwise relock.
*/
M = (temp & CM_CLKSEL_DPLL_M_MASK) >> CM_CLKSEL_DPLL_M_SHIFT;
N = (temp & CM_CLKSEL_DPLL_N_MASK) >> CM_CLKSEL_DPLL_N_SHIFT;
if ((M != (params->m)) || (N != (params->n))) {
debug("\n %s Dpll locked, but not for ideal M = %d,"
"N = %d values, current values are M = %d,"
"N= %d" , dpll, params->m, params->n,
M, N);
} else {
/* Dpll locked with ideal values for nominal opps. */
debug("\n %s Dpll already locked with ideal"
"nominal opp values", dpll);
goto setup_post_dividers;
}
}
bypass_dpll(base);
/* Set M & N */
temp &= ~CM_CLKSEL_DPLL_M_MASK;
temp |= (params->m << CM_CLKSEL_DPLL_M_SHIFT) & CM_CLKSEL_DPLL_M_MASK;
temp &= ~CM_CLKSEL_DPLL_N_MASK;
temp |= (params->n << CM_CLKSEL_DPLL_N_SHIFT) & CM_CLKSEL_DPLL_N_MASK;
writel(temp, &dpll_regs->cm_clksel_dpll);
/* Lock */
if (lock)
do_lock_dpll(base);
setup_post_dividers:
setup_post_dividers(base, params);
/* Wait till the DPLL locks */
if (lock)
wait_for_lock(base);
}
u32 omap_ddr_clk(void)
{
u32 ddr_clk, sys_clk_khz, omap_rev, divider;
const struct dpll_params *core_dpll_params;
omap_rev = omap_revision();
sys_clk_khz = get_sys_clk_freq() / 1000;
core_dpll_params = get_core_dpll_params(*dplls_data);
debug("sys_clk %d\n ", sys_clk_khz * 1000);
/* Find Core DPLL locked frequency first */
ddr_clk = sys_clk_khz * 2 * core_dpll_params->m /
(core_dpll_params->n + 1);
if (omap_rev < OMAP5430_ES1_0) {
/*
* DDR frequency is PHY_ROOT_CLK/2
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 4;
} else {
/*
* DDR frequency is PHY_ROOT_CLK
* PHY_ROOT_CLK = Fdpll/2/M2
*/
divider = 2;
}
ddr_clk = ddr_clk / divider / core_dpll_params->m2;
ddr_clk *= 1000; /* convert to Hz */
debug("ddr_clk %d\n ", ddr_clk);
return ddr_clk;
}
/*
* Lock MPU dpll
*
* Resulting MPU frequencies:
* 4430 ES1.0 : 600 MHz
* 4430 ES2.x : 792 MHz (OPP Turbo)
* 4460 : 920 MHz (OPP Turbo) - DCC disabled
*/
void configure_mpu_dpll(void)
{
const struct dpll_params *params;
struct dpll_regs *mpu_dpll_regs;
u32 omap_rev;
omap_rev = omap_revision();
/*
* DCC and clock divider settings for 4460.
* DCC is required, if more than a certain frequency is required.
* For, 4460 > 1GHZ.
* 5430 > 1.4GHZ.
*/
if ((omap_rev >= OMAP4460_ES1_0) && (omap_rev < OMAP5430_ES1_0)) {
mpu_dpll_regs =
(struct dpll_regs *)((*prcm)->cm_clkmode_dpll_mpu);
bypass_dpll((*prcm)->cm_clkmode_dpll_mpu);
clrbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_EMIF_DIV_MODE_MASK);
setbits_le32((*prcm)->cm_mpu_mpu_clkctrl,
MPU_CLKCTRL_CLKSEL_ABE_DIV_MODE_MASK);
clrbits_le32(&mpu_dpll_regs->cm_clksel_dpll,
CM_CLKSEL_DCC_EN_MASK);
}
params = get_mpu_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_mpu, params, DPLL_LOCK, "mpu");
debug("MPU DPLL locked\n");
}
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP)
static void setup_usb_dpll(void)
{
const struct dpll_params *params;
u32 sys_clk_khz, sd_div, num, den;
sys_clk_khz = get_sys_clk_freq() / 1000;
/*
* USB:
* USB dpll is J-type. Need to set DPLL_SD_DIV for jitter correction
* DPLL_SD_DIV = CEILING ([DPLL_MULT/(DPLL_DIV+1)]* CLKINP / 250)
* - where CLKINP is sys_clk in MHz
* Use CLKINP in KHz and adjust the denominator accordingly so
* that we have enough accuracy and at the same time no overflow
*/
params = get_usb_dpll_params(*dplls_data);
num = params->m * sys_clk_khz;
den = (params->n + 1) * 250 * 1000;
num += den - 1;
sd_div = num / den;
clrsetbits_le32((*prcm)->cm_clksel_dpll_usb,
CM_CLKSEL_DPLL_DPLL_SD_DIV_MASK,
sd_div << CM_CLKSEL_DPLL_DPLL_SD_DIV_SHIFT);
/* Now setup the dpll with the regular function */
do_setup_dpll((*prcm)->cm_clkmode_dpll_usb, params, DPLL_LOCK, "usb");
}
#endif
static void setup_dplls(void)
{
u32 temp;
const struct dpll_params *params;
debug("setup_dplls\n");
/* CORE dpll */
params = get_core_dpll_params(*dplls_data); /* default - safest */
/*
* Do not lock the core DPLL now. Just set it up.
* Core DPLL will be locked after setting up EMIF
* using the FREQ_UPDATE method(freq_update_core())
*/
if (emif_sdram_type() == EMIF_SDRAM_TYPE_LPDDR2)
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_NO_LOCK, "core");
else
do_setup_dpll((*prcm)->cm_clkmode_dpll_core, params,
DPLL_LOCK, "core");
/* Set the ratios for CORE_CLK, L3_CLK, L4_CLK */
temp = (CLKSEL_CORE_X2_DIV_1 << CLKSEL_CORE_SHIFT) |
(CLKSEL_L3_CORE_DIV_2 << CLKSEL_L3_SHIFT) |
(CLKSEL_L4_L3_DIV_2 << CLKSEL_L4_SHIFT);
writel(temp, (*prcm)->cm_clksel_core);
debug("Core DPLL configured\n");
/* lock PER dpll */
params = get_per_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_per,
params, DPLL_LOCK, "per");
debug("PER DPLL locked\n");
/* MPU dpll */
configure_mpu_dpll();
#if defined(CONFIG_USB_EHCI_OMAP) || defined(CONFIG_USB_XHCI_OMAP)
setup_usb_dpll();
#endif
params = get_ddr_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_ddrphy,
params, DPLL_LOCK, "ddr");
#ifdef CONFIG_DRIVER_TI_CPSW
params = get_gmac_dpll_params(*dplls_data);
do_setup_dpll((*prcm)->cm_clkmode_dpll_gmac, params,
DPLL_LOCK, "gmac");
#endif
}
u32 get_offset_code(u32 volt_offset, struct pmic_data *pmic)
{
u32 offset_code;
volt_offset -= pmic->base_offset;
offset_code = (volt_offset + pmic->step - 1) / pmic->step;
/*
* Offset codes 1-6 all give the base voltage in Palmas
* Offset code 0 switches OFF the SMPS
*/
return offset_code + pmic->start_code;
}
void do_scale_vcore(u32 vcore_reg, u32 volt_mv, struct pmic_data *pmic)
{
u32 offset_code;
u32 offset = volt_mv;
int ret = 0;
if (!volt_mv)
return;
pmic->pmic_bus_init();
/* See if we can first get the GPIO if needed */
if (pmic->gpio_en)
ret = gpio_request(pmic->gpio, "PMIC_GPIO");
if (ret < 0) {
printf("%s: gpio %d request failed %d\n", __func__,
pmic->gpio, ret);
return;
}
/* Pull the GPIO low to select SET0 register, while we program SET1 */
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 0);
/* convert to uV for better accuracy in the calculations */
offset *= 1000;
offset_code = get_offset_code(offset, pmic);
debug("do_scale_vcore: volt - %d offset_code - 0x%x\n", volt_mv,
offset_code);
if (pmic->pmic_write(pmic->i2c_slave_addr, vcore_reg, offset_code))
printf("Scaling voltage failed for 0x%x\n", vcore_reg);
if (pmic->gpio_en)
gpio_direction_output(pmic->gpio, 1);
}
static u32 optimize_vcore_voltage(struct volts const *v)
{
u32 val;
if (!v->value)
return 0;
if (!v->efuse.reg)
return v->value;
switch (v->efuse.reg_bits) {
case 16:
val = readw(v->efuse.reg);
break;
case 32:
val = readl(v->efuse.reg);
break;
default:
printf("Error: efuse 0x%08x bits=%d unknown\n",
v->efuse.reg, v->efuse.reg_bits);
return v->value;
}
if (!val) {
printf("Error: efuse 0x%08x bits=%d val=0, using %d\n",
v->efuse.reg, v->efuse.reg_bits, v->value);
return v->value;
}
debug("%s:efuse 0x%08x bits=%d Vnom=%d, using efuse value %d\n",
__func__, v->efuse.reg, v->efuse.reg_bits, v->value, val);
return val;
}
/*
* Setup the voltages for vdd_mpu, vdd_core, and vdd_iva
* We set the maximum voltages allowed here because Smart-Reflex is not
* enabled in bootloader. Voltage initialization in the kernel will set
* these to the nominal values after enabling Smart-Reflex
*/
void scale_vcores(struct vcores_data const *vcores)
{
u32 val;
val = optimize_vcore_voltage(&vcores->core);
do_scale_vcore(vcores->core.addr, val, vcores->core.pmic);
val = optimize_vcore_voltage(&vcores->mpu);
do_scale_vcore(vcores->mpu.addr, val, vcores->mpu.pmic);
/* Configure MPU ABB LDO after scale */
abb_setup((*ctrl)->control_std_fuse_opp_vdd_mpu_2,
(*ctrl)->control_wkup_ldovbb_mpu_voltage_ctrl,
(*prcm)->prm_abbldo_mpu_setup,
(*prcm)->prm_abbldo_mpu_ctrl,
(*prcm)->prm_irqstatus_mpu_2,
OMAP_ABB_MPU_TXDONE_MASK,
OMAP_ABB_FAST_OPP);
val = optimize_vcore_voltage(&vcores->mm);
do_scale_vcore(vcores->mm.addr, val, vcores->mm.pmic);
val = optimize_vcore_voltage(&vcores->gpu);
do_scale_vcore(vcores->gpu.addr, val, vcores->gpu.pmic);
val = optimize_vcore_voltage(&vcores->eve);
do_scale_vcore(vcores->eve.addr, val, vcores->eve.pmic);
val = optimize_vcore_voltage(&vcores->iva);
do_scale_vcore(vcores->iva.addr, val, vcores->iva.pmic);
}
static inline void enable_clock_domain(u32 const clkctrl_reg, u32 enable_mode)
{
clrsetbits_le32(clkctrl_reg, CD_CLKCTRL_CLKTRCTRL_MASK,
enable_mode << CD_CLKCTRL_CLKTRCTRL_SHIFT);
debug("Enable clock domain - %x\n", clkctrl_reg);
}
static inline void wait_for_clk_enable(u32 clkctrl_addr)
{
u32 clkctrl, idlest = MODULE_CLKCTRL_IDLEST_DISABLED;
u32 bound = LDELAY;
while ((idlest == MODULE_CLKCTRL_IDLEST_DISABLED) ||
(idlest == MODULE_CLKCTRL_IDLEST_TRANSITIONING)) {
clkctrl = readl(clkctrl_addr);
idlest = (clkctrl & MODULE_CLKCTRL_IDLEST_MASK) >>
MODULE_CLKCTRL_IDLEST_SHIFT;
if (--bound == 0) {
printf("Clock enable failed for 0x%x idlest 0x%x\n",
clkctrl_addr, clkctrl);
return;
}
}
}
static inline void enable_clock_module(u32 const clkctrl_addr, u32 enable_mode,
u32 wait_for_enable)
{
clrsetbits_le32(clkctrl_addr, MODULE_CLKCTRL_MODULEMODE_MASK,
enable_mode << MODULE_CLKCTRL_MODULEMODE_SHIFT);
debug("Enable clock module - %x\n", clkctrl_addr);
if (wait_for_enable)
wait_for_clk_enable(clkctrl_addr);
}
void freq_update_core(void)
{
u32 freq_config1 = 0;
const struct dpll_params *core_dpll_params;
u32 omap_rev = omap_revision();
core_dpll_params = get_core_dpll_params(*dplls_data);
/* Put EMIF clock domain in sw wakeup mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
freq_config1 = SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK |
SHADOW_FREQ_CONFIG1_DLL_RESET_MASK;
freq_config1 |= (DPLL_EN_LOCK << SHADOW_FREQ_CONFIG1_DPLL_EN_SHIFT) &
SHADOW_FREQ_CONFIG1_DPLL_EN_MASK;
freq_config1 |= (core_dpll_params->m2 <<
SHADOW_FREQ_CONFIG1_M2_DIV_SHIFT) &
SHADOW_FREQ_CONFIG1_M2_DIV_MASK;
writel(freq_config1, (*prcm)->cm_shadow_freq_config1);
if (!wait_on_value(SHADOW_FREQ_CONFIG1_FREQ_UPDATE_MASK, 0,
(u32 *) (*prcm)->cm_shadow_freq_config1, LDELAY)) {
puts("FREQ UPDATE procedure failed!!");
hang();
}
/*
* Putting EMIF in HW_AUTO is seen to be causing issues with
* EMIF clocks and the master DLL. Keep EMIF in SW_WKUP
* in OMAP5430 ES1.0 silicon
*/
if (omap_rev != OMAP5430_ES1_0) {
/* Put EMIF clock domain back in hw auto mode */
enable_clock_domain((*prcm)->cm_memif_clkstctrl,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
wait_for_clk_enable((*prcm)->cm_memif_emif_1_clkctrl);
wait_for_clk_enable((*prcm)->cm_memif_emif_2_clkctrl);
}
}
void bypass_dpll(u32 const base)
{
do_bypass_dpll(base);
wait_for_bypass(base);
}
void lock_dpll(u32 const base)
{
do_lock_dpll(base);
wait_for_lock(base);
}
void setup_clocks_for_console(void)
{
/* Do not add any spl_debug prints in this function */
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
/* Enable all UARTs - console will be on one of them */
clrsetbits_le32((*prcm)->cm_l4per_uart1_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart2_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart3_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_uart4_clkctrl,
MODULE_CLKCTRL_MODULEMODE_MASK,
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
MODULE_CLKCTRL_MODULEMODE_SHIFT);
clrsetbits_le32((*prcm)->cm_l4per_clkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
CD_CLKCTRL_CLKTRCTRL_HW_AUTO <<
CD_CLKCTRL_CLKTRCTRL_SHIFT);
}
void do_enable_clocks(u32 const *clk_domains,
u32 const *clk_modules_hw_auto,
u32 const *clk_modules_explicit_en,
u8 wait_for_enable)
{
u32 i, max = 100;
/* Put the clock domains in SW_WKUP mode */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_SW_WKUP);
}
/* Clock modules that need to be put in HW_AUTO */
for (i = 0; (i < max) && clk_modules_hw_auto[i]; i++) {
enable_clock_module(clk_modules_hw_auto[i],
MODULE_CLKCTRL_MODULEMODE_HW_AUTO,
wait_for_enable);
};
/* Clock modules that need to be put in SW_EXPLICIT_EN mode */
for (i = 0; (i < max) && clk_modules_explicit_en[i]; i++) {
enable_clock_module(clk_modules_explicit_en[i],
MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN,
wait_for_enable);
};
/* Put the clock domains in HW_AUTO mode now */
for (i = 0; (i < max) && clk_domains[i]; i++) {
enable_clock_domain(clk_domains[i],
CD_CLKCTRL_CLKTRCTRL_HW_AUTO);
}
}
void prcm_init(void)
{
switch (omap_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
enable_basic_clocks();
timer_init();
scale_vcores(*omap_vcores);
setup_dplls();
setup_warmreset_time();
break;
default:
break;
}
if (OMAP_INIT_CONTEXT_SPL != omap_hw_init_context())
enable_basic_uboot_clocks();
}
void gpi2c_init(void)
{
static int gpi2c = 1;
if (gpi2c) {
i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
CONFIG_SYS_OMAP24_I2C_SLAVE);
gpi2c = 0;
}
}