u-boot/arch/arm/cpu/armv7/omap5/sdram.c
Nishanth Menon 9c90f5135e ARM: DRA72: sdram: Update sdram ext phy configuration for SR2.0
Based on data from EMIF configuration tool 1.1.1.

Signed-off-by: Nishanth Menon <nm@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2016-03-27 09:12:14 -04:00

742 lines
16 KiB
C

/*
* Timing and Organization details of the ddr device parts used in OMAP5
* EVM
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Aneesh V <aneesh@ti.com>
* Sricharan R <r.sricharan@ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <asm/emif.h>
#include <asm/arch/sys_proto.h>
/*
* This file provides details of the LPDDR2 SDRAM parts used on OMAP5
* EVM. Since the parts used and geometry are identical for
* evm for a given OMAP5 revision, this information is kept
* here instead of being in board directory. However the key functions
* exported are weakly linked so that they can be over-ridden in the board
* directory if there is a OMAP5 board in the future that uses a different
* memory device or geometry.
*
* For any new board with different memory devices over-ride one or more
* of the following functions as per the CONFIG flags you intend to enable:
* - emif_get_reg_dump()
* - emif_get_dmm_regs()
* - emif_get_device_details()
* - emif_get_device_timings()
*/
#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
const struct emif_regs emif_regs_532_mhz_2cs = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000081A,
.sdram_tim1 = 0x772F6873,
.sdram_tim2 = 0x304a129a,
.sdram_tim3 = 0x02f7e45f,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x000b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E28420d,
.emif_ddr_phy_ctlr_1 = 0x0E28420d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x28C518A3,
.emif_ddr_ext_phy_ctrl_3 = 0x518A3146,
.emif_ddr_ext_phy_ctrl_4 = 0x0014628C,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040
};
const struct emif_regs emif_regs_532_mhz_2cs_es2 = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000081A,
.sdram_tim1 = 0x772F6873,
.sdram_tim2 = 0x304a129a,
.sdram_tim3 = 0x02f7e45f,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x100b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E30400d,
.emif_ddr_phy_ctlr_1 = 0x0E30400d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x28C518A3,
.emif_ddr_ext_phy_ctrl_3 = 0x518A3146,
.emif_ddr_ext_phy_ctrl_4 = 0x0014628C,
.emif_ddr_ext_phy_ctrl_5 = 0xC330CC33,
};
const struct emif_regs emif_regs_266_mhz_2cs = {
.sdram_config_init = 0x80800EBA,
.sdram_config = 0x808022BA,
.ref_ctrl = 0x0000040D,
.sdram_tim1 = 0x2A86B419,
.sdram_tim2 = 0x1025094A,
.sdram_tim3 = 0x026BA22F,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x000b3215,
.temp_alert_config = 0x08000a05,
.emif_ddr_phy_ctlr_1_init = 0x0E28420d,
.emif_ddr_phy_ctlr_1 = 0x0E28420d,
.emif_ddr_ext_phy_ctrl_1 = 0x04020080,
.emif_ddr_ext_phy_ctrl_2 = 0x0A414829,
.emif_ddr_ext_phy_ctrl_3 = 0x14829052,
.emif_ddr_ext_phy_ctrl_4 = 0x000520A4,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040
};
const struct emif_regs emif_regs_ddr3_532_mhz_1cs = {
.sdram_config_init = 0x61851B32,
.sdram_config = 0x61851B32,
.sdram_config2 = 0x0,
.ref_ctrl = 0x00001035,
.sdram_tim1 = 0xCCCF36B3,
.sdram_tim2 = 0x308F7FDA,
.sdram_tim3 = 0x027F88A8,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x0007190B,
.temp_alert_config = 0x00000000,
.emif_ddr_phy_ctlr_1_init = 0x0020420A,
.emif_ddr_phy_ctlr_1 = 0x0024420A,
.emif_ddr_ext_phy_ctrl_1 = 0x04040100,
.emif_ddr_ext_phy_ctrl_2 = 0x00000000,
.emif_ddr_ext_phy_ctrl_3 = 0x00000000,
.emif_ddr_ext_phy_ctrl_4 = 0x00000000,
.emif_ddr_ext_phy_ctrl_5 = 0x04010040,
.emif_rd_wr_lvl_rmp_win = 0x00000000,
.emif_rd_wr_lvl_rmp_ctl = 0x80000000,
.emif_rd_wr_lvl_ctl = 0x00000000,
.emif_rd_wr_exec_thresh = 0x00000305
};
const struct emif_regs emif_regs_ddr3_532_mhz_1cs_es2 = {
.sdram_config_init = 0x61851B32,
.sdram_config = 0x61851B32,
.sdram_config2 = 0x0,
.ref_ctrl = 0x00001035,
.sdram_tim1 = 0xCCCF36B3,
.sdram_tim2 = 0x308F7FDA,
.sdram_tim3 = 0x027F88A8,
.read_idle_ctrl = 0x00050000,
.zq_config = 0x1007190B,
.temp_alert_config = 0x00000000,
.emif_ddr_phy_ctlr_1_init = 0x0030400A,
.emif_ddr_phy_ctlr_1 = 0x0034400A,
.emif_ddr_ext_phy_ctrl_1 = 0x04040100,
.emif_ddr_ext_phy_ctrl_2 = 0x00000000,
.emif_ddr_ext_phy_ctrl_3 = 0x00000000,
.emif_ddr_ext_phy_ctrl_4 = 0x00000000,
.emif_ddr_ext_phy_ctrl_5 = 0x4350D435,
.emif_rd_wr_lvl_rmp_win = 0x00000000,
.emif_rd_wr_lvl_rmp_ctl = 0x80000000,
.emif_rd_wr_lvl_ctl = 0x00000000,
.emif_rd_wr_exec_thresh = 0x40000305
};
const struct dmm_lisa_map_regs lisa_map_4G_x_2_x_2 = {
.dmm_lisa_map_0 = 0x0,
.dmm_lisa_map_1 = 0x0,
.dmm_lisa_map_2 = 0x80740300,
.dmm_lisa_map_3 = 0xFF020100,
.is_ma_present = 0x1
};
static void emif_get_reg_dump_sdp(u32 emif_nr, const struct emif_regs **regs)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
*regs = &emif_regs_532_mhz_2cs;
break;
case OMAP5432_ES1_0:
*regs = &emif_regs_ddr3_532_mhz_1cs;
break;
case OMAP5430_ES2_0:
*regs = &emif_regs_532_mhz_2cs_es2;
break;
case OMAP5432_ES2_0:
default:
*regs = &emif_regs_ddr3_532_mhz_1cs_es2;
break;
}
}
void emif_get_reg_dump(u32 emif_nr, const struct emif_regs **regs)
__attribute__((weak, alias("emif_get_reg_dump_sdp")));
static void emif_get_dmm_regs_sdp(const struct dmm_lisa_map_regs
**dmm_lisa_regs)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
case OMAP5432_ES1_0:
case OMAP5432_ES2_0:
default:
*dmm_lisa_regs = &lisa_map_4G_x_2_x_2;
break;
}
}
void emif_get_dmm_regs(const struct dmm_lisa_map_regs **dmm_lisa_regs)
__attribute__((weak, alias("emif_get_dmm_regs_sdp")));
#else
static const struct lpddr2_device_details dev_4G_S4_details = {
.type = LPDDR2_TYPE_S4,
.density = LPDDR2_DENSITY_4Gb,
.io_width = LPDDR2_IO_WIDTH_32,
.manufacturer = LPDDR2_MANUFACTURER_SAMSUNG
};
static void emif_get_device_details_sdp(u32 emif_nr,
struct lpddr2_device_details *cs0_device_details,
struct lpddr2_device_details *cs1_device_details)
{
/* EMIF1 & EMIF2 have identical configuration */
*cs0_device_details = dev_4G_S4_details;
*cs1_device_details = dev_4G_S4_details;
}
void emif_get_device_details(u32 emif_nr,
struct lpddr2_device_details *cs0_device_details,
struct lpddr2_device_details *cs1_device_details)
__attribute__((weak, alias("emif_get_device_details_sdp")));
#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
const u32 ext_phy_ctrl_const_base[] = {
0x01004010,
0x00001004,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000001,
0x540A8150,
0xA81502a0,
0x002A0540,
0x00000000,
0x00000000,
0x00000000,
0x00000077,
0x0
};
const u32 ddr3_ext_phy_ctrl_const_base_es1[] = {
0x01004010,
0x00001004,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000002,
0x0,
0x0,
0x0,
0x00000000,
0x00000000,
0x00000000,
0x00000057,
0x0
};
const u32 ddr3_ext_phy_ctrl_const_base_es2[] = {
0x50D4350D,
0x00000D43,
0x04010040,
0x01004010,
0x00001004,
0x00000000,
0x00000000,
0x00000000,
0x80080080,
0x00800800,
0x08102040,
0x00000002,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00000057,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_es1_emif1[] = {
0x10040100,
0x00910091,
0x00950095,
0x009B009B,
0x009E009E,
0x00980098,
0x00340034,
0x00350035,
0x00340034,
0x00310031,
0x00340034,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x00480048,
0x004A004A,
0x00520052,
0x00550055,
0x00500050,
0x00000000,
0x00600020,
0x40011080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_es1_emif2[] = {
0x10040100,
0x00910091,
0x00950095,
0x009B009B,
0x009E009E,
0x00980098,
0x00330033,
0x00330033,
0x002F002F,
0x00320032,
0x00310031,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x007F007F,
0x00520052,
0x00520052,
0x00470047,
0x00490049,
0x00500050,
0x00000000,
0x00600020,
0x40011080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
/* Ext phy ctrl 1-35 regs */
const u32
dra_ddr3_ext_phy_ctrl_const_base_666MHz[] = {
0x10040100,
0x00A400A4,
0x00A900A9,
0x00B000B0,
0x00B000B0,
0x00A400A4,
0x00390039,
0x00320032,
0x00320032,
0x00320032,
0x00440044,
0x00550055,
0x00550055,
0x00550055,
0x00550055,
0x007F007F,
0x004D004D,
0x00430043,
0x00560056,
0x00540054,
0x00600060,
0x0,
0x00600020,
0x40010080,
0x08102040,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0
};
const u32 dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2[] = {
0x04040100,
0x006B009F,
0x006B00A2,
0x006B00A8,
0x006B00A8,
0x006B00B2,
0x002F002F,
0x002F002F,
0x002F002F,
0x002F002F,
0x002F002F,
0x00600073,
0x00600071,
0x0060007C,
0x0060007E,
0x00600084,
0x00400053,
0x00400051,
0x0040005C,
0x0040005E,
0x00400064,
0x00800080,
0x00800080,
0x40010080,
0x08102040,
0x005B008F,
0x005B0092,
0x005B0098,
0x005B0098,
0x005B00A2,
0x00300043,
0x00300041,
0x0030004C,
0x0030004E,
0x00300054,
0x00000077
};
const struct lpddr2_mr_regs mr_regs = {
.mr1 = MR1_BL_8_BT_SEQ_WRAP_EN_NWR_8,
.mr2 = 0x6,
.mr3 = 0x1,
.mr10 = MR10_ZQ_ZQINIT,
.mr16 = MR16_REF_FULL_ARRAY
};
void __weak emif_get_ext_phy_ctrl_const_regs(u32 emif_nr,
const u32 **regs,
u32 *size)
{
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
*regs = ext_phy_ctrl_const_base;
*size = ARRAY_SIZE(ext_phy_ctrl_const_base);
break;
case OMAP5432_ES1_0:
*regs = ddr3_ext_phy_ctrl_const_base_es1;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es1);
break;
case OMAP5432_ES2_0:
*regs = ddr3_ext_phy_ctrl_const_base_es2;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es2);
break;
case DRA752_ES1_0:
case DRA752_ES1_1:
case DRA752_ES2_0:
if (emif_nr == 1) {
*regs = dra_ddr3_ext_phy_ctrl_const_base_es1_emif1;
*size =
ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_es1_emif1);
} else {
*regs = dra_ddr3_ext_phy_ctrl_const_base_es1_emif2;
*size =
ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_es1_emif2);
}
break;
case DRA722_ES1_0:
*regs = dra_ddr3_ext_phy_ctrl_const_base_666MHz;
*size = ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_666MHz);
break;
case DRA722_ES2_0:
*regs = dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2;
*size = ARRAY_SIZE(dra_ddr3_ext_phy_ctrl_const_base_666MHz_es2);
break;
default:
*regs = ddr3_ext_phy_ctrl_const_base_es2;
*size = ARRAY_SIZE(ddr3_ext_phy_ctrl_const_base_es2);
}
}
void get_lpddr2_mr_regs(const struct lpddr2_mr_regs **regs)
{
*regs = &mr_regs;
}
static void do_ext_phy_settings_omap5(u32 base, const struct emif_regs *regs)
{
u32 *ext_phy_ctrl_base = 0;
u32 *emif_ext_phy_ctrl_base = 0;
u32 emif_nr;
const u32 *ext_phy_ctrl_const_regs;
u32 i = 0;
u32 size;
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
ext_phy_ctrl_base = (u32 *) &(regs->emif_ddr_ext_phy_ctrl_1);
emif_ext_phy_ctrl_base = (u32 *) &(emif->emif_ddr_ext_phy_ctrl_1);
/* Configure external phy control timing registers */
for (i = 0; i < EMIF_EXT_PHY_CTRL_TIMING_REG; i++) {
writel(*ext_phy_ctrl_base, emif_ext_phy_ctrl_base++);
/* Update shadow registers */
writel(*ext_phy_ctrl_base++, emif_ext_phy_ctrl_base++);
}
/*
* external phy 6-24 registers do not change with
* ddr frequency
*/
emif_get_ext_phy_ctrl_const_regs(emif_nr,
&ext_phy_ctrl_const_regs, &size);
for (i = 0; i < size; i++) {
writel(ext_phy_ctrl_const_regs[i],
emif_ext_phy_ctrl_base++);
/* Update shadow registers */
writel(ext_phy_ctrl_const_regs[i],
emif_ext_phy_ctrl_base++);
}
}
static void do_ext_phy_settings_dra7(u32 base, const struct emif_regs *regs)
{
struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
u32 *emif_ext_phy_ctrl_base = 0;
u32 emif_nr;
const u32 *ext_phy_ctrl_const_regs;
u32 i, hw_leveling, size, phy;
emif_nr = (base == EMIF1_BASE) ? 1 : 2;
hw_leveling = regs->emif_rd_wr_lvl_rmp_ctl >> EMIF_REG_RDWRLVL_EN_SHIFT;
phy = regs->emif_ddr_phy_ctlr_1_init;
emif_ext_phy_ctrl_base = (u32 *)&(emif->emif_ddr_ext_phy_ctrl_1);
emif_get_ext_phy_ctrl_const_regs(emif_nr,
&ext_phy_ctrl_const_regs, &size);
writel(ext_phy_ctrl_const_regs[0], &emif_ext_phy_ctrl_base[0]);
writel(ext_phy_ctrl_const_regs[0], &emif_ext_phy_ctrl_base[1]);
/*
* Copy the predefined PHY register values
* if leveling is disabled.
*/
if (phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK)
for (i = 1; i < 6; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK)
for (i = 6; i < 11; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK)
for (i = 11; i < 25; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
if (hw_leveling) {
/*
* Write the init value for HW levling to occur
*/
for (i = 21; i < 35; i++) {
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2]);
writel(ext_phy_ctrl_const_regs[i],
&emif_ext_phy_ctrl_base[i * 2 + 1]);
}
}
}
void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
{
if (is_omap54xx())
do_ext_phy_settings_omap5(base, regs);
else
do_ext_phy_settings_dra7(base, regs);
}
#ifndef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
static const struct lpddr2_ac_timings timings_jedec_532_mhz = {
.max_freq = 532000000,
.RL = 8,
.tRPab = 21,
.tRCD = 18,
.tWR = 15,
.tRASmin = 42,
.tRRD = 10,
.tWTRx2 = 15,
.tXSR = 140,
.tXPx2 = 15,
.tRFCab = 130,
.tRTPx2 = 15,
.tCKE = 3,
.tCKESR = 15,
.tZQCS = 90,
.tZQCL = 360,
.tZQINIT = 1000,
.tDQSCKMAXx2 = 11,
.tRASmax = 70,
.tFAW = 50
};
static const struct lpddr2_min_tck min_tck = {
.tRL = 3,
.tRP_AB = 3,
.tRCD = 3,
.tWR = 3,
.tRAS_MIN = 3,
.tRRD = 2,
.tWTR = 2,
.tXP = 2,
.tRTP = 2,
.tCKE = 3,
.tCKESR = 3,
.tFAW = 8
};
static const struct lpddr2_ac_timings *ac_timings[MAX_NUM_SPEEDBINS] = {
&timings_jedec_532_mhz
};
static const struct lpddr2_device_timings dev_4G_S4_timings = {
.ac_timings = ac_timings,
.min_tck = &min_tck,
};
/*
* List of status registers to be controlled back to control registers
* after initial leveling
* readreg, writereg
*/
const struct read_write_regs omap5_bug_00339_regs[] = {
{ 8, 5 },
{ 9, 6 },
{ 10, 7 },
{ 14, 8 },
{ 15, 9 },
{ 16, 10 },
{ 11, 2 },
{ 12, 3 },
{ 13, 4 },
{ 17, 11 },
{ 18, 12 },
{ 19, 13 },
};
const struct read_write_regs dra_bug_00339_regs[] = {
{ 7, 7 },
{ 8, 8 },
{ 9, 9 },
{ 10, 10 },
{ 11, 11 },
{ 12, 2 },
{ 13, 3 },
{ 14, 4 },
{ 15, 5 },
{ 16, 6 },
{ 17, 12 },
{ 18, 13 },
{ 19, 14 },
{ 20, 15 },
{ 21, 16 },
{ 22, 17 },
{ 23, 18 },
{ 24, 19 },
{ 25, 20 },
{ 26, 21}
};
const struct read_write_regs *get_bug_regs(u32 *iterations)
{
const struct read_write_regs *bug_00339_regs_ptr = NULL;
switch (omap_revision()) {
case OMAP5430_ES1_0:
case OMAP5430_ES2_0:
case OMAP5432_ES1_0:
case OMAP5432_ES2_0:
bug_00339_regs_ptr = omap5_bug_00339_regs;
*iterations = sizeof(omap5_bug_00339_regs)/
sizeof(omap5_bug_00339_regs[0]);
break;
case DRA752_ES1_0:
case DRA752_ES1_1:
case DRA752_ES2_0:
case DRA722_ES1_0:
case DRA722_ES2_0:
bug_00339_regs_ptr = dra_bug_00339_regs;
*iterations = sizeof(dra_bug_00339_regs)/
sizeof(dra_bug_00339_regs[0]);
break;
default:
printf("\n Error: UnKnown SOC");
}
return bug_00339_regs_ptr;
}
void emif_get_device_timings_sdp(u32 emif_nr,
const struct lpddr2_device_timings **cs0_device_timings,
const struct lpddr2_device_timings **cs1_device_timings)
{
/* Identical devices on EMIF1 & EMIF2 */
*cs0_device_timings = &dev_4G_S4_timings;
*cs1_device_timings = &dev_4G_S4_timings;
}
void emif_get_device_timings(u32 emif_nr,
const struct lpddr2_device_timings **cs0_device_timings,
const struct lpddr2_device_timings **cs1_device_timings)
__attribute__((weak, alias("emif_get_device_timings_sdp")));
#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */