u-boot/drivers/ram/sunxi/dram_sun20i_d1.c
Andre Przywara 124289bd56 sunxi: add R528/T113-s3/D1(s) DRAM initialisation code
The Allwinner R528/T113-s/D1/D1s SoCs all share the same die, so use the
same DRAM initialisation code.
Make use of prior art here and lift some code from awboot[1], which
carried init code based on earlier decompilation efforts, but with a
GPL2 license tag.
This code has been heavily reworked and cleaned up, to match previous
DRAM routines for other SoCs, and also to be closer to U-Boot's coding
style and support routines.
The actual DRAM chip timing parameters are included in the main file,
since they cover all DRAM types, and are protected by a new Kconfig
CONFIG_SUNXI_DRAM_TYPE symbol, which allows the compiler to pick only
the relevant settings, at build time.

The relevant DRAM chips/board specific configuration parameters are
delivered via Kconfig, so this code here should work for all supported
SoCs and DRAM chips combinations.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Sam Edwards <CFSworks@gmail.com>
2023-10-22 23:41:52 +01:00

1441 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Allwinner D1/D1s/R528/T113-sx DRAM initialisation
*
* As usual there is no documentation for the memory controller or PHY IP
* used here. The baseline of this code was lifted from awboot[1], which
* seems to be based on some form of de-compilation of some original Allwinner
* code bits (with a GPL2 license tag from the very beginning).
* This version here is a reworked version, to match the U-Boot coding style
* and style of the other Allwinner DRAM drivers.
*
* [1] https://github.com/szemzoa/awboot.git
*/
#include <asm/io.h>
#include <common.h>
#ifdef CONFIG_RAM
#include <dm.h>
#include <ram.h>
#endif
#include <linux/delay.h>
#include "dram_sun20i_d1.h"
#ifndef SUNXI_SID_BASE
#define SUNXI_SID_BASE 0x3006200
#endif
#ifndef SUNXI_CCM_BASE
#define SUNXI_CCM_BASE 0x2001000
#endif
static void sid_read_ldoB_cal(const dram_para_t *para)
{
uint32_t reg;
reg = (readl(SUNXI_SID_BASE + 0x1c) & 0xff00) >> 8;
if (reg == 0)
return;
switch (para->dram_type) {
case SUNXI_DRAM_TYPE_DDR2:
break;
case SUNXI_DRAM_TYPE_DDR3:
if (reg > 0x20)
reg -= 0x16;
break;
default:
reg = 0;
break;
}
clrsetbits_le32(0x3000150, 0xff00, reg << 8);
}
static void dram_voltage_set(const dram_para_t *para)
{
int vol;
switch (para->dram_type) {
case SUNXI_DRAM_TYPE_DDR2:
vol = 47;
break;
case SUNXI_DRAM_TYPE_DDR3:
vol = 25;
break;
default:
vol = 0;
break;
}
clrsetbits_le32(0x3000150, 0x20ff00, vol << 8);
udelay(1);
sid_read_ldoB_cal(para);
}
static void dram_enable_all_master(void)
{
writel(~0, 0x3102020);
writel(0xff, 0x3102024);
writel(0xffff, 0x3102028);
udelay(10);
}
static void dram_disable_all_master(void)
{
writel(1, 0x3102020);
writel(0, 0x3102024);
writel(0, 0x3102028);
udelay(10);
}
static void eye_delay_compensation(const dram_para_t *para)
{
uint32_t delay;
unsigned long ptr;
// DATn0IOCR, n = 0...7
delay = (para->dram_tpr11 & 0xf) << 9;
delay |= (para->dram_tpr12 & 0xf) << 1;
for (ptr = 0x3103310; ptr < 0x3103334; ptr += 4)
setbits_le32(ptr, delay);
// DATn1IOCR, n = 0...7
delay = (para->dram_tpr11 & 0xf0) << 5;
delay |= (para->dram_tpr12 & 0xf0) >> 3;
for (ptr = 0x3103390; ptr != 0x31033b4; ptr += 4)
setbits_le32(ptr, delay);
// PGCR0: assert AC loopback FIFO reset
clrbits_le32(0x3103100, 0x04000000);
// ??
delay = (para->dram_tpr11 & 0xf0000) >> 7;
delay |= (para->dram_tpr12 & 0xf0000) >> 15;
setbits_le32(0x3103334, delay);
setbits_le32(0x3103338, delay);
delay = (para->dram_tpr11 & 0xf00000) >> 11;
delay |= (para->dram_tpr12 & 0xf00000) >> 19;
setbits_le32(0x31033b4, delay);
setbits_le32(0x31033b8, delay);
setbits_le32(0x310333c, (para->dram_tpr11 & 0xf0000) << 9);
setbits_le32(0x31033bc, (para->dram_tpr11 & 0xf00000) << 5);
// PGCR0: release AC loopback FIFO reset
setbits_le32(0x3103100, BIT(26));
udelay(1);
delay = (para->dram_tpr10 & 0xf0) << 4;
for (ptr = 0x3103240; ptr != 0x310327c; ptr += 4)
setbits_le32(ptr, delay);
for (ptr = 0x3103228; ptr != 0x3103240; ptr += 4)
setbits_le32(ptr, delay);
setbits_le32(0x3103218, (para->dram_tpr10 & 0x0f) << 8);
setbits_le32(0x310321c, (para->dram_tpr10 & 0x0f) << 8);
setbits_le32(0x3103280, (para->dram_tpr10 & 0xf00) >> 4);
}
/*
* Main purpose of the auto_set_timing routine seems to be to calculate all
* timing settings for the specific type of sdram used. Read together with
* an sdram datasheet for context on the various variables.
*/
static void mctl_set_timing_params(const dram_para_t *para,
const dram_config_t *config)
{
/* DRAM_TPR0 */
u8 tccd = 2;
u8 tfaw;
u8 trrd;
u8 trcd;
u8 trc;
/* DRAM_TPR1 */
u8 txp;
u8 twtr;
u8 trtp = 4;
u8 twr;
u8 trp;
u8 tras;
/* DRAM_TPR2 */
u16 trefi;
u16 trfc;
u8 tcksrx;
u8 tckesr;
u8 trd2wr;
u8 twr2rd;
u8 trasmax;
u8 twtp;
u8 tcke;
u8 tmod;
u8 tmrd;
u8 tmrw;
u8 tcl;
u8 tcwl;
u8 t_rdata_en;
u8 wr_latency;
u32 mr0;
u32 mr1;
u32 mr2;
u32 mr3;
u32 tdinit0;
u32 tdinit1;
u32 tdinit2;
u32 tdinit3;
switch (para->dram_type) {
case SUNXI_DRAM_TYPE_DDR2:
/* DRAM_TPR0 */
tfaw = ns_to_t(50);
trrd = ns_to_t(10);
trcd = ns_to_t(20);
trc = ns_to_t(65);
/* DRAM_TPR1 */
txp = 2;
twtr = ns_to_t(8);
twr = ns_to_t(15);
trp = ns_to_t(15);
tras = ns_to_t(45);
/* DRAM_TRP2 */
trfc = ns_to_t(328);
trefi = ns_to_t(7800) / 32;
trasmax = CONFIG_DRAM_CLK / 30;
if (CONFIG_DRAM_CLK < 409) {
t_rdata_en = 1;
tcl = 3;
mr0 = 0x06a3;
} else {
t_rdata_en = 2;
tcl = 4;
mr0 = 0x0e73;
}
tmrd = 2;
twtp = twr + 5;
tcksrx = 5;
tckesr = 4;
trd2wr = 4;
tcke = 3;
tmod = 12;
wr_latency = 1;
tmrw = 0;
twr2rd = twtr + 5;
tcwl = 0;
mr1 = para->dram_mr1;
mr2 = 0;
mr3 = 0;
tdinit0 = 200 * CONFIG_DRAM_CLK + 1;
tdinit1 = 100 * CONFIG_DRAM_CLK / 1000 + 1;
tdinit2 = 200 * CONFIG_DRAM_CLK + 1;
tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
break;
case SUNXI_DRAM_TYPE_DDR3:
trfc = ns_to_t(350);
trefi = ns_to_t(7800) / 32 + 1; // XXX
twtr = ns_to_t(8) + 2; // + 2 ? XXX
/* Only used by trd2wr calculation, which gets discard below */
// twr = max(ns_to_t(15), 2);
trrd = max(ns_to_t(10), 2);
txp = max(ns_to_t(10), 2);
if (CONFIG_DRAM_CLK <= 800) {
tfaw = ns_to_t(50);
trcd = ns_to_t(15);
trp = ns_to_t(15);
trc = ns_to_t(53);
tras = ns_to_t(38);
mr0 = 0x1c70;
mr2 = 0x18;
tcl = 6;
wr_latency = 2;
tcwl = 4;
t_rdata_en = 4;
} else {
tfaw = ns_to_t(35);
trcd = ns_to_t(14);
trp = ns_to_t(14);
trc = ns_to_t(48);
tras = ns_to_t(34);
mr0 = 0x1e14;
mr2 = 0x20;
tcl = 7;
wr_latency = 3;
tcwl = 5;
t_rdata_en = 5;
}
trasmax = CONFIG_DRAM_CLK / 30;
twtp = tcwl + 2 + twtr; // WL+BL/2+tWTR
/* Gets overwritten below */
// trd2wr = tcwl + 2 + twr; // WL+BL/2+tWR
twr2rd = tcwl + twtr; // WL+tWTR
tdinit0 = 500 * CONFIG_DRAM_CLK + 1; // 500 us
tdinit1 = 360 * CONFIG_DRAM_CLK / 1000 + 1; // 360 ns
tdinit2 = 200 * CONFIG_DRAM_CLK + 1; // 200 us
tdinit3 = 1 * CONFIG_DRAM_CLK + 1; // 1 us
mr1 = para->dram_mr1;
mr3 = 0;
tcke = 3;
tcksrx = 5;
tckesr = 4;
if (((config->dram_tpr13 & 0xc) == 0x04) || CONFIG_DRAM_CLK < 912)
trd2wr = 5;
else
trd2wr = 6;
tmod = 12;
tmrd = 4;
tmrw = 0;
break;
case SUNXI_DRAM_TYPE_LPDDR2:
tfaw = max(ns_to_t(50), 4);
trrd = max(ns_to_t(10), 1);
trcd = max(ns_to_t(24), 2);
trc = ns_to_t(70);
txp = ns_to_t(8);
if (txp < 2) {
txp++;
twtr = 2;
} else {
twtr = txp;
}
twr = max(ns_to_t(15), 2);
trp = ns_to_t(17);
tras = ns_to_t(42);
trefi = ns_to_t(3900) / 32;
trfc = ns_to_t(210);
trasmax = CONFIG_DRAM_CLK / 60;
mr3 = para->dram_mr3;
twtp = twr + 5;
mr2 = 6;
mr1 = 5;
tcksrx = 5;
tckesr = 5;
trd2wr = 10;
tcke = 2;
tmod = 5;
tmrd = 5;
tmrw = 3;
tcl = 4;
wr_latency = 1;
t_rdata_en = 1;
tdinit0 = 200 * CONFIG_DRAM_CLK + 1;
tdinit1 = 100 * CONFIG_DRAM_CLK / 1000 + 1;
tdinit2 = 11 * CONFIG_DRAM_CLK + 1;
tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
twr2rd = twtr + 5;
tcwl = 2;
mr1 = 195;
mr0 = 0;
break;
case SUNXI_DRAM_TYPE_LPDDR3:
tfaw = max(ns_to_t(50), 4);
trrd = max(ns_to_t(10), 1);
trcd = max(ns_to_t(24), 2);
trc = ns_to_t(70);
twtr = max(ns_to_t(8), 2);
twr = max(ns_to_t(15), 2);
trp = ns_to_t(17);
tras = ns_to_t(42);
trefi = ns_to_t(3900) / 32;
trfc = ns_to_t(210);
txp = twtr;
trasmax = CONFIG_DRAM_CLK / 60;
if (CONFIG_DRAM_CLK < 800) {
tcwl = 4;
wr_latency = 3;
t_rdata_en = 6;
mr2 = 12;
} else {
tcwl = 3;
tcke = 6;
wr_latency = 2;
t_rdata_en = 5;
mr2 = 10;
}
twtp = tcwl + 5;
tcl = 7;
mr3 = para->dram_mr3;
tcksrx = 5;
tckesr = 5;
trd2wr = 13;
tcke = 3;
tmod = 12;
tdinit0 = 400 * CONFIG_DRAM_CLK + 1;
tdinit1 = 500 * CONFIG_DRAM_CLK / 1000 + 1;
tdinit2 = 11 * CONFIG_DRAM_CLK + 1;
tdinit3 = 1 * CONFIG_DRAM_CLK + 1;
tmrd = 5;
tmrw = 5;
twr2rd = tcwl + twtr + 5;
mr1 = 195;
mr0 = 0;
break;
default:
trfc = 128;
trp = 6;
trefi = 98;
txp = 10;
twr = 8;
twtr = 3;
tras = 14;
tfaw = 16;
trc = 20;
trcd = 6;
trrd = 3;
twr2rd = 8;
tcksrx = 4;
tckesr = 3;
trd2wr = 4;
trasmax = 27;
twtp = 12;
tcke = 2;
tmod = 6;
tmrd = 2;
tmrw = 0;
tcwl = 3;
tcl = 3;
wr_latency = 1;
t_rdata_en = 1;
mr3 = 0;
mr2 = 0;
mr1 = 0;
mr0 = 0;
tdinit3 = 0;
tdinit2 = 0;
tdinit1 = 0;
tdinit0 = 0;
break;
}
/* Set mode registers */
writel(mr0, 0x3103030);
writel(mr1, 0x3103034);
writel(mr2, 0x3103038);
writel(mr3, 0x310303c);
/* TODO: dram_odt_en is either 0x0 or 0x1, so right shift looks weird */
writel((para->dram_odt_en >> 4) & 0x3, 0x310302c);
/* Set dram timing DRAMTMG0 - DRAMTMG5 */
writel((twtp << 24) | (tfaw << 16) | (trasmax << 8) | (tras << 0),
0x3103058);
writel((txp << 16) | (trtp << 8) | (trc << 0),
0x310305c);
writel((tcwl << 24) | (tcl << 16) | (trd2wr << 8) | (twr2rd << 0),
0x3103060);
writel((tmrw << 16) | (tmrd << 12) | (tmod << 0),
0x3103064);
writel((trcd << 24) | (tccd << 16) | (trrd << 8) | (trp << 0),
0x3103068);
writel((tcksrx << 24) | (tcksrx << 16) | (tckesr << 8) | (tcke << 0),
0x310306c);
/* Set dual rank timing */
clrsetbits_le32(0x3103078, 0xf000ffff,
(CONFIG_DRAM_CLK < 800) ? 0xf0006610 : 0xf0007610);
/* Set phy interface time PITMG0, PTR3, PTR4 */
writel((0x2 << 24) | (t_rdata_en << 16) | BIT(8) | (wr_latency << 0),
0x3103080);
writel(((tdinit0 << 0) | (tdinit1 << 20)), 0x3103050);
writel(((tdinit2 << 0) | (tdinit3 << 20)), 0x3103054);
/* Set refresh timing and mode */
writel((trefi << 16) | (trfc << 0), 0x3103090);
writel((trefi << 15) & 0x0fff0000, 0x3103094);
}
// Purpose of this routine seems to be to initialize the PLL driving
// the MBUS and sdram.
//
static int ccu_set_pll_ddr_clk(int index, const dram_para_t *para,
const dram_config_t *config)
{
unsigned int val, clk, n;
if (config->dram_tpr13 & BIT(6))
clk = para->dram_tpr9;
else
clk = para->dram_clk;
// set VCO clock divider
n = (clk * 2) / 24;
val = readl(SUNXI_CCM_BASE + 0x10);
val &= ~0x0007ff03; // clear dividers
val |= (n - 1) << 8; // set PLL division
val |= BIT(31) | BIT(30); // enable PLL and LDO
writel(val | BIT(29), SUNXI_CCM_BASE + 0x10);
// wait for PLL to lock
while ((readl(SUNXI_CCM_BASE + 0x10) & BIT(28)) == 0)
;
udelay(20);
// enable PLL output
setbits_le32(SUNXI_CCM_BASE + 0x0, BIT(27));
// turn clock gate on
val = readl(SUNXI_CCM_BASE + 0x800);
val &= ~0x03000303; // select DDR clk source, n=1, m=1
val |= BIT(31); // turn clock on
writel(val, SUNXI_CCM_BASE + 0x800);
return n * 24;
}
/* Set up the PLL and clock gates for the DRAM controller and MBUS clocks. */
static void mctl_sys_init(const dram_para_t *para, const dram_config_t *config)
{
// assert MBUS reset
clrbits_le32(SUNXI_CCM_BASE + 0x540, BIT(30));
// turn off sdram clock gate, assert sdram reset
clrbits_le32(SUNXI_CCM_BASE + 0x80c, 0x10001);
clrsetbits_le32(SUNXI_CCM_BASE + 0x800, BIT(31) | BIT(30), BIT(27));
udelay(10);
// set ddr pll clock
ccu_set_pll_ddr_clk(0, para, config);
udelay(100);
dram_disable_all_master();
// release sdram reset
setbits_le32(SUNXI_CCM_BASE + 0x80c, BIT(16));
// release MBUS reset
setbits_le32(SUNXI_CCM_BASE + 0x540, BIT(30));
setbits_le32(SUNXI_CCM_BASE + 0x800, BIT(30));
udelay(5);
// turn on sdram clock gate
setbits_le32(SUNXI_CCM_BASE + 0x80c, BIT(0));
// turn dram clock gate on, trigger sdr clock update
setbits_le32(SUNXI_CCM_BASE + 0x800, BIT(31) | BIT(27));
udelay(5);
// mCTL clock enable
writel(0x8000, 0x310300c);
udelay(10);
}
// The main purpose of this routine seems to be to copy an address configuration
// from the dram_para1 and dram_para2 fields to the PHY configuration registers
// (0x3102000, 0x3102004).
//
static void mctl_com_init(const dram_para_t *para, const dram_config_t *config)
{
uint32_t val, width;
unsigned long ptr;
int i;
// purpose ??
clrsetbits_le32(0x3102008, 0x3f00, 0x2000);
// set SDRAM type and word width
val = readl(0x3102000) & ~0x00fff000;
val |= (para->dram_type & 0x7) << 16; // DRAM type
val |= (~config->dram_para2 & 0x1) << 12; // DQ width
val |= BIT(22); // ??
if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR2 ||
para->dram_type == SUNXI_DRAM_TYPE_LPDDR3) {
val |= BIT(19); // type 6 and 7 must use 1T
} else {
if (config->dram_tpr13 & BIT(5))
val |= BIT(19);
}
writel(val, 0x3102000);
// init rank / bank / row for single/dual or two different ranks
if ((config->dram_para2 & BIT(8)) &&
((config->dram_para2 & 0xf000) != 0x1000))
width = 32;
else
width = 16;
ptr = 0x3102000;
for (i = 0; i < width; i += 16) {
val = readl(ptr) & 0xfffff000;
val |= (config->dram_para2 >> 12) & 0x3; // rank
val |= ((config->dram_para1 >> (i + 12)) << 2) & 0x4; // bank - 2
val |= (((config->dram_para1 >> (i + 4)) - 1) << 4) & 0xff; // row - 1
// convert from page size to column addr width - 3
switch ((config->dram_para1 >> i) & 0xf) {
case 8: val |= 0xa00; break;
case 4: val |= 0x900; break;
case 2: val |= 0x800; break;
case 1: val |= 0x700; break;
default: val |= 0x600; break;
}
writel(val, ptr);
ptr += 4;
}
// set ODTMAP based on number of ranks in use
val = (readl(0x3102000) & 0x1) ? 0x303 : 0x201;
writel(val, 0x3103120);
// set mctl reg 3c4 to zero when using half DQ
if (config->dram_para2 & BIT(0))
writel(0, 0x31033c4);
// purpose ??
if (para->dram_tpr4) {
setbits_le32(0x3102000, (para->dram_tpr4 & 0x3) << 25);
setbits_le32(0x3102004, (para->dram_tpr4 & 0x7fc) << 10);
}
}
static const uint8_t ac_remapping_tables[][22] = {
[0] = { 0 },
[1] = { 1, 9, 3, 7, 8, 18, 4, 13, 5, 6, 10,
2, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 },
[2] = { 4, 9, 3, 7, 8, 18, 1, 13, 2, 6, 10,
5, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 },
[3] = { 1, 7, 8, 12, 10, 18, 4, 13, 5, 6, 3,
2, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 },
[4] = { 4, 12, 10, 7, 8, 18, 1, 13, 2, 6, 3,
5, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 },
[5] = { 13, 2, 7, 9, 12, 19, 5, 1, 6, 3, 4,
8, 10, 0, 0, 0, 21, 22, 18, 17, 11, 20 },
[6] = { 3, 10, 7, 13, 9, 11, 1, 2, 4, 6, 8,
5, 12, 0, 0, 0, 20, 1, 0, 21, 22, 17 },
[7] = { 3, 2, 4, 7, 9, 1, 17, 12, 18, 14, 13,
8, 15, 6, 10, 5, 19, 22, 16, 21, 20, 11 },
};
/*
* This routine chooses one of several remapping tables for 22 lines.
* It is unclear which lines are being remapped. It seems to pick
* table cfg7 for the Nezha board.
*/
static void mctl_phy_ac_remapping(const dram_para_t *para,
const dram_config_t *config)
{
const uint8_t *cfg;
uint32_t fuse, val;
/*
* It is unclear whether the LPDDRx types don't need any remapping,
* or whether the original code just didn't provide tables.
*/
if (para->dram_type != SUNXI_DRAM_TYPE_DDR2 &&
para->dram_type != SUNXI_DRAM_TYPE_DDR3)
return;
fuse = (readl(SUNXI_SID_BASE + 0x28) & 0xf00) >> 8;
debug("DDR efuse: 0x%x\n", fuse);
if (para->dram_type == SUNXI_DRAM_TYPE_DDR2) {
if (fuse == 15)
return;
cfg = ac_remapping_tables[6];
} else {
if (config->dram_tpr13 & 0xc0000) {
cfg = ac_remapping_tables[7];
} else {
switch (fuse) {
case 8: cfg = ac_remapping_tables[2]; break;
case 9: cfg = ac_remapping_tables[3]; break;
case 10: cfg = ac_remapping_tables[5]; break;
case 11: cfg = ac_remapping_tables[4]; break;
default:
case 12: cfg = ac_remapping_tables[1]; break;
case 13:
case 14: cfg = ac_remapping_tables[0]; break;
}
}
}
val = (cfg[4] << 25) | (cfg[3] << 20) | (cfg[2] << 15) |
(cfg[1] << 10) | (cfg[0] << 5);
writel(val, 0x3102500);
val = (cfg[10] << 25) | (cfg[9] << 20) | (cfg[8] << 15) |
(cfg[ 7] << 10) | (cfg[6] << 5) | cfg[5];
writel(val, 0x3102504);
val = (cfg[15] << 20) | (cfg[14] << 15) | (cfg[13] << 10) |
(cfg[12] << 5) | cfg[11];
writel(val, 0x3102508);
val = (cfg[21] << 25) | (cfg[20] << 20) | (cfg[19] << 15) |
(cfg[18] << 10) | (cfg[17] << 5) | cfg[16];
writel(val, 0x310250c);
val = (cfg[4] << 25) | (cfg[3] << 20) | (cfg[2] << 15) |
(cfg[1] << 10) | (cfg[0] << 5) | 1;
writel(val, 0x3102500);
}
// Init the controller channel. The key part is placing commands in the main
// command register (PIR, 0x3103000) and checking command status (PGSR0, 0x3103010).
//
static unsigned int mctl_channel_init(unsigned int ch_index,
const dram_para_t *para,
const dram_config_t *config)
{
unsigned int val, dqs_gating_mode;
dqs_gating_mode = (config->dram_tpr13 & 0xc) >> 2;
// set DDR clock to half of CPU clock
clrsetbits_le32(0x310200c, 0xfff, (para->dram_clk / 2) - 1);
// MRCTRL0 nibble 3 undocumented
clrsetbits_le32(0x3103108, 0xf00, 0x300);
if (para->dram_odt_en)
val = 0;
else
val = BIT(5);
// DX0GCR0
if (para->dram_clk > 672)
clrsetbits_le32(0x3103344, 0xf63e, val);
else
clrsetbits_le32(0x3103344, 0xf03e, val);
// DX1GCR0
if (para->dram_clk > 672) {
setbits_le32(0x3103344, 0x400);
clrsetbits_le32(0x31033c4, 0xf63e, val);
} else {
clrsetbits_le32(0x31033c4, 0xf03e, val);
}
// 0x3103208 undocumented
setbits_le32(0x3103208, BIT(1));
eye_delay_compensation(para);
// set PLL SSCG ?
val = readl(0x3103108);
if (dqs_gating_mode == 1) {
clrsetbits_le32(0x3103108, 0xc0, 0);
clrbits_le32(0x31030bc, 0x107);
} else if (dqs_gating_mode == 2) {
clrsetbits_le32(0x3103108, 0xc0, 0x80);
clrsetbits_le32(0x31030bc, 0x107,
(((config->dram_tpr13 >> 16) & 0x1f) - 2) | 0x100);
clrsetbits_le32(0x310311c, BIT(31), BIT(27));
} else {
clrbits_le32(0x3103108, 0x40);
udelay(10);
setbits_le32(0x3103108, 0xc0);
}
if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR2 ||
para->dram_type == SUNXI_DRAM_TYPE_LPDDR3) {
if (dqs_gating_mode == 1)
clrsetbits_le32(0x310311c, 0x080000c0, 0x80000000);
else
clrsetbits_le32(0x310311c, 0x77000000, 0x22000000);
}
clrsetbits_le32(0x31030c0, 0x0fffffff,
(config->dram_para2 & BIT(12)) ? 0x03000001 : 0x01000007);
if (readl(0x70005d4) & BIT(16)) {
clrbits_le32(0x7010250, 0x2);
udelay(10);
}
// Set ZQ config
clrsetbits_le32(0x3103140, 0x3ffffff,
(para->dram_zq & 0x00ffffff) | BIT(25));
// Initialise DRAM controller
if (dqs_gating_mode == 1) {
//writel(0x52, 0x3103000); // prep PHY reset + PLL init + z-cal
writel(0x53, 0x3103000); // Go
while ((readl(0x3103010) & 0x1) == 0) {
} // wait for IDONE
udelay(10);
// 0x520 = prep DQS gating + DRAM init + d-cal
if (para->dram_type == SUNXI_DRAM_TYPE_DDR3)
writel(0x5a0, 0x3103000); // + DRAM reset
else
writel(0x520, 0x3103000);
} else {
if ((readl(0x70005d4) & (1 << 16)) == 0) {
// prep DRAM init + PHY reset + d-cal + PLL init + z-cal
if (para->dram_type == SUNXI_DRAM_TYPE_DDR3)
writel(0x1f2, 0x3103000); // + DRAM reset
else
writel(0x172, 0x3103000);
} else {
// prep PHY reset + d-cal + z-cal
writel(0x62, 0x3103000);
}
}
setbits_le32(0x3103000, 0x1); // GO
udelay(10);
while ((readl(0x3103010) & 0x1) == 0) {
} // wait for IDONE
if (readl(0x70005d4) & BIT(16)) {
clrsetbits_le32(0x310310c, 0x06000000, 0x04000000);
udelay(10);
setbits_le32(0x3103004, 0x1);
while ((readl(0x3103018) & 0x7) != 0x3) {
}
clrbits_le32(0x7010250, 0x1);
udelay(10);
clrbits_le32(0x3103004, 0x1);
while ((readl(0x3103018) & 0x7) != 0x1) {
}
udelay(15);
if (dqs_gating_mode == 1) {
clrbits_le32(0x3103108, 0xc0);
clrsetbits_le32(0x310310c, 0x06000000, 0x02000000);
udelay(1);
writel(0x401, 0x3103000);
while ((readl(0x3103010) & 0x1) == 0) {
}
}
}
// Check for training error
if (readl(0x3103010) & BIT(20)) {
printf("ZQ calibration error, check external 240 ohm resistor\n");
return 0;
}
// STATR = Zynq STAT? Wait for status 'normal'?
while ((readl(0x3103018) & 0x1) == 0) {
}
setbits_le32(0x310308c, BIT(31));
udelay(10);
clrbits_le32(0x310308c, BIT(31));
udelay(10);
setbits_le32(0x3102014, BIT(31));
udelay(10);
clrbits_le32(0x310310c, 0x06000000);
if (dqs_gating_mode == 1)
clrsetbits_le32(0x310311c, 0xc0, 0x40);
return 1;
}
static unsigned int calculate_rank_size(uint32_t regval)
{
unsigned int bits;
bits = (regval >> 8) & 0xf; /* page size - 3 */
bits += (regval >> 4) & 0xf; /* row width - 1 */
bits += (regval >> 2) & 0x3; /* bank count - 2 */
bits -= 14; /* 1MB = 20 bits, minus above 6 = 14 */
return 1U << bits;
}
/*
* The below routine reads the dram config registers and extracts
* the number of address bits in each rank available. It then calculates
* total memory size in MB.
*/
static unsigned int DRAMC_get_dram_size(void)
{
uint32_t val;
unsigned int size;
val = readl(0x3102000); /* MC_WORK_MODE0 */
size = calculate_rank_size(val);
if ((val & 0x3) == 0) /* single rank? */
return size;
val = readl(0x3102004); /* MC_WORK_MODE1 */
if ((val & 0x3) == 0) /* two identical ranks? */
return size * 2;
/* add sizes of both ranks */
return size + calculate_rank_size(val);
}
/*
* The below routine reads the command status register to extract
* DQ width and rank count. This follows the DQS training command in
* channel_init. If error bit 22 is reset, we have two ranks and full DQ.
* If there was an error, figure out whether it was half DQ, single rank,
* or both. Set bit 12 and 0 in dram_para2 with the results.
*/
static int dqs_gate_detect(dram_config_t *config)
{
uint32_t dx0, dx1;
if ((readl(0x3103010) & BIT(22)) == 0) {
config->dram_para2 = (config->dram_para2 & ~0xf) | BIT(12);
debug("dual rank and full DQ\n");
return 1;
}
dx0 = (readl(0x3103348) & 0x3000000) >> 24;
if (dx0 == 0) {
config->dram_para2 = (config->dram_para2 & ~0xf) | 0x1001;
debug("dual rank and half DQ\n");
return 1;
}
if (dx0 == 2) {
dx1 = (readl(0x31033c8) & 0x3000000) >> 24;
if (dx1 == 2) {
config->dram_para2 = config->dram_para2 & ~0xf00f;
debug("single rank and full DQ\n");
} else {
config->dram_para2 = (config->dram_para2 & ~0xf00f) | BIT(0);
debug("single rank and half DQ\n");
}
return 1;
}
if ((config->dram_tpr13 & BIT(29)) == 0)
return 0;
debug("DX0 state: %d\n", dx0);
debug("DX1 state: %d\n", dx1);
return 0;
}
static int dramc_simple_wr_test(unsigned int mem_mb, int len)
{
unsigned int offs = (mem_mb / 2) << 18; // half of memory size
unsigned int patt1 = 0x01234567;
unsigned int patt2 = 0xfedcba98;
unsigned int *addr, v1, v2, i;
addr = (unsigned int *)CFG_SYS_SDRAM_BASE;
for (i = 0; i != len; i++, addr++) {
writel(patt1 + i, (unsigned long)addr);
writel(patt2 + i, (unsigned long)(addr + offs));
}
addr = (unsigned int *)CFG_SYS_SDRAM_BASE;
for (i = 0; i != len; i++) {
v1 = readl((unsigned long)(addr + i));
v2 = patt1 + i;
if (v1 != v2) {
printf("DRAM: simple test FAIL\n");
printf("%x != %x at address %p\n", v1, v2, addr + i);
return 1;
}
v1 = readl((unsigned long)(addr + offs + i));
v2 = patt2 + i;
if (v1 != v2) {
printf("DRAM: simple test FAIL\n");
printf("%x != %x at address %p\n", v1, v2, addr + offs + i);
return 1;
}
}
debug("DRAM: simple test OK\n");
return 0;
}
// Set the Vref mode for the controller
//
static void mctl_vrefzq_init(const dram_para_t *para, const dram_config_t *config)
{
if (config->dram_tpr13 & BIT(17))
return;
clrsetbits_le32(0x3103110, 0x7f7f7f7f, para->dram_tpr5);
// IOCVR1
if ((config->dram_tpr13 & BIT(16)) == 0)
clrsetbits_le32(0x3103114, 0x7f, para->dram_tpr6 & 0x7f);
}
// Perform an init of the controller. This is actually done 3 times. The first
// time to establish the number of ranks and DQ width. The second time to
// establish the actual ram size. The third time is final one, with the final
// settings.
//
static int mctl_core_init(const dram_para_t *para, const dram_config_t *config)
{
mctl_sys_init(para, config);
mctl_vrefzq_init(para, config);
mctl_com_init(para, config);
mctl_phy_ac_remapping(para, config);
mctl_set_timing_params(para, config);
return mctl_channel_init(0, para, config);
}
/*
* This routine sizes a DRAM device by cycling through address lines and
* figuring out if they are connected to a real address line, or if the
* address is a mirror.
* First the column and bank bit allocations are set to low values (2 and 9
* address lines). Then a maximum allocation (16 lines) is set for rows and
* this is tested.
* Next the BA2 line is checked. This seems to be placed above the column,
* BA0-1 and row addresses. Finally, the column address is allocated 13 lines
* and these are tested. The results are placed in dram_para1 and dram_para2.
*/
static uint32_t get_payload(bool odd, unsigned long int ptr)
{
if (odd)
return (uint32_t)ptr;
else
return ~((uint32_t)ptr);
}
static int auto_scan_dram_size(const dram_para_t *para, dram_config_t *config)
{
unsigned int rval, i, j, rank, maxrank, offs;
unsigned int shft;
unsigned long ptr, mc_work_mode, chk;
if (mctl_core_init(para, config) == 0) {
printf("DRAM initialisation error : 0\n");
return 0;
}
maxrank = (config->dram_para2 & 0xf000) ? 2 : 1;
mc_work_mode = 0x3102000;
offs = 0;
/* write test pattern */
for (i = 0, ptr = CFG_SYS_SDRAM_BASE; i < 64; i++, ptr += 4)
writel(get_payload(i & 0x1, ptr), ptr);
for (rank = 0; rank < maxrank;) {
/* set row mode */
clrsetbits_le32(mc_work_mode, 0xf0c, 0x6f0);
udelay(1);
// Scan per address line, until address wraps (i.e. see shadow)
for (i = 11; i < 17; i++) {
chk = CFG_SYS_SDRAM_BASE + (1U << (i + 11));
ptr = CFG_SYS_SDRAM_BASE;
for (j = 0; j < 64; j++) {
if (readl(chk) != get_payload(j & 0x1, ptr))
break;
ptr += 4;
chk += 4;
}
if (j == 64)
break;
}
if (i > 16)
i = 16;
debug("rank %d row = %d\n", rank, i);
/* Store rows in para 1 */
shft = offs + 4;
rval = config->dram_para1;
rval &= ~(0xff << shft);
rval |= i << shft;
config->dram_para1 = rval;
if (rank == 1) /* Set bank mode for rank0 */
clrsetbits_le32(0x3102000, 0xffc, 0x6a4);
/* Set bank mode for current rank */
clrsetbits_le32(mc_work_mode, 0xffc, 0x6a4);
udelay(1);
// Test if bit A23 is BA2 or mirror XXX A22?
chk = CFG_SYS_SDRAM_BASE + (1U << 22);
ptr = CFG_SYS_SDRAM_BASE;
for (i = 0, j = 0; i < 64; i++) {
if (readl(chk) != get_payload(i & 1, ptr)) {
j = 1;
break;
}
ptr += 4;
chk += 4;
}
debug("rank %d bank = %d\n", rank, (j + 1) << 2); /* 4 or 8 */
/* Store banks in para 1 */
shft = 12 + offs;
rval = config->dram_para1;
rval &= ~(0xf << shft);
rval |= j << shft;
config->dram_para1 = rval;
if (rank == 1) /* Set page mode for rank0 */
clrsetbits_le32(0x3102000, 0xffc, 0xaa0);
/* Set page mode for current rank */
clrsetbits_le32(mc_work_mode, 0xffc, 0xaa0);
udelay(1);
// Scan per address line, until address wraps (i.e. see shadow)
for (i = 9; i < 14; i++) {
chk = CFG_SYS_SDRAM_BASE + (1U << i);
ptr = CFG_SYS_SDRAM_BASE;
for (j = 0; j < 64; j++) {
if (readl(chk) != get_payload(j & 1, ptr))
break;
ptr += 4;
chk += 4;
}
if (j == 64)
break;
}
if (i > 13)
i = 13;
unsigned int pgsize = (i == 9) ? 0 : (1 << (i - 10));
debug("rank %d page size = %d KB\n", rank, pgsize);
/* Store page size */
shft = offs;
rval = config->dram_para1;
rval &= ~(0xf << shft);
rval |= pgsize << shft;
config->dram_para1 = rval;
// Move to next rank
rank++;
if (rank != maxrank) {
if (rank == 1) {
/* MC_WORK_MODE */
clrsetbits_le32(0x3202000, 0xffc, 0x6f0);
/* MC_WORK_MODE2 */
clrsetbits_le32(0x3202004, 0xffc, 0x6f0);
}
/* store rank1 config in upper half of para1 */
offs += 16;
mc_work_mode += 4; /* move to MC_WORK_MODE2 */
}
}
if (maxrank == 2) {
config->dram_para2 &= 0xfffff0ff;
/* note: rval is equal to para->dram_para1 here */
if ((rval & 0xffff) == (rval >> 16)) {
debug("rank1 config same as rank0\n");
} else {
config->dram_para2 |= BIT(8);
debug("rank1 config different from rank0\n");
}
}
return 1;
}
/*
* This routine sets up parameters with dqs_gating_mode equal to 1 and two
* ranks enabled. It then configures the core and tests for 1 or 2 ranks and
* full or half DQ width. It then resets the parameters to the original values.
* dram_para2 is updated with the rank and width findings.
*/
static int auto_scan_dram_rank_width(const dram_para_t *para,
dram_config_t *config)
{
unsigned int s1 = config->dram_tpr13;
unsigned int s2 = config->dram_para1;
config->dram_para1 = 0x00b000b0;
config->dram_para2 = (config->dram_para2 & ~0xf) | BIT(12);
/* set DQS probe mode */
config->dram_tpr13 = (config->dram_tpr13 & ~0x8) | BIT(2) | BIT(0);
mctl_core_init(para, config);
if (readl(0x3103010) & BIT(20))
return 0;
if (dqs_gate_detect(config) == 0)
return 0;
config->dram_tpr13 = s1;
config->dram_para1 = s2;
return 1;
}
/*
* This routine determines the SDRAM topology. It first establishes the number
* of ranks and the DQ width. Then it scans the SDRAM address lines to establish
* the size of each rank. It then updates dram_tpr13 to reflect that the sizes
* are now known: a re-init will not repeat the autoscan.
*/
static int auto_scan_dram_config(const dram_para_t *para,
dram_config_t *config)
{
if (((config->dram_tpr13 & BIT(14)) == 0) &&
(auto_scan_dram_rank_width(para, config) == 0)) {
printf("ERROR: auto scan dram rank & width failed\n");
return 0;
}
if (((config->dram_tpr13 & BIT(0)) == 0) &&
(auto_scan_dram_size(para, config) == 0)) {
printf("ERROR: auto scan dram size failed\n");
return 0;
}
if ((config->dram_tpr13 & BIT(15)) == 0)
config->dram_tpr13 |= BIT(14) | BIT(13) | BIT(1) | BIT(0);
return 1;
}
static int init_DRAM(int type, const dram_para_t *para)
{
dram_config_t config = {
.dram_para1 = 0x000010d2,
.dram_para2 = 0,
.dram_tpr13 = CONFIG_DRAM_SUNXI_TPR13,
};
u32 rc, mem_size_mb;
debug("DRAM BOOT DRIVE INFO: %s\n", "V0.24");
debug("DRAM CLK = %d MHz\n", para->dram_clk);
debug("DRAM Type = %d (2:DDR2,3:DDR3)\n", para->dram_type);
if ((para->dram_odt_en & 0x1) == 0)
debug("DRAMC read ODT off\n");
else
debug("DRAMC ZQ value: 0x%x\n", para->dram_zq);
/* Test ZQ status */
if (config.dram_tpr13 & BIT(16)) {
debug("DRAM only have internal ZQ\n");
setbits_le32(0x3000160, BIT(8));
writel(0, 0x3000168);
udelay(10);
} else {
clrbits_le32(0x3000160, 0x3);
writel(config.dram_tpr13 & BIT(16), 0x7010254);
udelay(10);
clrsetbits_le32(0x3000160, 0x108, BIT(1));
udelay(10);
setbits_le32(0x3000160, BIT(0));
udelay(20);
debug("ZQ value = 0x%x\n", readl(0x300016c));
}
dram_voltage_set(para);
/* Set SDRAM controller auto config */
if ((config.dram_tpr13 & BIT(0)) == 0) {
if (auto_scan_dram_config(para, &config) == 0) {
printf("auto_scan_dram_config() FAILED\n");
return 0;
}
}
/* report ODT */
rc = para->dram_mr1;
if ((rc & 0x44) == 0)
debug("DRAM ODT off\n");
else
debug("DRAM ODT value: 0x%x\n", rc);
/* Init core, final run */
if (mctl_core_init(para, &config) == 0) {
printf("DRAM initialisation error: 1\n");
return 0;
}
/* Get SDRAM size */
/* TODO: who ever puts a negative number in the top half? */
rc = config.dram_para2;
if (rc & BIT(31)) {
rc = (rc >> 16) & ~BIT(15);
} else {
rc = DRAMC_get_dram_size();
debug("DRAM: size = %dMB\n", rc);
config.dram_para2 = (config.dram_para2 & 0xffffU) | rc << 16;
}
mem_size_mb = rc;
/* Purpose ?? */
if (config.dram_tpr13 & BIT(30)) {
rc = para->dram_tpr8;
if (rc == 0)
rc = 0x10000200;
writel(rc, 0x31030a0);
writel(0x40a, 0x310309c);
setbits_le32(0x3103004, BIT(0));
debug("Enable Auto SR\n");
} else {
clrbits_le32(0x31030a0, 0xffff);
clrbits_le32(0x3103004, 0x1);
}
/* Purpose ?? */
if (config.dram_tpr13 & BIT(9)) {
clrsetbits_le32(0x3103100, 0xf000, 0x5000);
} else {
if (para->dram_type != SUNXI_DRAM_TYPE_LPDDR2)
clrbits_le32(0x3103100, 0xf000);
}
setbits_le32(0x3103140, BIT(31));
/* CHECK: is that really writing to a different register? */
if (config.dram_tpr13 & BIT(8))
writel(readl(0x3103140) | 0x300, 0x31030b8);
if (config.dram_tpr13 & BIT(16))
clrbits_le32(0x3103108, BIT(13));
else
setbits_le32(0x3103108, BIT(13));
/* Purpose ?? */
if (para->dram_type == SUNXI_DRAM_TYPE_LPDDR3)
clrsetbits_le32(0x310307c, 0xf0000, 0x1000);
dram_enable_all_master();
if (config.dram_tpr13 & BIT(28)) {
if ((readl(0x70005d4) & BIT(16)) ||
dramc_simple_wr_test(mem_size_mb, 4096))
return 0;
}
return mem_size_mb;
}
static const dram_para_t para = {
.dram_clk = CONFIG_DRAM_CLK,
.dram_type = CONFIG_SUNXI_DRAM_TYPE,
.dram_zq = CONFIG_DRAM_ZQ,
.dram_odt_en = CONFIG_DRAM_SUNXI_ODT_EN,
.dram_mr0 = 0x1c70,
.dram_mr1 = 0x42,
.dram_mr2 = 0x18,
.dram_mr3 = 0,
.dram_tpr0 = 0x004a2195,
.dram_tpr1 = 0x02423190,
.dram_tpr2 = 0x0008b061,
.dram_tpr3 = 0xb4787896, // unused
.dram_tpr4 = 0,
.dram_tpr5 = 0x48484848,
.dram_tpr6 = 0x00000048,
.dram_tpr7 = 0x1620121e, // unused
.dram_tpr8 = 0,
.dram_tpr9 = 0, // clock?
.dram_tpr10 = 0,
.dram_tpr11 = CONFIG_DRAM_SUNXI_TPR11,
.dram_tpr12 = CONFIG_DRAM_SUNXI_TPR12,
};
unsigned long sunxi_dram_init(void)
{
return init_DRAM(0, &para) * 1024UL * 1024;
};
#ifdef CONFIG_RAM /* using the driver model */
struct sunxi_ram_priv {
size_t size;
};
static int sunxi_ram_probe(struct udevice *dev)
{
struct sunxi_ram_priv *priv = dev_get_priv(dev);
unsigned long dram_size;
debug("%s: %s: probing\n", __func__, dev->name);
dram_size = sunxi_dram_init();
if (!dram_size) {
printf("DRAM init failed\n");
return -ENODEV;
}
priv->size = dram_size;
return 0;
}
static int sunxi_ram_get_info(struct udevice *dev, struct ram_info *info)
{
struct sunxi_ram_priv *priv = dev_get_priv(dev);
debug("%s: %s: getting info\n", __func__, dev->name);
info->base = CFG_SYS_SDRAM_BASE;
info->size = priv->size;
return 0;
}
static struct ram_ops sunxi_ram_ops = {
.get_info = sunxi_ram_get_info,
};
static const struct udevice_id sunxi_ram_ids[] = {
{ .compatible = "allwinner,sun20i-d1-mbus" },
{ }
};
U_BOOT_DRIVER(sunxi_ram) = {
.name = "sunxi_ram",
.id = UCLASS_RAM,
.of_match = sunxi_ram_ids,
.ops = &sunxi_ram_ops,
.probe = sunxi_ram_probe,
.priv_auto = sizeof(struct sunxi_ram_priv),
};
#endif /* CONFIG_RAM (using driver model) */