mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-10 12:18:55 +00:00
29c3148974
DDR chip capacity is computed based on GRF split in some Rockchip SoC's like PX30 and RV1126. Add split argument in ddr print info so-that the respective ddr driver will pass the grf split. Signed-off-by: YouMin Chen <cym@rock-chips.com> Signed-off-by: Jagan Teki <jagan@edgeble.ai> Reviewed-by: Kever Yang <kever.yang@rock-chips.com>
444 lines
9.5 KiB
C
444 lines
9.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* (C) Copyright 2018 Rockchip Electronics Co., Ltd.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <debug_uart.h>
|
|
#include <ram.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch-rockchip/sdram.h>
|
|
#include <asm/arch-rockchip/sdram_common.h>
|
|
|
|
#ifdef CONFIG_RAM_ROCKCHIP_DEBUG
|
|
void sdram_print_dram_type(unsigned char dramtype)
|
|
{
|
|
switch (dramtype) {
|
|
case DDR3:
|
|
printascii("DDR3");
|
|
break;
|
|
case DDR4:
|
|
printascii("DDR4");
|
|
break;
|
|
case LPDDR2:
|
|
printascii("LPDDR2");
|
|
break;
|
|
case LPDDR3:
|
|
printascii("LPDDR3");
|
|
break;
|
|
case LPDDR4:
|
|
printascii("LPDDR4");
|
|
break;
|
|
default:
|
|
printascii("Unknown Device");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void sdram_print_ddr_info(struct sdram_cap_info *cap_info,
|
|
struct sdram_base_params *base, u32 split)
|
|
{
|
|
u64 cap;
|
|
u32 bg;
|
|
|
|
bg = (cap_info->dbw == 0) ? 2 : 1;
|
|
|
|
sdram_print_dram_type(base->dramtype);
|
|
|
|
printascii(", ");
|
|
printdec(base->ddr_freq);
|
|
printascii("MHz\n");
|
|
|
|
printascii("BW=");
|
|
printdec(8 << cap_info->bw);
|
|
printascii(" Col=");
|
|
printdec(cap_info->col);
|
|
printascii(" Bk=");
|
|
printdec(0x1 << cap_info->bk);
|
|
if (base->dramtype == DDR4) {
|
|
printascii(" BG=");
|
|
printdec(1 << bg);
|
|
}
|
|
printascii(" CS0 Row=");
|
|
printdec(cap_info->cs0_row);
|
|
if (cap_info->cs0_high16bit_row !=
|
|
cap_info->cs0_row) {
|
|
printascii("/");
|
|
printdec(cap_info->cs0_high16bit_row);
|
|
}
|
|
if (cap_info->rank > 1) {
|
|
printascii(" CS1 Row=");
|
|
printdec(cap_info->cs1_row);
|
|
if (cap_info->cs1_high16bit_row !=
|
|
cap_info->cs1_row) {
|
|
printascii("/");
|
|
printdec(cap_info->cs1_high16bit_row);
|
|
}
|
|
}
|
|
printascii(" CS=");
|
|
printdec(cap_info->rank);
|
|
printascii(" Die BW=");
|
|
printdec(8 << cap_info->dbw);
|
|
|
|
cap = sdram_get_cs_cap(cap_info, 3, base->dramtype);
|
|
if (cap_info->row_3_4)
|
|
cap = cap * 3 / 4;
|
|
else if (split)
|
|
cap = cap / 2 + (split << 24) / 2;
|
|
|
|
printascii(" Size=");
|
|
printdec(cap >> 20);
|
|
printascii("MB\n");
|
|
}
|
|
|
|
void sdram_print_stride(unsigned int stride)
|
|
{
|
|
switch (stride) {
|
|
case 0xc:
|
|
printf("128B stride\n");
|
|
break;
|
|
case 5:
|
|
case 9:
|
|
case 0xd:
|
|
case 0x11:
|
|
case 0x19:
|
|
printf("256B stride\n");
|
|
break;
|
|
case 0xa:
|
|
case 0xe:
|
|
case 0x12:
|
|
printf("512B stride\n");
|
|
break;
|
|
case 0xf:
|
|
printf("4K stride\n");
|
|
break;
|
|
case 0x1f:
|
|
printf("32MB + 256B stride\n");
|
|
break;
|
|
default:
|
|
printf("no stride\n");
|
|
}
|
|
}
|
|
#else
|
|
inline void sdram_print_dram_type(unsigned char dramtype)
|
|
{
|
|
}
|
|
|
|
inline void sdram_print_ddr_info(struct sdram_cap_info *cap_info,
|
|
struct sdram_base_params *base, u32 split)
|
|
{
|
|
}
|
|
|
|
inline void sdram_print_stride(unsigned int stride)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* cs: 0:cs0
|
|
* 1:cs1
|
|
* else cs0+cs1
|
|
* note: it didn't consider about row_3_4
|
|
*/
|
|
u64 sdram_get_cs_cap(struct sdram_cap_info *cap_info, u32 cs, u32 dram_type)
|
|
{
|
|
u32 bg;
|
|
u64 cap[2];
|
|
|
|
if (dram_type == DDR4)
|
|
/* DDR4 8bit dram BG = 2(4bank groups),
|
|
* 16bit dram BG = 1 (2 bank groups)
|
|
*/
|
|
bg = (cap_info->dbw == 0) ? 2 : 1;
|
|
else
|
|
bg = 0;
|
|
cap[0] = 1llu << (cap_info->bw + cap_info->col +
|
|
bg + cap_info->bk + cap_info->cs0_row);
|
|
|
|
if (cap_info->rank == 2)
|
|
cap[1] = 1llu << (cap_info->bw + cap_info->col +
|
|
bg + cap_info->bk + cap_info->cs1_row);
|
|
else
|
|
cap[1] = 0;
|
|
|
|
if (cs == 0)
|
|
return cap[0];
|
|
else if (cs == 1)
|
|
return cap[1];
|
|
else
|
|
return (cap[0] + cap[1]);
|
|
}
|
|
|
|
/* n: Unit bytes */
|
|
void sdram_copy_to_reg(u32 *dest, const u32 *src, u32 n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n / sizeof(u32); i++) {
|
|
writel(*src, dest);
|
|
src++;
|
|
dest++;
|
|
}
|
|
}
|
|
|
|
void sdram_org_config(struct sdram_cap_info *cap_info,
|
|
struct sdram_base_params *base,
|
|
u32 *p_os_reg2, u32 *p_os_reg3, u32 channel)
|
|
{
|
|
*p_os_reg2 |= SYS_REG_ENC_DDRTYPE(base->dramtype);
|
|
*p_os_reg2 |= SYS_REG_ENC_NUM_CH(base->num_channels);
|
|
|
|
*p_os_reg2 |= SYS_REG_ENC_ROW_3_4(cap_info->row_3_4, channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_CHINFO(channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_RANK(cap_info->rank, channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_COL(cap_info->col, channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_BK(cap_info->bk, channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_BW(cap_info->bw, channel);
|
|
*p_os_reg2 |= SYS_REG_ENC_DBW(cap_info->dbw, channel);
|
|
|
|
SYS_REG_ENC_CS0_ROW(cap_info->cs0_row, *p_os_reg2, *p_os_reg3, channel);
|
|
if (cap_info->cs1_row)
|
|
SYS_REG_ENC_CS1_ROW(cap_info->cs1_row, *p_os_reg2,
|
|
*p_os_reg3, channel);
|
|
*p_os_reg3 |= SYS_REG_ENC_CS1_COL(cap_info->col, channel);
|
|
*p_os_reg3 |= SYS_REG_ENC_VERSION(DDR_SYS_REG_VERSION);
|
|
}
|
|
|
|
int sdram_detect_bw(struct sdram_cap_info *cap_info)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_cs(struct sdram_cap_info *cap_info)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_col(struct sdram_cap_info *cap_info,
|
|
u32 coltmp)
|
|
{
|
|
void __iomem *test_addr;
|
|
u32 col;
|
|
u32 bw = cap_info->bw;
|
|
|
|
for (col = coltmp; col >= 9; col -= 1) {
|
|
writel(0, CFG_SYS_SDRAM_BASE);
|
|
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
(1ul << (col + bw - 1ul)));
|
|
writel(PATTERN, test_addr);
|
|
if ((readl(test_addr) == PATTERN) &&
|
|
(readl(CFG_SYS_SDRAM_BASE) == 0))
|
|
break;
|
|
}
|
|
if (col == 8) {
|
|
printascii("col error\n");
|
|
return -1;
|
|
}
|
|
|
|
cap_info->col = col;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_bank(struct sdram_cap_info *cap_info,
|
|
u32 coltmp, u32 bktmp)
|
|
{
|
|
void __iomem *test_addr;
|
|
u32 bk;
|
|
u32 bw = cap_info->bw;
|
|
|
|
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
(1ul << (coltmp + bktmp + bw - 1ul)));
|
|
writel(0, CFG_SYS_SDRAM_BASE);
|
|
writel(PATTERN, test_addr);
|
|
if ((readl(test_addr) == PATTERN) &&
|
|
(readl(CFG_SYS_SDRAM_BASE) == 0))
|
|
bk = 3;
|
|
else
|
|
bk = 2;
|
|
|
|
cap_info->bk = bk;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* detect bg for ddr4 */
|
|
int sdram_detect_bg(struct sdram_cap_info *cap_info,
|
|
u32 coltmp)
|
|
{
|
|
void __iomem *test_addr;
|
|
u32 dbw;
|
|
u32 bw = cap_info->bw;
|
|
|
|
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
(1ul << (coltmp + bw + 1ul)));
|
|
writel(0, CFG_SYS_SDRAM_BASE);
|
|
writel(PATTERN, test_addr);
|
|
if ((readl(test_addr) == PATTERN) &&
|
|
(readl(CFG_SYS_SDRAM_BASE) == 0))
|
|
dbw = 0;
|
|
else
|
|
dbw = 1;
|
|
|
|
cap_info->dbw = dbw;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* detect dbw for ddr3,lpddr2,lpddr3,lpddr4 */
|
|
int sdram_detect_dbw(struct sdram_cap_info *cap_info, u32 dram_type)
|
|
{
|
|
u32 row, col, bk, bw, cs_cap, cs;
|
|
u32 die_bw_0 = 0, die_bw_1 = 0;
|
|
|
|
if (dram_type == DDR3 || dram_type == LPDDR4) {
|
|
cap_info->dbw = 1;
|
|
} else if (dram_type == LPDDR3 || dram_type == LPDDR2) {
|
|
row = cap_info->cs0_row;
|
|
col = cap_info->col;
|
|
bk = cap_info->bk;
|
|
cs = cap_info->rank;
|
|
bw = cap_info->bw;
|
|
cs_cap = (1 << (row + col + bk + bw - 20));
|
|
if (bw == 2) {
|
|
if (cs_cap <= 0x2000000) /* 256Mb */
|
|
die_bw_0 = (col < 9) ? 2 : 1;
|
|
else if (cs_cap <= 0x10000000) /* 2Gb */
|
|
die_bw_0 = (col < 10) ? 2 : 1;
|
|
else if (cs_cap <= 0x40000000) /* 8Gb */
|
|
die_bw_0 = (col < 11) ? 2 : 1;
|
|
else
|
|
die_bw_0 = (col < 12) ? 2 : 1;
|
|
if (cs > 1) {
|
|
row = cap_info->cs1_row;
|
|
cs_cap = (1 << (row + col + bk + bw - 20));
|
|
if (cs_cap <= 0x2000000) /* 256Mb */
|
|
die_bw_0 = (col < 9) ? 2 : 1;
|
|
else if (cs_cap <= 0x10000000) /* 2Gb */
|
|
die_bw_0 = (col < 10) ? 2 : 1;
|
|
else if (cs_cap <= 0x40000000) /* 8Gb */
|
|
die_bw_0 = (col < 11) ? 2 : 1;
|
|
else
|
|
die_bw_0 = (col < 12) ? 2 : 1;
|
|
}
|
|
} else {
|
|
die_bw_1 = 1;
|
|
die_bw_0 = 1;
|
|
}
|
|
cap_info->dbw = (die_bw_0 > die_bw_1) ? die_bw_0 : die_bw_1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_row(struct sdram_cap_info *cap_info,
|
|
u32 coltmp, u32 bktmp, u32 rowtmp)
|
|
{
|
|
u32 row;
|
|
u32 bw = cap_info->bw;
|
|
void __iomem *test_addr;
|
|
|
|
for (row = rowtmp; row > 12; row--) {
|
|
writel(0, CFG_SYS_SDRAM_BASE);
|
|
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
(1ul << (row + bktmp + coltmp + bw - 1ul)));
|
|
writel(PATTERN, test_addr);
|
|
if ((readl(test_addr) == PATTERN) &&
|
|
(readl(CFG_SYS_SDRAM_BASE) == 0))
|
|
break;
|
|
}
|
|
if (row == 12) {
|
|
printascii("row error");
|
|
return -1;
|
|
}
|
|
|
|
cap_info->cs0_row = row;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_row_3_4(struct sdram_cap_info *cap_info,
|
|
u32 coltmp, u32 bktmp)
|
|
{
|
|
u32 row_3_4;
|
|
u32 bw = cap_info->bw;
|
|
u32 row = cap_info->cs0_row;
|
|
void __iomem *test_addr, *test_addr1;
|
|
|
|
test_addr = CFG_SYS_SDRAM_BASE;
|
|
test_addr1 = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
(0x3ul << (row + bktmp + coltmp + bw - 1ul - 1ul)));
|
|
|
|
writel(0, test_addr);
|
|
writel(PATTERN, test_addr1);
|
|
if ((readl(test_addr) == 0) && (readl(test_addr1) == PATTERN))
|
|
row_3_4 = 0;
|
|
else
|
|
row_3_4 = 1;
|
|
|
|
cap_info->row_3_4 = row_3_4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_high_row(struct sdram_cap_info *cap_info)
|
|
{
|
|
cap_info->cs0_high16bit_row = cap_info->cs0_row;
|
|
cap_info->cs1_high16bit_row = cap_info->cs1_row;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sdram_detect_cs1_row(struct sdram_cap_info *cap_info, u32 dram_type)
|
|
{
|
|
void __iomem *test_addr;
|
|
u32 row = 0, bktmp, coltmp, bw;
|
|
ulong cs0_cap;
|
|
u32 byte_mask;
|
|
|
|
if (cap_info->rank == 2) {
|
|
cs0_cap = sdram_get_cs_cap(cap_info, 0, dram_type);
|
|
|
|
if (dram_type == DDR4) {
|
|
if (cap_info->dbw == 0)
|
|
bktmp = cap_info->bk + 2;
|
|
else
|
|
bktmp = cap_info->bk + 1;
|
|
} else {
|
|
bktmp = cap_info->bk;
|
|
}
|
|
bw = cap_info->bw;
|
|
coltmp = cap_info->col;
|
|
|
|
/*
|
|
* because px30 support axi split,min bandwidth
|
|
* is 8bit. if cs0 is 32bit, cs1 may 32bit or 16bit
|
|
* so we check low 16bit data when detect cs1 row.
|
|
* if cs0 is 16bit/8bit, we check low 8bit data.
|
|
*/
|
|
if (bw == 2)
|
|
byte_mask = 0xFFFF;
|
|
else
|
|
byte_mask = 0xFF;
|
|
|
|
/* detect cs1 row */
|
|
for (row = cap_info->cs0_row; row > 12; row--) {
|
|
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
|
|
cs0_cap +
|
|
(1ul << (row + bktmp + coltmp + bw - 1ul)));
|
|
writel(0, CFG_SYS_SDRAM_BASE + cs0_cap);
|
|
writel(PATTERN, test_addr);
|
|
|
|
if (((readl(test_addr) & byte_mask) ==
|
|
(PATTERN & byte_mask)) &&
|
|
((readl(CFG_SYS_SDRAM_BASE + cs0_cap) &
|
|
byte_mask) == 0)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
cap_info->cs1_row = row;
|
|
|
|
return 0;
|
|
}
|