mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
69ca709d0f
Original ubifs code was designed that after ubifs_umount() call it is required to also call ubi_close_volume() which closes underlying UBI volume. But U-Boot ubifs modification have not implemented it properly which caused that ubifsumount command contains resource leak. It can be observed by calling simple sequence of commands: => ubi part mtd2 ubi0: attaching mtd2 ... => ubifsmount ubi0 => ubifsumount Unmounting UBIFS volume rootfs! => ubi detach ubi0 error: ubi_detach_mtd_dev: ubi0 reference count 1, destroy anyway ubi0: detaching mtd2 ubi0: mtd2 is detached Fix this issue by calling ubi_close_volume() and mutex_unlock() in directly in ubifs_umount() function before freeing U-Boot's global ubifs_sb. And remove duplicate calls of these two functions in remaining places. Note that when ubifs_umount() is not called then during error handling is still needed to call ubi_close_volume() and mutex_unlock. With this change ubifsumount command does not throw that error anymore: => ubi part rootfs ubi0: attaching mtd2 ... => ubifsmount ubi0 => ubifsumount Unmounting UBIFS volume rootfs! => ubi detach ubi0: detaching mtd2 ubi0: mtd2 is detached Signed-off-by: Pali Rohár <pali@kernel.org>
2717 lines
67 KiB
C
2717 lines
67 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* This file is part of UBIFS.
|
|
*
|
|
* Copyright (C) 2006-2008 Nokia Corporation.
|
|
*
|
|
* Authors: Artem Bityutskiy (Битюцкий Артём)
|
|
* Adrian Hunter
|
|
*/
|
|
|
|
/*
|
|
* This file implements UBIFS initialization and VFS superblock operations. Some
|
|
* initialization stuff which is rather large and complex is placed at
|
|
* corresponding subsystems, but most of it is here.
|
|
*/
|
|
|
|
#ifndef __UBOOT__
|
|
#include <log.h>
|
|
#include <dm/devres.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/parser.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/writeback.h>
|
|
#else
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/err.h>
|
|
#include "ubifs.h"
|
|
#include <ubi_uboot.h>
|
|
#include <linux/stringify.h>
|
|
#include <mtd/ubi-user.h>
|
|
|
|
struct dentry;
|
|
struct file;
|
|
struct iattr;
|
|
struct kstat;
|
|
struct vfsmount;
|
|
|
|
#define INODE_LOCKED_MAX 64
|
|
|
|
struct super_block *ubifs_sb;
|
|
|
|
static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
|
|
|
|
int set_anon_super(struct super_block *s, void *data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct inode *iget_locked(struct super_block *sb, unsigned long ino)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = (struct inode *)malloc_cache_aligned(
|
|
sizeof(struct ubifs_inode));
|
|
if (inode) {
|
|
inode->i_ino = ino;
|
|
inode->i_sb = sb;
|
|
list_add(&inode->i_sb_list, &sb->s_inodes);
|
|
inode->i_state = I_LOCK | I_NEW;
|
|
}
|
|
|
|
return inode;
|
|
}
|
|
|
|
void iget_failed(struct inode *inode)
|
|
{
|
|
}
|
|
|
|
int ubifs_iput(struct inode *inode)
|
|
{
|
|
list_del_init(&inode->i_sb_list);
|
|
|
|
free(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Lock (save) inode in inode array for readback after recovery
|
|
*/
|
|
void iput(struct inode *inode)
|
|
{
|
|
int i;
|
|
struct inode *ino;
|
|
|
|
/*
|
|
* Search end of list
|
|
*/
|
|
for (i = 0; i < INODE_LOCKED_MAX; i++) {
|
|
if (inodes_locked_down[i] == NULL)
|
|
break;
|
|
}
|
|
|
|
if (i >= INODE_LOCKED_MAX) {
|
|
dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate and use new inode
|
|
*/
|
|
ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
|
|
memcpy(ino, inode, sizeof(struct ubifs_inode));
|
|
|
|
/*
|
|
* Finally save inode in array
|
|
*/
|
|
inodes_locked_down[i] = ino;
|
|
}
|
|
|
|
/* from fs/inode.c */
|
|
/**
|
|
* clear_nlink - directly zero an inode's link count
|
|
* @inode: inode
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink. See
|
|
* drop_nlink() for why we care about i_nlink hitting zero.
|
|
*/
|
|
void clear_nlink(struct inode *inode)
|
|
{
|
|
if (inode->i_nlink) {
|
|
inode->__i_nlink = 0;
|
|
atomic_long_inc(&inode->i_sb->s_remove_count);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(clear_nlink);
|
|
|
|
/**
|
|
* set_nlink - directly set an inode's link count
|
|
* @inode: inode
|
|
* @nlink: new nlink (should be non-zero)
|
|
*
|
|
* This is a low-level filesystem helper to replace any
|
|
* direct filesystem manipulation of i_nlink.
|
|
*/
|
|
void set_nlink(struct inode *inode, unsigned int nlink)
|
|
{
|
|
if (!nlink) {
|
|
clear_nlink(inode);
|
|
} else {
|
|
/* Yes, some filesystems do change nlink from zero to one */
|
|
if (inode->i_nlink == 0)
|
|
atomic_long_dec(&inode->i_sb->s_remove_count);
|
|
|
|
inode->__i_nlink = nlink;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(set_nlink);
|
|
|
|
/* from include/linux/fs.h */
|
|
static inline void i_uid_write(struct inode *inode, uid_t uid)
|
|
{
|
|
inode->i_uid.val = uid;
|
|
}
|
|
|
|
static inline void i_gid_write(struct inode *inode, gid_t gid)
|
|
{
|
|
inode->i_gid.val = gid;
|
|
}
|
|
|
|
void unlock_new_inode(struct inode *inode)
|
|
{
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Maximum amount of memory we may 'kmalloc()' without worrying that we are
|
|
* allocating too much.
|
|
*/
|
|
#define UBIFS_KMALLOC_OK (128*1024)
|
|
|
|
/* Slab cache for UBIFS inodes */
|
|
struct kmem_cache *ubifs_inode_slab;
|
|
|
|
#ifndef __UBOOT__
|
|
/* UBIFS TNC shrinker description */
|
|
static struct shrinker ubifs_shrinker_info = {
|
|
.scan_objects = ubifs_shrink_scan,
|
|
.count_objects = ubifs_shrink_count,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
#endif
|
|
|
|
/**
|
|
* validate_inode - validate inode.
|
|
* @c: UBIFS file-system description object
|
|
* @inode: the inode to validate
|
|
*
|
|
* This is a helper function for 'ubifs_iget()' which validates various fields
|
|
* of a newly built inode to make sure they contain sane values and prevent
|
|
* possible vulnerabilities. Returns zero if the inode is all right and
|
|
* a non-zero error code if not.
|
|
*/
|
|
static int validate_inode(struct ubifs_info *c, const struct inode *inode)
|
|
{
|
|
int err;
|
|
const struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
if (inode->i_size > c->max_inode_sz) {
|
|
ubifs_err(c, "inode is too large (%lld)",
|
|
(long long)inode->i_size);
|
|
return 1;
|
|
}
|
|
|
|
if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
|
|
ubifs_err(c, "unknown compression type %d", ui->compr_type);
|
|
return 2;
|
|
}
|
|
|
|
if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
|
|
return 3;
|
|
|
|
if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
|
|
return 4;
|
|
|
|
if (ui->xattr && !S_ISREG(inode->i_mode))
|
|
return 5;
|
|
|
|
if (!ubifs_compr_present(ui->compr_type)) {
|
|
ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
|
|
inode->i_ino, ubifs_compr_name(ui->compr_type));
|
|
}
|
|
|
|
err = dbg_check_dir(c, inode);
|
|
return err;
|
|
}
|
|
|
|
struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
|
|
{
|
|
int err;
|
|
union ubifs_key key;
|
|
struct ubifs_ino_node *ino;
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
struct inode *inode;
|
|
struct ubifs_inode *ui;
|
|
#ifdef __UBOOT__
|
|
int i;
|
|
#endif
|
|
|
|
dbg_gen("inode %lu", inum);
|
|
|
|
#ifdef __UBOOT__
|
|
/*
|
|
* U-Boot special handling of locked down inodes via recovery
|
|
* e.g. ubifs_recover_size()
|
|
*/
|
|
for (i = 0; i < INODE_LOCKED_MAX; i++) {
|
|
/*
|
|
* Exit on last entry (NULL), inode not found in list
|
|
*/
|
|
if (inodes_locked_down[i] == NULL)
|
|
break;
|
|
|
|
if (inodes_locked_down[i]->i_ino == inum) {
|
|
/*
|
|
* We found the locked down inode in our array,
|
|
* so just return this pointer instead of creating
|
|
* a new one.
|
|
*/
|
|
return inodes_locked_down[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
inode = iget_locked(sb, inum);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (!(inode->i_state & I_NEW))
|
|
return inode;
|
|
ui = ubifs_inode(inode);
|
|
|
|
ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
|
|
if (!ino) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ino_key_init(c, &key, inode->i_ino);
|
|
|
|
err = ubifs_tnc_lookup(c, &key, ino);
|
|
if (err)
|
|
goto out_ino;
|
|
|
|
inode->i_flags |= (S_NOCMTIME | S_NOATIME);
|
|
set_nlink(inode, le32_to_cpu(ino->nlink));
|
|
i_uid_write(inode, le32_to_cpu(ino->uid));
|
|
i_gid_write(inode, le32_to_cpu(ino->gid));
|
|
inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
|
|
inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
|
|
inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
|
|
inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
|
|
inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
|
|
inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
|
|
inode->i_mode = le32_to_cpu(ino->mode);
|
|
inode->i_size = le64_to_cpu(ino->size);
|
|
|
|
ui->data_len = le32_to_cpu(ino->data_len);
|
|
ui->flags = le32_to_cpu(ino->flags);
|
|
ui->compr_type = le16_to_cpu(ino->compr_type);
|
|
ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
|
|
ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
|
|
ui->xattr_size = le32_to_cpu(ino->xattr_size);
|
|
ui->xattr_names = le32_to_cpu(ino->xattr_names);
|
|
ui->synced_i_size = ui->ui_size = inode->i_size;
|
|
|
|
ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
|
|
|
|
err = validate_inode(c, inode);
|
|
if (err)
|
|
goto out_invalid;
|
|
|
|
#ifndef __UBOOT__
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
inode->i_mapping->a_ops = &ubifs_file_address_operations;
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
inode->i_fop = &ubifs_file_operations;
|
|
if (ui->xattr) {
|
|
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
|
|
if (!ui->data) {
|
|
err = -ENOMEM;
|
|
goto out_ino;
|
|
}
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
((char *)ui->data)[ui->data_len] = '\0';
|
|
} else if (ui->data_len != 0) {
|
|
err = 10;
|
|
goto out_invalid;
|
|
}
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_op = &ubifs_dir_inode_operations;
|
|
inode->i_fop = &ubifs_dir_operations;
|
|
if (ui->data_len != 0) {
|
|
err = 11;
|
|
goto out_invalid;
|
|
}
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &ubifs_symlink_inode_operations;
|
|
if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
|
|
err = 12;
|
|
goto out_invalid;
|
|
}
|
|
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
|
|
if (!ui->data) {
|
|
err = -ENOMEM;
|
|
goto out_ino;
|
|
}
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
((char *)ui->data)[ui->data_len] = '\0';
|
|
inode->i_link = ui->data;
|
|
break;
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
{
|
|
dev_t rdev;
|
|
union ubifs_dev_desc *dev;
|
|
|
|
ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
|
|
if (!ui->data) {
|
|
err = -ENOMEM;
|
|
goto out_ino;
|
|
}
|
|
|
|
dev = (union ubifs_dev_desc *)ino->data;
|
|
if (ui->data_len == sizeof(dev->new))
|
|
rdev = new_decode_dev(le32_to_cpu(dev->new));
|
|
else if (ui->data_len == sizeof(dev->huge))
|
|
rdev = huge_decode_dev(le64_to_cpu(dev->huge));
|
|
else {
|
|
err = 13;
|
|
goto out_invalid;
|
|
}
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
break;
|
|
}
|
|
case S_IFSOCK:
|
|
case S_IFIFO:
|
|
inode->i_op = &ubifs_file_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, 0);
|
|
if (ui->data_len != 0) {
|
|
err = 14;
|
|
goto out_invalid;
|
|
}
|
|
break;
|
|
default:
|
|
err = 15;
|
|
goto out_invalid;
|
|
}
|
|
#else
|
|
if ((inode->i_mode & S_IFMT) == S_IFLNK) {
|
|
if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
|
|
err = 12;
|
|
goto out_invalid;
|
|
}
|
|
ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
|
|
if (!ui->data) {
|
|
err = -ENOMEM;
|
|
goto out_ino;
|
|
}
|
|
memcpy(ui->data, ino->data, ui->data_len);
|
|
((char *)ui->data)[ui->data_len] = '\0';
|
|
}
|
|
#endif
|
|
|
|
kfree(ino);
|
|
#ifndef __UBOOT__
|
|
ubifs_set_inode_flags(inode);
|
|
#endif
|
|
unlock_new_inode(inode);
|
|
return inode;
|
|
|
|
out_invalid:
|
|
ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
|
|
ubifs_dump_node(c, ino);
|
|
ubifs_dump_inode(c, inode);
|
|
err = -EINVAL;
|
|
out_ino:
|
|
kfree(ino);
|
|
out:
|
|
ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
|
|
iget_failed(inode);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static struct inode *ubifs_alloc_inode(struct super_block *sb)
|
|
{
|
|
struct ubifs_inode *ui;
|
|
|
|
ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
|
|
if (!ui)
|
|
return NULL;
|
|
|
|
memset((void *)ui + sizeof(struct inode), 0,
|
|
sizeof(struct ubifs_inode) - sizeof(struct inode));
|
|
mutex_init(&ui->ui_mutex);
|
|
spin_lock_init(&ui->ui_lock);
|
|
return &ui->vfs_inode;
|
|
};
|
|
|
|
#ifndef __UBOOT__
|
|
static void ubifs_i_callback(struct rcu_head *head)
|
|
{
|
|
struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
kmem_cache_free(ubifs_inode_slab, ui);
|
|
}
|
|
|
|
static void ubifs_destroy_inode(struct inode *inode)
|
|
{
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
kfree(ui->data);
|
|
call_rcu(&inode->i_rcu, ubifs_i_callback);
|
|
}
|
|
|
|
/*
|
|
* Note, Linux write-back code calls this without 'i_mutex'.
|
|
*/
|
|
static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
int err = 0;
|
|
struct ubifs_info *c = inode->i_sb->s_fs_info;
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
ubifs_assert(!ui->xattr);
|
|
if (is_bad_inode(inode))
|
|
return 0;
|
|
|
|
mutex_lock(&ui->ui_mutex);
|
|
/*
|
|
* Due to races between write-back forced by budgeting
|
|
* (see 'sync_some_inodes()') and background write-back, the inode may
|
|
* have already been synchronized, do not do this again. This might
|
|
* also happen if it was synchronized in an VFS operation, e.g.
|
|
* 'ubifs_link()'.
|
|
*/
|
|
if (!ui->dirty) {
|
|
mutex_unlock(&ui->ui_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* As an optimization, do not write orphan inodes to the media just
|
|
* because this is not needed.
|
|
*/
|
|
dbg_gen("inode %lu, mode %#x, nlink %u",
|
|
inode->i_ino, (int)inode->i_mode, inode->i_nlink);
|
|
if (inode->i_nlink) {
|
|
err = ubifs_jnl_write_inode(c, inode);
|
|
if (err)
|
|
ubifs_err(c, "can't write inode %lu, error %d",
|
|
inode->i_ino, err);
|
|
else
|
|
err = dbg_check_inode_size(c, inode, ui->ui_size);
|
|
}
|
|
|
|
ui->dirty = 0;
|
|
mutex_unlock(&ui->ui_mutex);
|
|
ubifs_release_dirty_inode_budget(c, ui);
|
|
return err;
|
|
}
|
|
|
|
static void ubifs_evict_inode(struct inode *inode)
|
|
{
|
|
int err;
|
|
struct ubifs_info *c = inode->i_sb->s_fs_info;
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
if (ui->xattr)
|
|
/*
|
|
* Extended attribute inode deletions are fully handled in
|
|
* 'ubifs_removexattr()'. These inodes are special and have
|
|
* limited usage, so there is nothing to do here.
|
|
*/
|
|
goto out;
|
|
|
|
dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
|
|
ubifs_assert(!atomic_read(&inode->i_count));
|
|
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
|
|
if (inode->i_nlink)
|
|
goto done;
|
|
|
|
if (is_bad_inode(inode))
|
|
goto out;
|
|
|
|
ui->ui_size = inode->i_size = 0;
|
|
err = ubifs_jnl_delete_inode(c, inode);
|
|
if (err)
|
|
/*
|
|
* Worst case we have a lost orphan inode wasting space, so a
|
|
* simple error message is OK here.
|
|
*/
|
|
ubifs_err(c, "can't delete inode %lu, error %d",
|
|
inode->i_ino, err);
|
|
|
|
out:
|
|
if (ui->dirty)
|
|
ubifs_release_dirty_inode_budget(c, ui);
|
|
else {
|
|
/* We've deleted something - clean the "no space" flags */
|
|
c->bi.nospace = c->bi.nospace_rp = 0;
|
|
smp_wmb();
|
|
}
|
|
done:
|
|
clear_inode(inode);
|
|
}
|
|
#endif
|
|
|
|
static void ubifs_dirty_inode(struct inode *inode, int flags)
|
|
{
|
|
struct ubifs_inode *ui = ubifs_inode(inode);
|
|
|
|
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
|
|
if (!ui->dirty) {
|
|
ui->dirty = 1;
|
|
dbg_gen("inode %lu", inode->i_ino);
|
|
}
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
|
|
{
|
|
struct ubifs_info *c = dentry->d_sb->s_fs_info;
|
|
unsigned long long free;
|
|
__le32 *uuid = (__le32 *)c->uuid;
|
|
|
|
free = ubifs_get_free_space(c);
|
|
dbg_gen("free space %lld bytes (%lld blocks)",
|
|
free, free >> UBIFS_BLOCK_SHIFT);
|
|
|
|
buf->f_type = UBIFS_SUPER_MAGIC;
|
|
buf->f_bsize = UBIFS_BLOCK_SIZE;
|
|
buf->f_blocks = c->block_cnt;
|
|
buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
|
|
if (free > c->report_rp_size)
|
|
buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
|
|
else
|
|
buf->f_bavail = 0;
|
|
buf->f_files = 0;
|
|
buf->f_ffree = 0;
|
|
buf->f_namelen = UBIFS_MAX_NLEN;
|
|
buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
|
|
buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
|
|
ubifs_assert(buf->f_bfree <= c->block_cnt);
|
|
return 0;
|
|
}
|
|
|
|
static int ubifs_show_options(struct seq_file *s, struct dentry *root)
|
|
{
|
|
struct ubifs_info *c = root->d_sb->s_fs_info;
|
|
|
|
if (c->mount_opts.unmount_mode == 2)
|
|
seq_puts(s, ",fast_unmount");
|
|
else if (c->mount_opts.unmount_mode == 1)
|
|
seq_puts(s, ",norm_unmount");
|
|
|
|
if (c->mount_opts.bulk_read == 2)
|
|
seq_puts(s, ",bulk_read");
|
|
else if (c->mount_opts.bulk_read == 1)
|
|
seq_puts(s, ",no_bulk_read");
|
|
|
|
if (c->mount_opts.chk_data_crc == 2)
|
|
seq_puts(s, ",chk_data_crc");
|
|
else if (c->mount_opts.chk_data_crc == 1)
|
|
seq_puts(s, ",no_chk_data_crc");
|
|
|
|
if (c->mount_opts.override_compr) {
|
|
seq_printf(s, ",compr=%s",
|
|
ubifs_compr_name(c->mount_opts.compr_type));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ubifs_sync_fs(struct super_block *sb, int wait)
|
|
{
|
|
int i, err;
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
/*
|
|
* Zero @wait is just an advisory thing to help the file system shove
|
|
* lots of data into the queues, and there will be the second
|
|
* '->sync_fs()' call, with non-zero @wait.
|
|
*/
|
|
if (!wait)
|
|
return 0;
|
|
|
|
/*
|
|
* Synchronize write buffers, because 'ubifs_run_commit()' does not
|
|
* do this if it waits for an already running commit.
|
|
*/
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Strictly speaking, it is not necessary to commit the journal here,
|
|
* synchronizing write-buffers would be enough. But committing makes
|
|
* UBIFS free space predictions much more accurate, so we want to let
|
|
* the user be able to get more accurate results of 'statfs()' after
|
|
* they synchronize the file system.
|
|
*/
|
|
err = ubifs_run_commit(c);
|
|
if (err)
|
|
return err;
|
|
|
|
return ubi_sync(c->vi.ubi_num);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* init_constants_early - initialize UBIFS constants.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function initialize UBIFS constants which do not need the superblock to
|
|
* be read. It also checks that the UBI volume satisfies basic UBIFS
|
|
* requirements. Returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int init_constants_early(struct ubifs_info *c)
|
|
{
|
|
if (c->vi.corrupted) {
|
|
ubifs_warn(c, "UBI volume is corrupted - read-only mode");
|
|
c->ro_media = 1;
|
|
}
|
|
|
|
if (c->di.ro_mode) {
|
|
ubifs_msg(c, "read-only UBI device");
|
|
c->ro_media = 1;
|
|
}
|
|
|
|
if (c->vi.vol_type == UBI_STATIC_VOLUME) {
|
|
ubifs_msg(c, "static UBI volume - read-only mode");
|
|
c->ro_media = 1;
|
|
}
|
|
|
|
c->leb_cnt = c->vi.size;
|
|
c->leb_size = c->vi.usable_leb_size;
|
|
c->leb_start = c->di.leb_start;
|
|
c->half_leb_size = c->leb_size / 2;
|
|
c->min_io_size = c->di.min_io_size;
|
|
c->min_io_shift = fls(c->min_io_size) - 1;
|
|
c->max_write_size = c->di.max_write_size;
|
|
c->max_write_shift = fls(c->max_write_size) - 1;
|
|
|
|
if (c->leb_size < UBIFS_MIN_LEB_SZ) {
|
|
ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
|
|
c->leb_size, UBIFS_MIN_LEB_SZ);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
|
|
ubifs_err(c, "too few LEBs (%d), min. is %d",
|
|
c->leb_cnt, UBIFS_MIN_LEB_CNT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_power_of_2(c->min_io_size)) {
|
|
ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Maximum write size has to be greater or equivalent to min. I/O
|
|
* size, and be multiple of min. I/O size.
|
|
*/
|
|
if (c->max_write_size < c->min_io_size ||
|
|
c->max_write_size % c->min_io_size ||
|
|
!is_power_of_2(c->max_write_size)) {
|
|
ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
|
|
c->max_write_size, c->min_io_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* UBIFS aligns all node to 8-byte boundary, so to make function in
|
|
* io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
|
|
* less than 8.
|
|
*/
|
|
if (c->min_io_size < 8) {
|
|
c->min_io_size = 8;
|
|
c->min_io_shift = 3;
|
|
if (c->max_write_size < c->min_io_size) {
|
|
c->max_write_size = c->min_io_size;
|
|
c->max_write_shift = c->min_io_shift;
|
|
}
|
|
}
|
|
|
|
c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
|
|
c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
|
|
|
|
/*
|
|
* Initialize node length ranges which are mostly needed for node
|
|
* length validation.
|
|
*/
|
|
c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
|
|
c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
|
|
c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
|
|
c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
|
|
c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
|
|
c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
|
|
|
|
c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
|
|
c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
|
|
c->ranges[UBIFS_ORPH_NODE].min_len =
|
|
UBIFS_ORPH_NODE_SZ + sizeof(__le64);
|
|
c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
|
|
c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
|
|
c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
|
|
c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
|
|
c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
|
|
c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
|
|
c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
|
|
/*
|
|
* Minimum indexing node size is amended later when superblock is
|
|
* read and the key length is known.
|
|
*/
|
|
c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
|
|
/*
|
|
* Maximum indexing node size is amended later when superblock is
|
|
* read and the fanout is known.
|
|
*/
|
|
c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
|
|
|
|
/*
|
|
* Initialize dead and dark LEB space watermarks. See gc.c for comments
|
|
* about these values.
|
|
*/
|
|
c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
|
|
c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
|
|
|
|
/*
|
|
* Calculate how many bytes would be wasted at the end of LEB if it was
|
|
* fully filled with data nodes of maximum size. This is used in
|
|
* calculations when reporting free space.
|
|
*/
|
|
c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
|
|
|
|
/* Buffer size for bulk-reads */
|
|
c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
|
|
if (c->max_bu_buf_len > c->leb_size)
|
|
c->max_bu_buf_len = c->leb_size;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: LEB the write-buffer was synchronized to
|
|
* @free: how many free bytes left in this LEB
|
|
* @pad: how many bytes were padded
|
|
*
|
|
* This is a callback function which is called by the I/O unit when the
|
|
* write-buffer is synchronized. We need this to correctly maintain space
|
|
* accounting in bud logical eraseblocks. This function returns zero in case of
|
|
* success and a negative error code in case of failure.
|
|
*
|
|
* This function actually belongs to the journal, but we keep it here because
|
|
* we want to keep it static.
|
|
*/
|
|
static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
|
|
{
|
|
return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* init_constants_sb - initialize UBIFS constants.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This is a helper function which initializes various UBIFS constants after
|
|
* the superblock has been read. It also checks various UBIFS parameters and
|
|
* makes sure they are all right. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
static int init_constants_sb(struct ubifs_info *c)
|
|
{
|
|
int tmp, err;
|
|
long long tmp64;
|
|
|
|
c->main_bytes = (long long)c->main_lebs * c->leb_size;
|
|
c->max_znode_sz = sizeof(struct ubifs_znode) +
|
|
c->fanout * sizeof(struct ubifs_zbranch);
|
|
|
|
tmp = ubifs_idx_node_sz(c, 1);
|
|
c->ranges[UBIFS_IDX_NODE].min_len = tmp;
|
|
c->min_idx_node_sz = ALIGN(tmp, 8);
|
|
|
|
tmp = ubifs_idx_node_sz(c, c->fanout);
|
|
c->ranges[UBIFS_IDX_NODE].max_len = tmp;
|
|
c->max_idx_node_sz = ALIGN(tmp, 8);
|
|
|
|
/* Make sure LEB size is large enough to fit full commit */
|
|
tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
|
|
tmp = ALIGN(tmp, c->min_io_size);
|
|
if (tmp > c->leb_size) {
|
|
ubifs_err(c, "too small LEB size %d, at least %d needed",
|
|
c->leb_size, tmp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the log is large enough to fit reference nodes for
|
|
* all buds plus one reserved LEB.
|
|
*/
|
|
tmp64 = c->max_bud_bytes + c->leb_size - 1;
|
|
c->max_bud_cnt = div_u64(tmp64, c->leb_size);
|
|
tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
|
|
tmp /= c->leb_size;
|
|
tmp += 1;
|
|
if (c->log_lebs < tmp) {
|
|
ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
|
|
c->log_lebs, tmp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* When budgeting we assume worst-case scenarios when the pages are not
|
|
* be compressed and direntries are of the maximum size.
|
|
*
|
|
* Note, data, which may be stored in inodes is budgeted separately, so
|
|
* it is not included into 'c->bi.inode_budget'.
|
|
*/
|
|
c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
|
|
c->bi.inode_budget = UBIFS_INO_NODE_SZ;
|
|
c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
|
|
|
|
/*
|
|
* When the amount of flash space used by buds becomes
|
|
* 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
|
|
* The writers are unblocked when the commit is finished. To avoid
|
|
* writers to be blocked UBIFS initiates background commit in advance,
|
|
* when number of bud bytes becomes above the limit defined below.
|
|
*/
|
|
c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
|
|
|
|
/*
|
|
* Ensure minimum journal size. All the bytes in the journal heads are
|
|
* considered to be used, when calculating the current journal usage.
|
|
* Consequently, if the journal is too small, UBIFS will treat it as
|
|
* always full.
|
|
*/
|
|
tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
|
|
if (c->bg_bud_bytes < tmp64)
|
|
c->bg_bud_bytes = tmp64;
|
|
if (c->max_bud_bytes < tmp64 + c->leb_size)
|
|
c->max_bud_bytes = tmp64 + c->leb_size;
|
|
|
|
err = ubifs_calc_lpt_geom(c);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Initialize effective LEB size used in budgeting calculations */
|
|
c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* init_constants_master - initialize UBIFS constants.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This is a helper function which initializes various UBIFS constants after
|
|
* the master node has been read. It also checks various UBIFS parameters and
|
|
* makes sure they are all right.
|
|
*/
|
|
static void init_constants_master(struct ubifs_info *c)
|
|
{
|
|
long long tmp64;
|
|
|
|
c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
|
|
c->report_rp_size = ubifs_reported_space(c, c->rp_size);
|
|
|
|
/*
|
|
* Calculate total amount of FS blocks. This number is not used
|
|
* internally because it does not make much sense for UBIFS, but it is
|
|
* necessary to report something for the 'statfs()' call.
|
|
*
|
|
* Subtract the LEB reserved for GC, the LEB which is reserved for
|
|
* deletions, minimum LEBs for the index, and assume only one journal
|
|
* head is available.
|
|
*/
|
|
tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
|
|
tmp64 *= (long long)c->leb_size - c->leb_overhead;
|
|
tmp64 = ubifs_reported_space(c, tmp64);
|
|
c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* take_gc_lnum - reserve GC LEB.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function ensures that the LEB reserved for garbage collection is marked
|
|
* as "taken" in lprops. We also have to set free space to LEB size and dirty
|
|
* space to zero, because lprops may contain out-of-date information if the
|
|
* file-system was un-mounted before it has been committed. This function
|
|
* returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int take_gc_lnum(struct ubifs_info *c)
|
|
{
|
|
int err;
|
|
|
|
if (c->gc_lnum == -1) {
|
|
ubifs_err(c, "no LEB for GC");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* And we have to tell lprops that this LEB is taken */
|
|
err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
|
|
LPROPS_TAKEN, 0, 0);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* alloc_wbufs - allocate write-buffers.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This helper function allocates and initializes UBIFS write-buffers. Returns
|
|
* zero in case of success and %-ENOMEM in case of failure.
|
|
*/
|
|
static int alloc_wbufs(struct ubifs_info *c)
|
|
{
|
|
int i, err;
|
|
|
|
c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
|
|
GFP_KERNEL);
|
|
if (!c->jheads)
|
|
return -ENOMEM;
|
|
|
|
/* Initialize journal heads */
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
INIT_LIST_HEAD(&c->jheads[i].buds_list);
|
|
err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
|
|
if (err)
|
|
return err;
|
|
|
|
c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
|
|
c->jheads[i].wbuf.jhead = i;
|
|
c->jheads[i].grouped = 1;
|
|
}
|
|
|
|
/*
|
|
* Garbage Collector head does not need to be synchronized by timer.
|
|
* Also GC head nodes are not grouped.
|
|
*/
|
|
c->jheads[GCHD].wbuf.no_timer = 1;
|
|
c->jheads[GCHD].grouped = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* free_wbufs - free write-buffers.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void free_wbufs(struct ubifs_info *c)
|
|
{
|
|
int i;
|
|
|
|
if (c->jheads) {
|
|
for (i = 0; i < c->jhead_cnt; i++) {
|
|
kfree(c->jheads[i].wbuf.buf);
|
|
kfree(c->jheads[i].wbuf.inodes);
|
|
}
|
|
kfree(c->jheads);
|
|
c->jheads = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* free_orphans - free orphans.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void free_orphans(struct ubifs_info *c)
|
|
{
|
|
struct ubifs_orphan *orph;
|
|
|
|
while (c->orph_dnext) {
|
|
orph = c->orph_dnext;
|
|
c->orph_dnext = orph->dnext;
|
|
list_del(&orph->list);
|
|
kfree(orph);
|
|
}
|
|
|
|
while (!list_empty(&c->orph_list)) {
|
|
orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
|
|
list_del(&orph->list);
|
|
kfree(orph);
|
|
ubifs_err(c, "orphan list not empty at unmount");
|
|
}
|
|
|
|
vfree(c->orph_buf);
|
|
c->orph_buf = NULL;
|
|
}
|
|
|
|
/**
|
|
* free_buds - free per-bud objects.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void free_buds(struct ubifs_info *c)
|
|
{
|
|
struct ubifs_bud *bud, *n;
|
|
|
|
rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
|
|
kfree(bud);
|
|
}
|
|
|
|
/**
|
|
* check_volume_empty - check if the UBI volume is empty.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function checks if the UBIFS volume is empty by looking if its LEBs are
|
|
* mapped or not. The result of checking is stored in the @c->empty variable.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int check_volume_empty(struct ubifs_info *c)
|
|
{
|
|
int lnum, err;
|
|
|
|
c->empty = 1;
|
|
for (lnum = 0; lnum < c->leb_cnt; lnum++) {
|
|
err = ubifs_is_mapped(c, lnum);
|
|
if (unlikely(err < 0))
|
|
return err;
|
|
if (err == 1) {
|
|
c->empty = 0;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* UBIFS mount options.
|
|
*
|
|
* Opt_fast_unmount: do not run a journal commit before un-mounting
|
|
* Opt_norm_unmount: run a journal commit before un-mounting
|
|
* Opt_bulk_read: enable bulk-reads
|
|
* Opt_no_bulk_read: disable bulk-reads
|
|
* Opt_chk_data_crc: check CRCs when reading data nodes
|
|
* Opt_no_chk_data_crc: do not check CRCs when reading data nodes
|
|
* Opt_override_compr: override default compressor
|
|
* Opt_err: just end of array marker
|
|
*/
|
|
enum {
|
|
Opt_fast_unmount,
|
|
Opt_norm_unmount,
|
|
Opt_bulk_read,
|
|
Opt_no_bulk_read,
|
|
Opt_chk_data_crc,
|
|
Opt_no_chk_data_crc,
|
|
Opt_override_compr,
|
|
Opt_err,
|
|
};
|
|
|
|
#ifndef __UBOOT__
|
|
static const match_table_t tokens = {
|
|
{Opt_fast_unmount, "fast_unmount"},
|
|
{Opt_norm_unmount, "norm_unmount"},
|
|
{Opt_bulk_read, "bulk_read"},
|
|
{Opt_no_bulk_read, "no_bulk_read"},
|
|
{Opt_chk_data_crc, "chk_data_crc"},
|
|
{Opt_no_chk_data_crc, "no_chk_data_crc"},
|
|
{Opt_override_compr, "compr=%s"},
|
|
{Opt_err, NULL},
|
|
};
|
|
|
|
/**
|
|
* parse_standard_option - parse a standard mount option.
|
|
* @option: the option to parse
|
|
*
|
|
* Normally, standard mount options like "sync" are passed to file-systems as
|
|
* flags. However, when a "rootflags=" kernel boot parameter is used, they may
|
|
* be present in the options string. This function tries to deal with this
|
|
* situation and parse standard options. Returns 0 if the option was not
|
|
* recognized, and the corresponding integer flag if it was.
|
|
*
|
|
* UBIFS is only interested in the "sync" option, so do not check for anything
|
|
* else.
|
|
*/
|
|
static int parse_standard_option(const char *option)
|
|
{
|
|
|
|
pr_notice("UBIFS: parse %s\n", option);
|
|
if (!strcmp(option, "sync"))
|
|
return MS_SYNCHRONOUS;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubifs_parse_options - parse mount parameters.
|
|
* @c: UBIFS file-system description object
|
|
* @options: parameters to parse
|
|
* @is_remount: non-zero if this is FS re-mount
|
|
*
|
|
* This function parses UBIFS mount options and returns zero in case success
|
|
* and a negative error code in case of failure.
|
|
*/
|
|
static int ubifs_parse_options(struct ubifs_info *c, char *options,
|
|
int is_remount)
|
|
{
|
|
char *p;
|
|
substring_t args[MAX_OPT_ARGS];
|
|
|
|
if (!options)
|
|
return 0;
|
|
|
|
while ((p = strsep(&options, ","))) {
|
|
int token;
|
|
|
|
if (!*p)
|
|
continue;
|
|
|
|
token = match_token(p, tokens, args);
|
|
switch (token) {
|
|
/*
|
|
* %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
|
|
* We accept them in order to be backward-compatible. But this
|
|
* should be removed at some point.
|
|
*/
|
|
case Opt_fast_unmount:
|
|
c->mount_opts.unmount_mode = 2;
|
|
break;
|
|
case Opt_norm_unmount:
|
|
c->mount_opts.unmount_mode = 1;
|
|
break;
|
|
case Opt_bulk_read:
|
|
c->mount_opts.bulk_read = 2;
|
|
c->bulk_read = 1;
|
|
break;
|
|
case Opt_no_bulk_read:
|
|
c->mount_opts.bulk_read = 1;
|
|
c->bulk_read = 0;
|
|
break;
|
|
case Opt_chk_data_crc:
|
|
c->mount_opts.chk_data_crc = 2;
|
|
c->no_chk_data_crc = 0;
|
|
break;
|
|
case Opt_no_chk_data_crc:
|
|
c->mount_opts.chk_data_crc = 1;
|
|
c->no_chk_data_crc = 1;
|
|
break;
|
|
case Opt_override_compr:
|
|
{
|
|
char *name = match_strdup(&args[0]);
|
|
|
|
if (!name)
|
|
return -ENOMEM;
|
|
if (!strcmp(name, "none"))
|
|
c->mount_opts.compr_type = UBIFS_COMPR_NONE;
|
|
else if (!strcmp(name, "lzo"))
|
|
c->mount_opts.compr_type = UBIFS_COMPR_LZO;
|
|
else if (!strcmp(name, "zlib"))
|
|
c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
|
|
else {
|
|
ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
|
|
kfree(name);
|
|
return -EINVAL;
|
|
}
|
|
kfree(name);
|
|
c->mount_opts.override_compr = 1;
|
|
c->default_compr = c->mount_opts.compr_type;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
unsigned long flag;
|
|
struct super_block *sb = c->vfs_sb;
|
|
|
|
flag = parse_standard_option(p);
|
|
if (!flag) {
|
|
ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
|
|
p);
|
|
return -EINVAL;
|
|
}
|
|
sb->s_flags |= flag;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* destroy_journal - destroy journal data structures.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function destroys journal data structures including those that may have
|
|
* been created by recovery functions.
|
|
*/
|
|
static void destroy_journal(struct ubifs_info *c)
|
|
{
|
|
while (!list_empty(&c->unclean_leb_list)) {
|
|
struct ubifs_unclean_leb *ucleb;
|
|
|
|
ucleb = list_entry(c->unclean_leb_list.next,
|
|
struct ubifs_unclean_leb, list);
|
|
list_del(&ucleb->list);
|
|
kfree(ucleb);
|
|
}
|
|
while (!list_empty(&c->old_buds)) {
|
|
struct ubifs_bud *bud;
|
|
|
|
bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
|
|
list_del(&bud->list);
|
|
kfree(bud);
|
|
}
|
|
ubifs_destroy_idx_gc(c);
|
|
ubifs_destroy_size_tree(c);
|
|
ubifs_tnc_close(c);
|
|
free_buds(c);
|
|
}
|
|
|
|
/**
|
|
* bu_init - initialize bulk-read information.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void bu_init(struct ubifs_info *c)
|
|
{
|
|
ubifs_assert(c->bulk_read == 1);
|
|
|
|
if (c->bu.buf)
|
|
return; /* Already initialized */
|
|
|
|
again:
|
|
c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!c->bu.buf) {
|
|
if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
|
|
c->max_bu_buf_len = UBIFS_KMALLOC_OK;
|
|
goto again;
|
|
}
|
|
|
|
/* Just disable bulk-read */
|
|
ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
|
|
c->max_bu_buf_len);
|
|
c->mount_opts.bulk_read = 1;
|
|
c->bulk_read = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
/**
|
|
* check_free_space - check if there is enough free space to mount.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function makes sure UBIFS has enough free space to be mounted in
|
|
* read/write mode. UBIFS must always have some free space to allow deletions.
|
|
*/
|
|
static int check_free_space(struct ubifs_info *c)
|
|
{
|
|
ubifs_assert(c->dark_wm > 0);
|
|
if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
|
|
ubifs_err(c, "insufficient free space to mount in R/W mode");
|
|
ubifs_dump_budg(c, &c->bi);
|
|
ubifs_dump_lprops(c);
|
|
return -ENOSPC;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* mount_ubifs - mount UBIFS file-system.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function mounts UBIFS file system. Returns zero in case of success and
|
|
* a negative error code in case of failure.
|
|
*/
|
|
static int mount_ubifs(struct ubifs_info *c)
|
|
{
|
|
int err;
|
|
long long x;
|
|
#ifndef CONFIG_UBIFS_SILENCE_MSG
|
|
long long y;
|
|
#endif
|
|
size_t sz;
|
|
|
|
c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
|
|
/* Suppress error messages while probing if MS_SILENT is set */
|
|
c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
|
|
#ifdef __UBOOT__
|
|
if (!c->ro_mount) {
|
|
printf("UBIFS: only ro mode in U-Boot allowed.\n");
|
|
return -EACCES;
|
|
}
|
|
#endif
|
|
|
|
err = init_constants_early(c);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ubifs_debugging_init(c);
|
|
if (err)
|
|
return err;
|
|
|
|
err = check_volume_empty(c);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
if (c->empty && (c->ro_mount || c->ro_media)) {
|
|
/*
|
|
* This UBI volume is empty, and read-only, or the file system
|
|
* is mounted read-only - we cannot format it.
|
|
*/
|
|
ubifs_err(c, "can't format empty UBI volume: read-only %s",
|
|
c->ro_media ? "UBI volume" : "mount");
|
|
err = -EROFS;
|
|
goto out_free;
|
|
}
|
|
|
|
if (c->ro_media && !c->ro_mount) {
|
|
ubifs_err(c, "cannot mount read-write - read-only media");
|
|
err = -EROFS;
|
|
goto out_free;
|
|
}
|
|
|
|
/*
|
|
* The requirement for the buffer is that it should fit indexing B-tree
|
|
* height amount of integers. We assume the height if the TNC tree will
|
|
* never exceed 64.
|
|
*/
|
|
err = -ENOMEM;
|
|
c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
|
|
if (!c->bottom_up_buf)
|
|
goto out_free;
|
|
|
|
c->sbuf = vmalloc(c->leb_size);
|
|
if (!c->sbuf)
|
|
goto out_free;
|
|
|
|
#ifndef __UBOOT__
|
|
if (!c->ro_mount) {
|
|
c->ileb_buf = vmalloc(c->leb_size);
|
|
if (!c->ileb_buf)
|
|
goto out_free;
|
|
}
|
|
#endif
|
|
|
|
if (c->bulk_read == 1)
|
|
bu_init(c);
|
|
|
|
#ifndef __UBOOT__
|
|
if (!c->ro_mount) {
|
|
c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
|
|
GFP_KERNEL);
|
|
if (!c->write_reserve_buf)
|
|
goto out_free;
|
|
}
|
|
#endif
|
|
|
|
c->mounting = 1;
|
|
|
|
err = ubifs_read_superblock(c);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
c->probing = 0;
|
|
|
|
/*
|
|
* Make sure the compressor which is set as default in the superblock
|
|
* or overridden by mount options is actually compiled in.
|
|
*/
|
|
if (!ubifs_compr_present(c->default_compr)) {
|
|
ubifs_err(c, "'compressor \"%s\" is not compiled in",
|
|
ubifs_compr_name(c->default_compr));
|
|
err = -ENOTSUPP;
|
|
goto out_free;
|
|
}
|
|
|
|
err = init_constants_sb(c);
|
|
if (err)
|
|
goto out_free;
|
|
|
|
sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
|
|
sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
|
|
c->cbuf = kmalloc(sz, GFP_NOFS);
|
|
if (!c->cbuf) {
|
|
err = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
err = alloc_wbufs(c);
|
|
if (err)
|
|
goto out_cbuf;
|
|
|
|
sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
|
|
#ifndef __UBOOT__
|
|
if (!c->ro_mount) {
|
|
/* Create background thread */
|
|
c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
|
|
if (IS_ERR(c->bgt)) {
|
|
err = PTR_ERR(c->bgt);
|
|
c->bgt = NULL;
|
|
ubifs_err(c, "cannot spawn \"%s\", error %d",
|
|
c->bgt_name, err);
|
|
goto out_wbufs;
|
|
}
|
|
wake_up_process(c->bgt);
|
|
}
|
|
#endif
|
|
|
|
err = ubifs_read_master(c);
|
|
if (err)
|
|
goto out_master;
|
|
|
|
init_constants_master(c);
|
|
|
|
if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
|
|
ubifs_msg(c, "recovery needed");
|
|
c->need_recovery = 1;
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
if (c->need_recovery && !c->ro_mount) {
|
|
err = ubifs_recover_inl_heads(c, c->sbuf);
|
|
if (err)
|
|
goto out_master;
|
|
}
|
|
#endif
|
|
|
|
err = ubifs_lpt_init(c, 1, !c->ro_mount);
|
|
if (err)
|
|
goto out_master;
|
|
|
|
#ifndef __UBOOT__
|
|
if (!c->ro_mount && c->space_fixup) {
|
|
err = ubifs_fixup_free_space(c);
|
|
if (err)
|
|
goto out_lpt;
|
|
}
|
|
|
|
if (!c->ro_mount && !c->need_recovery) {
|
|
/*
|
|
* Set the "dirty" flag so that if we reboot uncleanly we
|
|
* will notice this immediately on the next mount.
|
|
*/
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
|
|
err = ubifs_write_master(c);
|
|
if (err)
|
|
goto out_lpt;
|
|
}
|
|
#endif
|
|
|
|
err = dbg_check_idx_size(c, c->bi.old_idx_sz);
|
|
if (err)
|
|
goto out_lpt;
|
|
|
|
err = ubifs_replay_journal(c);
|
|
if (err)
|
|
goto out_journal;
|
|
|
|
/* Calculate 'min_idx_lebs' after journal replay */
|
|
c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
|
|
|
|
err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
|
|
if (err)
|
|
goto out_orphans;
|
|
|
|
if (!c->ro_mount) {
|
|
#ifndef __UBOOT__
|
|
int lnum;
|
|
|
|
err = check_free_space(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
|
|
/* Check for enough log space */
|
|
lnum = c->lhead_lnum + 1;
|
|
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
|
|
lnum = UBIFS_LOG_LNUM;
|
|
if (lnum == c->ltail_lnum) {
|
|
err = ubifs_consolidate_log(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
}
|
|
|
|
if (c->need_recovery) {
|
|
err = ubifs_recover_size(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
err = ubifs_rcvry_gc_commit(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
} else {
|
|
err = take_gc_lnum(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
|
|
/*
|
|
* GC LEB may contain garbage if there was an unclean
|
|
* reboot, and it should be un-mapped.
|
|
*/
|
|
err = ubifs_leb_unmap(c, c->gc_lnum);
|
|
if (err)
|
|
goto out_orphans;
|
|
}
|
|
|
|
err = dbg_check_lprops(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
#endif
|
|
} else if (c->need_recovery) {
|
|
err = ubifs_recover_size(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
} else {
|
|
/*
|
|
* Even if we mount read-only, we have to set space in GC LEB
|
|
* to proper value because this affects UBIFS free space
|
|
* reporting. We do not want to have a situation when
|
|
* re-mounting from R/O to R/W changes amount of free space.
|
|
*/
|
|
err = take_gc_lnum(c);
|
|
if (err)
|
|
goto out_orphans;
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
spin_lock(&ubifs_infos_lock);
|
|
list_add_tail(&c->infos_list, &ubifs_infos);
|
|
spin_unlock(&ubifs_infos_lock);
|
|
#endif
|
|
|
|
if (c->need_recovery) {
|
|
if (c->ro_mount)
|
|
ubifs_msg(c, "recovery deferred");
|
|
else {
|
|
c->need_recovery = 0;
|
|
ubifs_msg(c, "recovery completed");
|
|
/*
|
|
* GC LEB has to be empty and taken at this point. But
|
|
* the journal head LEBs may also be accounted as
|
|
* "empty taken" if they are empty.
|
|
*/
|
|
ubifs_assert(c->lst.taken_empty_lebs > 0);
|
|
}
|
|
} else
|
|
ubifs_assert(c->lst.taken_empty_lebs > 0);
|
|
|
|
err = dbg_check_filesystem(c);
|
|
if (err)
|
|
goto out_infos;
|
|
|
|
err = dbg_debugfs_init_fs(c);
|
|
if (err)
|
|
goto out_infos;
|
|
|
|
c->mounting = 0;
|
|
|
|
ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
|
|
c->vi.ubi_num, c->vi.vol_id, c->vi.name,
|
|
c->ro_mount ? ", R/O mode" : "");
|
|
x = (long long)c->main_lebs * c->leb_size;
|
|
#ifndef CONFIG_UBIFS_SILENCE_MSG
|
|
y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
|
|
#endif
|
|
ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
|
|
c->leb_size, c->leb_size >> 10, c->min_io_size,
|
|
c->max_write_size);
|
|
ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
|
|
x, x >> 20, c->main_lebs,
|
|
y, y >> 20, c->log_lebs + c->max_bud_cnt);
|
|
ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
|
|
c->report_rp_size, c->report_rp_size >> 10);
|
|
ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
|
|
c->fmt_version, c->ro_compat_version,
|
|
UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
|
|
c->big_lpt ? ", big LPT model" : ", small LPT model");
|
|
|
|
dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
|
|
dbg_gen("data journal heads: %d",
|
|
c->jhead_cnt - NONDATA_JHEADS_CNT);
|
|
dbg_gen("log LEBs: %d (%d - %d)",
|
|
c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
|
|
dbg_gen("LPT area LEBs: %d (%d - %d)",
|
|
c->lpt_lebs, c->lpt_first, c->lpt_last);
|
|
dbg_gen("orphan area LEBs: %d (%d - %d)",
|
|
c->orph_lebs, c->orph_first, c->orph_last);
|
|
dbg_gen("main area LEBs: %d (%d - %d)",
|
|
c->main_lebs, c->main_first, c->leb_cnt - 1);
|
|
dbg_gen("index LEBs: %d", c->lst.idx_lebs);
|
|
dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
|
|
c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
|
|
c->bi.old_idx_sz >> 20);
|
|
dbg_gen("key hash type: %d", c->key_hash_type);
|
|
dbg_gen("tree fanout: %d", c->fanout);
|
|
dbg_gen("reserved GC LEB: %d", c->gc_lnum);
|
|
dbg_gen("max. znode size %d", c->max_znode_sz);
|
|
dbg_gen("max. index node size %d", c->max_idx_node_sz);
|
|
dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
|
|
UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
|
|
dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
|
|
UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
|
|
dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
|
|
UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
|
|
dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
|
|
UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
|
|
UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
|
|
dbg_gen("dead watermark: %d", c->dead_wm);
|
|
dbg_gen("dark watermark: %d", c->dark_wm);
|
|
dbg_gen("LEB overhead: %d", c->leb_overhead);
|
|
x = (long long)c->main_lebs * c->dark_wm;
|
|
dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
|
|
x, x >> 10, x >> 20);
|
|
dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
|
|
c->max_bud_bytes, c->max_bud_bytes >> 10,
|
|
c->max_bud_bytes >> 20);
|
|
dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
|
|
c->bg_bud_bytes, c->bg_bud_bytes >> 10,
|
|
c->bg_bud_bytes >> 20);
|
|
dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
|
|
c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
|
|
dbg_gen("max. seq. number: %llu", c->max_sqnum);
|
|
dbg_gen("commit number: %llu", c->cmt_no);
|
|
|
|
return 0;
|
|
|
|
out_infos:
|
|
spin_lock(&ubifs_infos_lock);
|
|
list_del(&c->infos_list);
|
|
spin_unlock(&ubifs_infos_lock);
|
|
out_orphans:
|
|
free_orphans(c);
|
|
out_journal:
|
|
destroy_journal(c);
|
|
out_lpt:
|
|
ubifs_lpt_free(c, 0);
|
|
out_master:
|
|
kfree(c->mst_node);
|
|
kfree(c->rcvrd_mst_node);
|
|
if (c->bgt)
|
|
kthread_stop(c->bgt);
|
|
#ifndef __UBOOT__
|
|
out_wbufs:
|
|
#endif
|
|
free_wbufs(c);
|
|
out_cbuf:
|
|
kfree(c->cbuf);
|
|
out_free:
|
|
kfree(c->write_reserve_buf);
|
|
kfree(c->bu.buf);
|
|
vfree(c->ileb_buf);
|
|
vfree(c->sbuf);
|
|
kfree(c->bottom_up_buf);
|
|
ubifs_debugging_exit(c);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubifs_umount - un-mount UBIFS file-system.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* Note, this function is called to free allocated resourced when un-mounting,
|
|
* as well as free resources when an error occurred while we were half way
|
|
* through mounting (error path cleanup function). So it has to make sure the
|
|
* resource was actually allocated before freeing it.
|
|
*/
|
|
#ifndef __UBOOT__
|
|
static void ubifs_umount(struct ubifs_info *c)
|
|
#else
|
|
void ubifs_umount(struct ubifs_info *c)
|
|
#endif
|
|
{
|
|
dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
|
|
c->vi.vol_id);
|
|
|
|
dbg_debugfs_exit_fs(c);
|
|
spin_lock(&ubifs_infos_lock);
|
|
list_del(&c->infos_list);
|
|
spin_unlock(&ubifs_infos_lock);
|
|
|
|
#ifndef __UBOOT__
|
|
if (c->bgt)
|
|
kthread_stop(c->bgt);
|
|
|
|
destroy_journal(c);
|
|
#endif
|
|
free_wbufs(c);
|
|
free_orphans(c);
|
|
ubifs_lpt_free(c, 0);
|
|
|
|
kfree(c->cbuf);
|
|
kfree(c->rcvrd_mst_node);
|
|
kfree(c->mst_node);
|
|
kfree(c->write_reserve_buf);
|
|
kfree(c->bu.buf);
|
|
vfree(c->ileb_buf);
|
|
vfree(c->sbuf);
|
|
kfree(c->bottom_up_buf);
|
|
ubifs_debugging_exit(c);
|
|
#ifdef __UBOOT__
|
|
ubi_close_volume(c->ubi);
|
|
mutex_unlock(&c->umount_mutex);
|
|
/* Finally free U-Boot's global copy of superblock */
|
|
if (ubifs_sb != NULL) {
|
|
free(ubifs_sb->s_fs_info);
|
|
free(ubifs_sb);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
/**
|
|
* ubifs_remount_rw - re-mount in read-write mode.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* UBIFS avoids allocating many unnecessary resources when mounted in read-only
|
|
* mode. This function allocates the needed resources and re-mounts UBIFS in
|
|
* read-write mode.
|
|
*/
|
|
static int ubifs_remount_rw(struct ubifs_info *c)
|
|
{
|
|
int err, lnum;
|
|
|
|
if (c->rw_incompat) {
|
|
ubifs_err(c, "the file-system is not R/W-compatible");
|
|
ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
|
|
c->fmt_version, c->ro_compat_version,
|
|
UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
|
|
return -EROFS;
|
|
}
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
dbg_save_space_info(c);
|
|
c->remounting_rw = 1;
|
|
c->ro_mount = 0;
|
|
|
|
if (c->space_fixup) {
|
|
err = ubifs_fixup_free_space(c);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
err = check_free_space(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (c->old_leb_cnt != c->leb_cnt) {
|
|
struct ubifs_sb_node *sup;
|
|
|
|
sup = ubifs_read_sb_node(c);
|
|
if (IS_ERR(sup)) {
|
|
err = PTR_ERR(sup);
|
|
goto out;
|
|
}
|
|
sup->leb_cnt = cpu_to_le32(c->leb_cnt);
|
|
err = ubifs_write_sb_node(c, sup);
|
|
kfree(sup);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (c->need_recovery) {
|
|
ubifs_msg(c, "completing deferred recovery");
|
|
err = ubifs_write_rcvrd_mst_node(c);
|
|
if (err)
|
|
goto out;
|
|
err = ubifs_recover_size(c);
|
|
if (err)
|
|
goto out;
|
|
err = ubifs_clean_lebs(c, c->sbuf);
|
|
if (err)
|
|
goto out;
|
|
err = ubifs_recover_inl_heads(c, c->sbuf);
|
|
if (err)
|
|
goto out;
|
|
} else {
|
|
/* A readonly mount is not allowed to have orphans */
|
|
ubifs_assert(c->tot_orphans == 0);
|
|
err = ubifs_clear_orphans(c);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
|
|
err = ubifs_write_master(c);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
c->ileb_buf = vmalloc(c->leb_size);
|
|
if (!c->ileb_buf) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
|
|
if (!c->write_reserve_buf) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = ubifs_lpt_init(c, 0, 1);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Create background thread */
|
|
c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
|
|
if (IS_ERR(c->bgt)) {
|
|
err = PTR_ERR(c->bgt);
|
|
c->bgt = NULL;
|
|
ubifs_err(c, "cannot spawn \"%s\", error %d",
|
|
c->bgt_name, err);
|
|
goto out;
|
|
}
|
|
wake_up_process(c->bgt);
|
|
|
|
c->orph_buf = vmalloc(c->leb_size);
|
|
if (!c->orph_buf) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Check for enough log space */
|
|
lnum = c->lhead_lnum + 1;
|
|
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
|
|
lnum = UBIFS_LOG_LNUM;
|
|
if (lnum == c->ltail_lnum) {
|
|
err = ubifs_consolidate_log(c);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (c->need_recovery)
|
|
err = ubifs_rcvry_gc_commit(c);
|
|
else
|
|
err = ubifs_leb_unmap(c, c->gc_lnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
dbg_gen("re-mounted read-write");
|
|
c->remounting_rw = 0;
|
|
|
|
if (c->need_recovery) {
|
|
c->need_recovery = 0;
|
|
ubifs_msg(c, "deferred recovery completed");
|
|
} else {
|
|
/*
|
|
* Do not run the debugging space check if the were doing
|
|
* recovery, because when we saved the information we had the
|
|
* file-system in a state where the TNC and lprops has been
|
|
* modified in memory, but all the I/O operations (including a
|
|
* commit) were deferred. So the file-system was in
|
|
* "non-committed" state. Now the file-system is in committed
|
|
* state, and of course the amount of free space will change
|
|
* because, for example, the old index size was imprecise.
|
|
*/
|
|
err = dbg_check_space_info(c);
|
|
}
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
return err;
|
|
|
|
out:
|
|
c->ro_mount = 1;
|
|
vfree(c->orph_buf);
|
|
c->orph_buf = NULL;
|
|
if (c->bgt) {
|
|
kthread_stop(c->bgt);
|
|
c->bgt = NULL;
|
|
}
|
|
free_wbufs(c);
|
|
kfree(c->write_reserve_buf);
|
|
c->write_reserve_buf = NULL;
|
|
vfree(c->ileb_buf);
|
|
c->ileb_buf = NULL;
|
|
ubifs_lpt_free(c, 1);
|
|
c->remounting_rw = 0;
|
|
mutex_unlock(&c->umount_mutex);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubifs_remount_ro - re-mount in read-only mode.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* We assume VFS has stopped writing. Possibly the background thread could be
|
|
* running a commit, however kthread_stop will wait in that case.
|
|
*/
|
|
static void ubifs_remount_ro(struct ubifs_info *c)
|
|
{
|
|
int i, err;
|
|
|
|
ubifs_assert(!c->need_recovery);
|
|
ubifs_assert(!c->ro_mount);
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
if (c->bgt) {
|
|
kthread_stop(c->bgt);
|
|
c->bgt = NULL;
|
|
}
|
|
|
|
dbg_save_space_info(c);
|
|
|
|
for (i = 0; i < c->jhead_cnt; i++)
|
|
ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
|
|
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
|
|
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
|
|
err = ubifs_write_master(c);
|
|
if (err)
|
|
ubifs_ro_mode(c, err);
|
|
|
|
vfree(c->orph_buf);
|
|
c->orph_buf = NULL;
|
|
kfree(c->write_reserve_buf);
|
|
c->write_reserve_buf = NULL;
|
|
vfree(c->ileb_buf);
|
|
c->ileb_buf = NULL;
|
|
ubifs_lpt_free(c, 1);
|
|
c->ro_mount = 1;
|
|
err = dbg_check_space_info(c);
|
|
if (err)
|
|
ubifs_ro_mode(c, err);
|
|
mutex_unlock(&c->umount_mutex);
|
|
}
|
|
|
|
static void ubifs_put_super(struct super_block *sb)
|
|
{
|
|
int i;
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
|
|
|
|
/*
|
|
* The following asserts are only valid if there has not been a failure
|
|
* of the media. For example, there will be dirty inodes if we failed
|
|
* to write them back because of I/O errors.
|
|
*/
|
|
if (!c->ro_error) {
|
|
ubifs_assert(c->bi.idx_growth == 0);
|
|
ubifs_assert(c->bi.dd_growth == 0);
|
|
ubifs_assert(c->bi.data_growth == 0);
|
|
}
|
|
|
|
/*
|
|
* The 'c->umount_lock' prevents races between UBIFS memory shrinker
|
|
* and file system un-mount. Namely, it prevents the shrinker from
|
|
* picking this superblock for shrinking - it will be just skipped if
|
|
* the mutex is locked.
|
|
*/
|
|
mutex_lock(&c->umount_mutex);
|
|
if (!c->ro_mount) {
|
|
/*
|
|
* First of all kill the background thread to make sure it does
|
|
* not interfere with un-mounting and freeing resources.
|
|
*/
|
|
if (c->bgt) {
|
|
kthread_stop(c->bgt);
|
|
c->bgt = NULL;
|
|
}
|
|
|
|
/*
|
|
* On fatal errors c->ro_error is set to 1, in which case we do
|
|
* not write the master node.
|
|
*/
|
|
if (!c->ro_error) {
|
|
int err;
|
|
|
|
/* Synchronize write-buffers */
|
|
for (i = 0; i < c->jhead_cnt; i++)
|
|
ubifs_wbuf_sync(&c->jheads[i].wbuf);
|
|
|
|
/*
|
|
* We are being cleanly unmounted which means the
|
|
* orphans were killed - indicate this in the master
|
|
* node. Also save the reserved GC LEB number.
|
|
*/
|
|
c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
|
|
c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
|
|
c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
|
|
err = ubifs_write_master(c);
|
|
if (err)
|
|
/*
|
|
* Recovery will attempt to fix the master area
|
|
* next mount, so we just print a message and
|
|
* continue to unmount normally.
|
|
*/
|
|
ubifs_err(c, "failed to write master node, error %d",
|
|
err);
|
|
} else {
|
|
#ifndef __UBOOT__
|
|
for (i = 0; i < c->jhead_cnt; i++)
|
|
/* Make sure write-buffer timers are canceled */
|
|
hrtimer_cancel(&c->jheads[i].wbuf.timer);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
ubifs_umount(c);
|
|
#ifndef __UBOOT__
|
|
bdi_destroy(&c->bdi);
|
|
ubi_close_volume(c->ubi);
|
|
mutex_unlock(&c->umount_mutex);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifndef __UBOOT__
|
|
static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
|
|
{
|
|
int err;
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
sync_filesystem(sb);
|
|
dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
|
|
|
|
err = ubifs_parse_options(c, data, 1);
|
|
if (err) {
|
|
ubifs_err(c, "invalid or unknown remount parameter");
|
|
return err;
|
|
}
|
|
|
|
if (c->ro_mount && !(*flags & MS_RDONLY)) {
|
|
if (c->ro_error) {
|
|
ubifs_msg(c, "cannot re-mount R/W due to prior errors");
|
|
return -EROFS;
|
|
}
|
|
if (c->ro_media) {
|
|
ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
|
|
return -EROFS;
|
|
}
|
|
err = ubifs_remount_rw(c);
|
|
if (err)
|
|
return err;
|
|
} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
|
|
if (c->ro_error) {
|
|
ubifs_msg(c, "cannot re-mount R/O due to prior errors");
|
|
return -EROFS;
|
|
}
|
|
ubifs_remount_ro(c);
|
|
}
|
|
|
|
if (c->bulk_read == 1)
|
|
bu_init(c);
|
|
else {
|
|
dbg_gen("disable bulk-read");
|
|
kfree(c->bu.buf);
|
|
c->bu.buf = NULL;
|
|
}
|
|
|
|
ubifs_assert(c->lst.taken_empty_lebs > 0);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
const struct super_operations ubifs_super_operations = {
|
|
.alloc_inode = ubifs_alloc_inode,
|
|
#ifndef __UBOOT__
|
|
.destroy_inode = ubifs_destroy_inode,
|
|
.put_super = ubifs_put_super,
|
|
.write_inode = ubifs_write_inode,
|
|
.evict_inode = ubifs_evict_inode,
|
|
.statfs = ubifs_statfs,
|
|
#endif
|
|
.dirty_inode = ubifs_dirty_inode,
|
|
#ifndef __UBOOT__
|
|
.remount_fs = ubifs_remount_fs,
|
|
.show_options = ubifs_show_options,
|
|
.sync_fs = ubifs_sync_fs,
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* open_ubi - parse UBI device name string and open the UBI device.
|
|
* @name: UBI volume name
|
|
* @mode: UBI volume open mode
|
|
*
|
|
* The primary method of mounting UBIFS is by specifying the UBI volume
|
|
* character device node path. However, UBIFS may also be mounted withoug any
|
|
* character device node using one of the following methods:
|
|
*
|
|
* o ubiX_Y - mount UBI device number X, volume Y;
|
|
* o ubiY - mount UBI device number 0, volume Y;
|
|
* o ubiX:NAME - mount UBI device X, volume with name NAME;
|
|
* o ubi:NAME - mount UBI device 0, volume with name NAME.
|
|
*
|
|
* Alternative '!' separator may be used instead of ':' (because some shells
|
|
* like busybox may interpret ':' as an NFS host name separator). This function
|
|
* returns UBI volume description object in case of success and a negative
|
|
* error code in case of failure.
|
|
*/
|
|
static struct ubi_volume_desc *open_ubi(const char *name, int mode)
|
|
{
|
|
#ifndef __UBOOT__
|
|
struct ubi_volume_desc *ubi;
|
|
#endif
|
|
int dev, vol;
|
|
char *endptr;
|
|
|
|
#ifndef __UBOOT__
|
|
/* First, try to open using the device node path method */
|
|
ubi = ubi_open_volume_path(name, mode);
|
|
if (!IS_ERR(ubi))
|
|
return ubi;
|
|
#endif
|
|
|
|
/* Try the "nodev" method */
|
|
if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* ubi:NAME method */
|
|
if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
|
|
return ubi_open_volume_nm(0, name + 4, mode);
|
|
|
|
if (!isdigit(name[3]))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
dev = simple_strtoul(name + 3, &endptr, 0);
|
|
|
|
/* ubiY method */
|
|
if (*endptr == '\0')
|
|
return ubi_open_volume(0, dev, mode);
|
|
|
|
/* ubiX_Y method */
|
|
if (*endptr == '_' && isdigit(endptr[1])) {
|
|
vol = simple_strtoul(endptr + 1, &endptr, 0);
|
|
if (*endptr != '\0')
|
|
return ERR_PTR(-EINVAL);
|
|
return ubi_open_volume(dev, vol, mode);
|
|
}
|
|
|
|
/* ubiX:NAME method */
|
|
if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
|
|
return ubi_open_volume_nm(dev, ++endptr, mode);
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
|
|
{
|
|
struct ubifs_info *c;
|
|
|
|
c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
|
|
if (c) {
|
|
spin_lock_init(&c->cnt_lock);
|
|
spin_lock_init(&c->cs_lock);
|
|
spin_lock_init(&c->buds_lock);
|
|
spin_lock_init(&c->space_lock);
|
|
spin_lock_init(&c->orphan_lock);
|
|
init_rwsem(&c->commit_sem);
|
|
mutex_init(&c->lp_mutex);
|
|
mutex_init(&c->tnc_mutex);
|
|
mutex_init(&c->log_mutex);
|
|
mutex_init(&c->umount_mutex);
|
|
mutex_init(&c->bu_mutex);
|
|
mutex_init(&c->write_reserve_mutex);
|
|
init_waitqueue_head(&c->cmt_wq);
|
|
c->buds = RB_ROOT;
|
|
c->old_idx = RB_ROOT;
|
|
c->size_tree = RB_ROOT;
|
|
c->orph_tree = RB_ROOT;
|
|
INIT_LIST_HEAD(&c->infos_list);
|
|
INIT_LIST_HEAD(&c->idx_gc);
|
|
INIT_LIST_HEAD(&c->replay_list);
|
|
INIT_LIST_HEAD(&c->replay_buds);
|
|
INIT_LIST_HEAD(&c->uncat_list);
|
|
INIT_LIST_HEAD(&c->empty_list);
|
|
INIT_LIST_HEAD(&c->freeable_list);
|
|
INIT_LIST_HEAD(&c->frdi_idx_list);
|
|
INIT_LIST_HEAD(&c->unclean_leb_list);
|
|
INIT_LIST_HEAD(&c->old_buds);
|
|
INIT_LIST_HEAD(&c->orph_list);
|
|
INIT_LIST_HEAD(&c->orph_new);
|
|
c->no_chk_data_crc = 1;
|
|
|
|
c->highest_inum = UBIFS_FIRST_INO;
|
|
c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
|
|
|
|
ubi_get_volume_info(ubi, &c->vi);
|
|
ubi_get_device_info(c->vi.ubi_num, &c->di);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
|
|
{
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
struct inode *root;
|
|
int err;
|
|
|
|
c->vfs_sb = sb;
|
|
#ifndef __UBOOT__
|
|
/* Re-open the UBI device in read-write mode */
|
|
c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
|
|
#else
|
|
/* U-Boot read only mode */
|
|
c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
|
|
#endif
|
|
|
|
if (IS_ERR(c->ubi)) {
|
|
err = PTR_ERR(c->ubi);
|
|
goto out;
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
/*
|
|
* UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
|
|
* UBIFS, I/O is not deferred, it is done immediately in readpage,
|
|
* which means the user would have to wait not just for their own I/O
|
|
* but the read-ahead I/O as well i.e. completely pointless.
|
|
*
|
|
* Read-ahead will be disabled because @c->bdi.ra_pages is 0.
|
|
*/
|
|
c->bdi.name = "ubifs",
|
|
c->bdi.capabilities = 0;
|
|
err = bdi_init(&c->bdi);
|
|
if (err)
|
|
goto out_close;
|
|
err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
|
|
c->vi.ubi_num, c->vi.vol_id);
|
|
if (err)
|
|
goto out_bdi;
|
|
|
|
err = ubifs_parse_options(c, data, 0);
|
|
if (err)
|
|
goto out_bdi;
|
|
|
|
sb->s_bdi = &c->bdi;
|
|
#endif
|
|
sb->s_fs_info = c;
|
|
sb->s_magic = UBIFS_SUPER_MAGIC;
|
|
sb->s_blocksize = UBIFS_BLOCK_SIZE;
|
|
sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
|
|
sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
|
|
if (c->max_inode_sz > MAX_LFS_FILESIZE)
|
|
sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
|
|
sb->s_op = &ubifs_super_operations;
|
|
#ifndef __UBOOT__
|
|
sb->s_xattr = ubifs_xattr_handlers;
|
|
#endif
|
|
|
|
mutex_lock(&c->umount_mutex);
|
|
err = mount_ubifs(c);
|
|
if (err) {
|
|
ubifs_assert(err < 0);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Read the root inode */
|
|
root = ubifs_iget(sb, UBIFS_ROOT_INO);
|
|
if (IS_ERR(root)) {
|
|
err = PTR_ERR(root);
|
|
goto out_umount;
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
sb->s_root = d_make_root(root);
|
|
if (!sb->s_root) {
|
|
err = -ENOMEM;
|
|
goto out_umount;
|
|
}
|
|
#else
|
|
sb->s_root = NULL;
|
|
#endif
|
|
|
|
mutex_unlock(&c->umount_mutex);
|
|
return 0;
|
|
|
|
out_umount:
|
|
ubifs_umount(c);
|
|
#ifdef __UBOOT__
|
|
goto out;
|
|
#endif
|
|
out_unlock:
|
|
mutex_unlock(&c->umount_mutex);
|
|
#ifndef __UBOOT__
|
|
out_bdi:
|
|
bdi_destroy(&c->bdi);
|
|
out_close:
|
|
#endif
|
|
ubi_close_volume(c->ubi);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int sb_test(struct super_block *sb, void *data)
|
|
{
|
|
struct ubifs_info *c1 = data;
|
|
struct ubifs_info *c = sb->s_fs_info;
|
|
|
|
return c->vi.cdev == c1->vi.cdev;
|
|
}
|
|
|
|
static int sb_set(struct super_block *sb, void *data)
|
|
{
|
|
sb->s_fs_info = data;
|
|
return set_anon_super(sb, NULL);
|
|
}
|
|
|
|
static struct super_block *alloc_super(struct file_system_type *type, int flags)
|
|
{
|
|
struct super_block *s;
|
|
int err;
|
|
|
|
s = kzalloc(sizeof(struct super_block), GFP_USER);
|
|
if (!s) {
|
|
err = -ENOMEM;
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
INIT_HLIST_NODE(&s->s_instances);
|
|
#endif
|
|
INIT_LIST_HEAD(&s->s_inodes);
|
|
s->s_time_gran = 1000000000;
|
|
s->s_flags = flags;
|
|
|
|
return s;
|
|
}
|
|
|
|
/**
|
|
* sget - find or create a superblock
|
|
* @type: filesystem type superblock should belong to
|
|
* @test: comparison callback
|
|
* @set: setup callback
|
|
* @flags: mount flags
|
|
* @data: argument to each of them
|
|
*/
|
|
struct super_block *sget(struct file_system_type *type,
|
|
int (*test)(struct super_block *,void *),
|
|
int (*set)(struct super_block *,void *),
|
|
int flags,
|
|
void *data)
|
|
{
|
|
struct super_block *s = NULL;
|
|
#ifndef __UBOOT__
|
|
struct super_block *old;
|
|
#endif
|
|
int err;
|
|
|
|
#ifndef __UBOOT__
|
|
retry:
|
|
spin_lock(&sb_lock);
|
|
if (test) {
|
|
hlist_for_each_entry(old, &type->fs_supers, s_instances) {
|
|
if (!test(old, data))
|
|
continue;
|
|
if (!grab_super(old))
|
|
goto retry;
|
|
if (s) {
|
|
up_write(&s->s_umount);
|
|
destroy_super(s);
|
|
s = NULL;
|
|
}
|
|
return old;
|
|
}
|
|
}
|
|
#endif
|
|
if (!s) {
|
|
spin_unlock(&sb_lock);
|
|
s = alloc_super(type, flags);
|
|
if (!s)
|
|
return ERR_PTR(-ENOMEM);
|
|
#ifndef __UBOOT__
|
|
goto retry;
|
|
#endif
|
|
}
|
|
|
|
err = set(s, data);
|
|
if (err) {
|
|
#ifndef __UBOOT__
|
|
spin_unlock(&sb_lock);
|
|
up_write(&s->s_umount);
|
|
destroy_super(s);
|
|
#endif
|
|
return ERR_PTR(err);
|
|
}
|
|
s->s_type = type;
|
|
#ifndef __UBOOT__
|
|
strlcpy(s->s_id, type->name, sizeof(s->s_id));
|
|
list_add_tail(&s->s_list, &super_blocks);
|
|
hlist_add_head(&s->s_instances, &type->fs_supers);
|
|
spin_unlock(&sb_lock);
|
|
get_filesystem(type);
|
|
register_shrinker(&s->s_shrink);
|
|
#else
|
|
strncpy(s->s_id, type->name, sizeof(s->s_id));
|
|
#endif
|
|
return s;
|
|
}
|
|
|
|
EXPORT_SYMBOL(sget);
|
|
|
|
|
|
static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
|
|
const char *name, void *data)
|
|
{
|
|
struct ubi_volume_desc *ubi;
|
|
struct ubifs_info *c;
|
|
struct super_block *sb;
|
|
int err;
|
|
|
|
dbg_gen("name %s, flags %#x", name, flags);
|
|
|
|
/*
|
|
* Get UBI device number and volume ID. Mount it read-only so far
|
|
* because this might be a new mount point, and UBI allows only one
|
|
* read-write user at a time.
|
|
*/
|
|
ubi = open_ubi(name, UBI_READONLY);
|
|
if (IS_ERR(ubi)) {
|
|
pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
|
|
current->pid, name, (int)PTR_ERR(ubi));
|
|
return ERR_CAST(ubi);
|
|
}
|
|
|
|
c = alloc_ubifs_info(ubi);
|
|
if (!c) {
|
|
err = -ENOMEM;
|
|
goto out_close;
|
|
}
|
|
|
|
dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
|
|
|
|
sb = sget(fs_type, sb_test, sb_set, flags, c);
|
|
if (IS_ERR(sb)) {
|
|
err = PTR_ERR(sb);
|
|
kfree(c);
|
|
goto out_close;
|
|
}
|
|
|
|
if (sb->s_root) {
|
|
struct ubifs_info *c1 = sb->s_fs_info;
|
|
kfree(c);
|
|
/* A new mount point for already mounted UBIFS */
|
|
dbg_gen("this ubi volume is already mounted");
|
|
if (!!(flags & MS_RDONLY) != c1->ro_mount) {
|
|
err = -EBUSY;
|
|
goto out_deact;
|
|
}
|
|
} else {
|
|
err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
|
|
if (err)
|
|
goto out_deact;
|
|
/* We do not support atime */
|
|
sb->s_flags |= MS_ACTIVE | MS_NOATIME;
|
|
}
|
|
|
|
/* 'fill_super()' opens ubi again so we must close it here */
|
|
ubi_close_volume(ubi);
|
|
|
|
#ifdef __UBOOT__
|
|
ubifs_sb = sb;
|
|
return 0;
|
|
#else
|
|
return dget(sb->s_root);
|
|
#endif
|
|
|
|
out_deact:
|
|
#ifndef __UBOOT__
|
|
deactivate_locked_super(sb);
|
|
#endif
|
|
out_close:
|
|
ubi_close_volume(ubi);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void kill_ubifs_super(struct super_block *s)
|
|
{
|
|
struct ubifs_info *c = s->s_fs_info;
|
|
#ifndef __UBOOT__
|
|
kill_anon_super(s);
|
|
#endif
|
|
kfree(c);
|
|
}
|
|
|
|
static struct file_system_type ubifs_fs_type = {
|
|
.name = "ubifs",
|
|
.owner = THIS_MODULE,
|
|
.mount = ubifs_mount,
|
|
.kill_sb = kill_ubifs_super,
|
|
};
|
|
#ifndef __UBOOT__
|
|
MODULE_ALIAS_FS("ubifs");
|
|
|
|
/*
|
|
* Inode slab cache constructor.
|
|
*/
|
|
static void inode_slab_ctor(void *obj)
|
|
{
|
|
struct ubifs_inode *ui = obj;
|
|
inode_init_once(&ui->vfs_inode);
|
|
}
|
|
|
|
static int __init ubifs_init(void)
|
|
#else
|
|
int ubifs_init(void)
|
|
#endif
|
|
{
|
|
int err;
|
|
|
|
BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
|
|
|
|
/* Make sure node sizes are 8-byte aligned */
|
|
BUILD_BUG_ON(UBIFS_CH_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
|
|
BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
|
|
BUILD_BUG_ON(MIN_WRITE_SZ & 7);
|
|
|
|
/* Check min. node size */
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
|
|
BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
|
|
BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
|
|
BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
|
|
|
|
BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
|
|
|
|
/* Defined node sizes */
|
|
BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
|
|
BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
|
|
BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
|
|
BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
|
|
|
|
/*
|
|
* We use 2 bit wide bit-fields to store compression type, which should
|
|
* be amended if more compressors are added. The bit-fields are:
|
|
* @compr_type in 'struct ubifs_inode', @default_compr in
|
|
* 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
|
|
*/
|
|
BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
|
|
|
|
/*
|
|
* We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
|
|
* UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
|
|
*/
|
|
if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
|
|
pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
|
|
current->pid, (unsigned int)PAGE_CACHE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifndef __UBOOT__
|
|
ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
|
|
sizeof(struct ubifs_inode), 0,
|
|
SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
|
|
&inode_slab_ctor);
|
|
if (!ubifs_inode_slab)
|
|
return -ENOMEM;
|
|
|
|
err = register_shrinker(&ubifs_shrinker_info);
|
|
if (err)
|
|
goto out_slab;
|
|
#endif
|
|
|
|
err = ubifs_compressors_init();
|
|
if (err)
|
|
goto out_shrinker;
|
|
|
|
#ifndef __UBOOT__
|
|
err = dbg_debugfs_init();
|
|
if (err)
|
|
goto out_compr;
|
|
|
|
err = register_filesystem(&ubifs_fs_type);
|
|
if (err) {
|
|
pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
|
|
current->pid, err);
|
|
goto out_dbg;
|
|
}
|
|
#endif
|
|
return 0;
|
|
|
|
#ifndef __UBOOT__
|
|
out_dbg:
|
|
dbg_debugfs_exit();
|
|
out_compr:
|
|
ubifs_compressors_exit();
|
|
#endif
|
|
out_shrinker:
|
|
#ifndef __UBOOT__
|
|
unregister_shrinker(&ubifs_shrinker_info);
|
|
out_slab:
|
|
#endif
|
|
kmem_cache_destroy(ubifs_inode_slab);
|
|
return err;
|
|
}
|
|
/* late_initcall to let compressors initialize first */
|
|
late_initcall(ubifs_init);
|
|
|
|
#ifndef __UBOOT__
|
|
static void __exit ubifs_exit(void)
|
|
{
|
|
ubifs_assert(list_empty(&ubifs_infos));
|
|
ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
|
|
|
|
dbg_debugfs_exit();
|
|
ubifs_compressors_exit();
|
|
unregister_shrinker(&ubifs_shrinker_info);
|
|
|
|
/*
|
|
* Make sure all delayed rcu free inodes are flushed before we
|
|
* destroy cache.
|
|
*/
|
|
rcu_barrier();
|
|
kmem_cache_destroy(ubifs_inode_slab);
|
|
unregister_filesystem(&ubifs_fs_type);
|
|
}
|
|
module_exit(ubifs_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(__stringify(UBIFS_VERSION));
|
|
MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
|
|
MODULE_DESCRIPTION("UBIFS - UBI File System");
|
|
#else
|
|
int uboot_ubifs_mount(char *vol_name)
|
|
{
|
|
struct dentry *ret;
|
|
int flags;
|
|
|
|
/*
|
|
* First unmount if allready mounted
|
|
*/
|
|
if (ubifs_sb)
|
|
ubifs_umount(ubifs_sb->s_fs_info);
|
|
|
|
/*
|
|
* Mount in read-only mode
|
|
*/
|
|
flags = MS_RDONLY;
|
|
ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
|
|
if (IS_ERR(ret)) {
|
|
printf("Error reading superblock on volume '%s' " \
|
|
"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|