mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-04 18:41:03 +00:00
2dfecdd1ed
Add init_nand_clk to enable gpmi nand clock. Since i.MX8MQ not use CCF, so we still use legacy mode to configure the clock. Signed-off-by: Peng Fan <peng.fan@nxp.com>
891 lines
24 KiB
C
891 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2017 NXP
|
|
*
|
|
* Peng Fan <peng.fan@nxp.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/arch/imx-regs.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/sys_proto.h>
|
|
#include <errno.h>
|
|
#include <linux/iopoll.h>
|
|
|
|
static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
|
|
|
|
static u32 decode_frac_pll(enum clk_root_src frac_pll)
|
|
{
|
|
u32 pll_cfg0, pll_cfg1, pllout;
|
|
u32 pll_refclk_sel, pll_refclk;
|
|
u32 divr_val, divq_val, divf_val, divff, divfi;
|
|
u32 pllout_div_shift, pllout_div_mask, pllout_div;
|
|
|
|
switch (frac_pll) {
|
|
case ARM_PLL_CLK:
|
|
pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
|
|
pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
|
|
pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
|
|
pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
|
|
break;
|
|
default:
|
|
printf("Frac PLL %d not supporte\n", frac_pll);
|
|
return 0;
|
|
}
|
|
|
|
pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
|
|
pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
|
|
|
|
/* Power down */
|
|
if (pll_cfg0 & FRAC_PLL_PD_MASK)
|
|
return 0;
|
|
|
|
/* output not enabled */
|
|
if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
|
|
return 0;
|
|
|
|
pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
|
|
|
|
if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
|
|
pll_refclk = 25000000u;
|
|
else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
|
|
pll_refclk = 27000000u;
|
|
else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
|
|
pll_refclk = 27000000u;
|
|
else
|
|
pll_refclk = 0;
|
|
|
|
if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
|
|
return pll_refclk;
|
|
|
|
divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
|
|
FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
|
|
divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
|
|
|
|
divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
|
|
FRAC_PLL_FRAC_DIV_CTL_SHIFT;
|
|
divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
|
|
|
|
divf_val = 1 + divfi + divff / (1 << 24);
|
|
|
|
pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
|
|
((divq_val + 1) * 2);
|
|
|
|
return pllout / (pllout_div + 1);
|
|
}
|
|
|
|
static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
|
|
{
|
|
u32 pll_cfg0, pll_cfg1, pll_cfg2;
|
|
u32 pll_refclk_sel, pll_refclk;
|
|
u32 divr1, divr2, divf1, divf2, divq, div;
|
|
u32 sse;
|
|
u32 pll_clke;
|
|
u32 pllout_div_shift, pllout_div_mask, pllout_div;
|
|
u32 pllout;
|
|
|
|
switch (sscg_pll) {
|
|
case SYSTEM_PLL1_800M_CLK:
|
|
case SYSTEM_PLL1_400M_CLK:
|
|
case SYSTEM_PLL1_266M_CLK:
|
|
case SYSTEM_PLL1_200M_CLK:
|
|
case SYSTEM_PLL1_160M_CLK:
|
|
case SYSTEM_PLL1_133M_CLK:
|
|
case SYSTEM_PLL1_100M_CLK:
|
|
case SYSTEM_PLL1_80M_CLK:
|
|
case SYSTEM_PLL1_40M_CLK:
|
|
pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
|
|
pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
|
|
pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
|
|
pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
|
|
pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
|
|
break;
|
|
case SYSTEM_PLL2_1000M_CLK:
|
|
case SYSTEM_PLL2_500M_CLK:
|
|
case SYSTEM_PLL2_333M_CLK:
|
|
case SYSTEM_PLL2_250M_CLK:
|
|
case SYSTEM_PLL2_200M_CLK:
|
|
case SYSTEM_PLL2_166M_CLK:
|
|
case SYSTEM_PLL2_125M_CLK:
|
|
case SYSTEM_PLL2_100M_CLK:
|
|
case SYSTEM_PLL2_50M_CLK:
|
|
pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
|
|
pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
|
|
pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
|
|
pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
|
|
pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
|
|
break;
|
|
case SYSTEM_PLL3_CLK:
|
|
pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
|
|
pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
|
|
pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
|
|
pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
|
|
pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
|
|
break;
|
|
case DRAM_PLL1_CLK:
|
|
pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
|
|
pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
|
|
pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
|
|
pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
|
|
pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
|
|
break;
|
|
default:
|
|
printf("sscg pll %d not supporte\n", sscg_pll);
|
|
return 0;
|
|
}
|
|
|
|
switch (sscg_pll) {
|
|
case DRAM_PLL1_CLK:
|
|
pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
|
|
div = 1;
|
|
break;
|
|
case SYSTEM_PLL3_CLK:
|
|
pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
|
|
div = 1;
|
|
break;
|
|
case SYSTEM_PLL2_1000M_CLK:
|
|
case SYSTEM_PLL1_800M_CLK:
|
|
pll_clke = SSCG_PLL_CLKE_MASK;
|
|
div = 1;
|
|
break;
|
|
case SYSTEM_PLL2_500M_CLK:
|
|
case SYSTEM_PLL1_400M_CLK:
|
|
pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
|
|
div = 2;
|
|
break;
|
|
case SYSTEM_PLL2_333M_CLK:
|
|
case SYSTEM_PLL1_266M_CLK:
|
|
pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
|
|
div = 3;
|
|
break;
|
|
case SYSTEM_PLL2_250M_CLK:
|
|
case SYSTEM_PLL1_200M_CLK:
|
|
pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
|
|
div = 4;
|
|
break;
|
|
case SYSTEM_PLL2_200M_CLK:
|
|
case SYSTEM_PLL1_160M_CLK:
|
|
pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
|
|
div = 5;
|
|
break;
|
|
case SYSTEM_PLL2_166M_CLK:
|
|
case SYSTEM_PLL1_133M_CLK:
|
|
pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
|
|
div = 6;
|
|
break;
|
|
case SYSTEM_PLL2_125M_CLK:
|
|
case SYSTEM_PLL1_100M_CLK:
|
|
pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
|
|
div = 8;
|
|
break;
|
|
case SYSTEM_PLL2_100M_CLK:
|
|
case SYSTEM_PLL1_80M_CLK:
|
|
pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
|
|
div = 10;
|
|
break;
|
|
case SYSTEM_PLL2_50M_CLK:
|
|
case SYSTEM_PLL1_40M_CLK:
|
|
pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
|
|
div = 20;
|
|
break;
|
|
default:
|
|
printf("sscg pll %d not supporte\n", sscg_pll);
|
|
return 0;
|
|
}
|
|
|
|
/* Power down */
|
|
if (pll_cfg0 & SSCG_PLL_PD_MASK)
|
|
return 0;
|
|
|
|
/* output not enabled */
|
|
if ((pll_cfg0 & pll_clke) == 0)
|
|
return 0;
|
|
|
|
pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
|
|
pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
|
|
|
|
pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
|
|
|
|
if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
|
|
pll_refclk = 25000000u;
|
|
else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
|
|
pll_refclk = 27000000u;
|
|
else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
|
|
pll_refclk = 27000000u;
|
|
else
|
|
pll_refclk = 0;
|
|
|
|
/* We assume bypass1/2 are the same value */
|
|
if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
|
|
(pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
|
|
return pll_refclk;
|
|
|
|
divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
|
|
SSCG_PLL_REF_DIVR1_SHIFT;
|
|
divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
|
|
SSCG_PLL_REF_DIVR2_SHIFT;
|
|
divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
|
|
SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
|
|
divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
|
|
SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
|
|
divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
|
|
SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
|
|
sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
|
|
|
|
if (sse)
|
|
sse = 8;
|
|
else
|
|
sse = 2;
|
|
|
|
pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
|
|
(divr2 + 1) * (divf2 + 1) / (divq + 1);
|
|
|
|
return pllout / (pllout_div + 1) / div;
|
|
}
|
|
|
|
static u32 get_root_src_clk(enum clk_root_src root_src)
|
|
{
|
|
switch (root_src) {
|
|
case OSC_25M_CLK:
|
|
return 25000000;
|
|
case OSC_27M_CLK:
|
|
return 27000000;
|
|
case OSC_32K_CLK:
|
|
return 32768;
|
|
case ARM_PLL_CLK:
|
|
return decode_frac_pll(root_src);
|
|
case SYSTEM_PLL1_800M_CLK:
|
|
case SYSTEM_PLL1_400M_CLK:
|
|
case SYSTEM_PLL1_266M_CLK:
|
|
case SYSTEM_PLL1_200M_CLK:
|
|
case SYSTEM_PLL1_160M_CLK:
|
|
case SYSTEM_PLL1_133M_CLK:
|
|
case SYSTEM_PLL1_100M_CLK:
|
|
case SYSTEM_PLL1_80M_CLK:
|
|
case SYSTEM_PLL1_40M_CLK:
|
|
case SYSTEM_PLL2_1000M_CLK:
|
|
case SYSTEM_PLL2_500M_CLK:
|
|
case SYSTEM_PLL2_333M_CLK:
|
|
case SYSTEM_PLL2_250M_CLK:
|
|
case SYSTEM_PLL2_200M_CLK:
|
|
case SYSTEM_PLL2_166M_CLK:
|
|
case SYSTEM_PLL2_125M_CLK:
|
|
case SYSTEM_PLL2_100M_CLK:
|
|
case SYSTEM_PLL2_50M_CLK:
|
|
case SYSTEM_PLL3_CLK:
|
|
return decode_sscg_pll(root_src);
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 get_root_clk(enum clk_root_index clock_id)
|
|
{
|
|
enum clk_root_src root_src;
|
|
u32 post_podf, pre_podf, root_src_clk;
|
|
|
|
if (clock_root_enabled(clock_id) <= 0)
|
|
return 0;
|
|
|
|
if (clock_get_prediv(clock_id, &pre_podf) < 0)
|
|
return 0;
|
|
|
|
if (clock_get_postdiv(clock_id, &post_podf) < 0)
|
|
return 0;
|
|
|
|
if (clock_get_src(clock_id, &root_src) < 0)
|
|
return 0;
|
|
|
|
root_src_clk = get_root_src_clk(root_src);
|
|
|
|
return root_src_clk / (post_podf + 1) / (pre_podf + 1);
|
|
}
|
|
|
|
#ifdef CONFIG_MXC_OCOTP
|
|
void enable_ocotp_clk(unsigned char enable)
|
|
{
|
|
clock_enable(CCGR_OCOTP, !!enable);
|
|
}
|
|
#endif
|
|
|
|
int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
|
|
{
|
|
/* 0 - 3 is valid i2c num */
|
|
if (i2c_num > 3)
|
|
return -EINVAL;
|
|
|
|
clock_enable(CCGR_I2C1 + i2c_num, !!enable);
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned int mxc_get_clock(enum mxc_clock clk)
|
|
{
|
|
u32 val;
|
|
|
|
if (clk == MXC_ARM_CLK)
|
|
return get_root_clk(ARM_A53_CLK_ROOT);
|
|
|
|
if (clk == MXC_IPG_CLK) {
|
|
clock_get_target_val(IPG_CLK_ROOT, &val);
|
|
val = val & 0x3;
|
|
return get_root_clk(AHB_CLK_ROOT) / (val + 1);
|
|
}
|
|
|
|
return get_root_clk(clk);
|
|
}
|
|
|
|
u32 imx_get_uartclk(void)
|
|
{
|
|
return mxc_get_clock(UART1_CLK_ROOT);
|
|
}
|
|
|
|
void mxs_set_lcdclk(u32 base_addr, u32 freq)
|
|
{
|
|
/*
|
|
* LCDIF_PIXEL_CLK: select 800MHz root clock,
|
|
* select pre divider 8, output is 100 MHz
|
|
*/
|
|
clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(4) |
|
|
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
|
|
}
|
|
|
|
void init_wdog_clk(void)
|
|
{
|
|
clock_enable(CCGR_WDOG1, 0);
|
|
clock_enable(CCGR_WDOG2, 0);
|
|
clock_enable(CCGR_WDOG3, 0);
|
|
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_enable(CCGR_WDOG1, 1);
|
|
clock_enable(CCGR_WDOG2, 1);
|
|
clock_enable(CCGR_WDOG3, 1);
|
|
}
|
|
|
|
void init_usb_clk(void)
|
|
{
|
|
if (!is_usb_boot()) {
|
|
clock_enable(CCGR_USB_CTRL1, 0);
|
|
clock_enable(CCGR_USB_CTRL2, 0);
|
|
clock_enable(CCGR_USB_PHY1, 0);
|
|
clock_enable(CCGR_USB_PHY2, 0);
|
|
/* 500MHz */
|
|
clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1));
|
|
/* 100MHz */
|
|
clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1));
|
|
/* 100MHz */
|
|
clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1));
|
|
clock_enable(CCGR_USB_CTRL1, 1);
|
|
clock_enable(CCGR_USB_CTRL2, 1);
|
|
clock_enable(CCGR_USB_PHY1, 1);
|
|
clock_enable(CCGR_USB_PHY2, 1);
|
|
}
|
|
}
|
|
|
|
void init_nand_clk(void)
|
|
{
|
|
clock_enable(CCGR_RAWNAND, 0);
|
|
clock_set_target_val(NAND_CLK_ROOT,
|
|
CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
|
|
clock_enable(CCGR_RAWNAND, 1);
|
|
}
|
|
|
|
void init_uart_clk(u32 index)
|
|
{
|
|
/* Set uart clock root 25M OSC */
|
|
switch (index) {
|
|
case 0:
|
|
clock_enable(CCGR_UART1, 0);
|
|
clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_enable(CCGR_UART1, 1);
|
|
return;
|
|
case 1:
|
|
clock_enable(CCGR_UART2, 0);
|
|
clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_enable(CCGR_UART2, 1);
|
|
return;
|
|
case 2:
|
|
clock_enable(CCGR_UART3, 0);
|
|
clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_enable(CCGR_UART3, 1);
|
|
return;
|
|
case 3:
|
|
clock_enable(CCGR_UART4, 0);
|
|
clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_enable(CCGR_UART4, 1);
|
|
return;
|
|
default:
|
|
printf("Invalid uart index\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
void init_clk_usdhc(u32 index)
|
|
{
|
|
/*
|
|
* set usdhc clock root
|
|
* sys pll1 400M
|
|
*/
|
|
switch (index) {
|
|
case 0:
|
|
clock_enable(CCGR_USDHC1, 0);
|
|
clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
|
|
clock_enable(CCGR_USDHC1, 1);
|
|
return;
|
|
case 1:
|
|
clock_enable(CCGR_USDHC2, 0);
|
|
clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
|
|
clock_enable(CCGR_USDHC2, 1);
|
|
return;
|
|
default:
|
|
printf("Invalid usdhc index\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
int set_clk_qspi(void)
|
|
{
|
|
/*
|
|
* set qspi root
|
|
* sys pll1 100M
|
|
*/
|
|
clock_enable(CCGR_QSPI, 0);
|
|
clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(7));
|
|
clock_enable(CCGR_QSPI, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_FEC_MXC
|
|
int set_clk_enet(enum enet_freq type)
|
|
{
|
|
u32 target;
|
|
u32 enet1_ref;
|
|
|
|
switch (type) {
|
|
case ENET_125MHZ:
|
|
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
|
|
break;
|
|
case ENET_50MHZ:
|
|
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
|
|
break;
|
|
case ENET_25MHZ:
|
|
enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* disable the clock first */
|
|
clock_enable(CCGR_ENET1, 0);
|
|
clock_enable(CCGR_SIM_ENET, 0);
|
|
|
|
/* set enet axi clock 266Mhz */
|
|
target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
|
|
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
|
|
clock_set_target_val(ENET_AXI_CLK_ROOT, target);
|
|
|
|
target = CLK_ROOT_ON | enet1_ref |
|
|
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
|
|
clock_set_target_val(ENET_REF_CLK_ROOT, target);
|
|
|
|
target = CLK_ROOT_ON |
|
|
ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
|
|
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
|
|
clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
|
|
|
|
/* enable clock */
|
|
clock_enable(CCGR_SIM_ENET, 1);
|
|
clock_enable(CCGR_ENET1, 1);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
u32 imx_get_fecclk(void)
|
|
{
|
|
return get_root_clk(ENET_AXI_CLK_ROOT);
|
|
}
|
|
|
|
static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
|
|
DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
|
|
CLK_ROOT_PRE_DIV2),
|
|
DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
|
|
CLK_ROOT_PRE_DIV2),
|
|
DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
|
|
CLK_ROOT_PRE_DIV2),
|
|
};
|
|
|
|
void dram_enable_bypass(ulong clk_val)
|
|
{
|
|
int i;
|
|
struct dram_bypass_clk_setting *config;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
|
|
if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
|
|
break;
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
|
|
printf("No matched freq table %lu\n", clk_val);
|
|
return;
|
|
}
|
|
|
|
config = &imx8mq_dram_bypass_tbl[i];
|
|
|
|
clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
|
|
CLK_ROOT_PRE_DIV(config->alt_pre_div));
|
|
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
|
|
CLK_ROOT_PRE_DIV(config->apb_pre_div));
|
|
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1));
|
|
}
|
|
|
|
void dram_disable_bypass(void)
|
|
{
|
|
clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(4) |
|
|
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
|
|
}
|
|
|
|
#ifdef CONFIG_SPL_BUILD
|
|
void dram_pll_init(ulong pll_val)
|
|
{
|
|
u32 val;
|
|
void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
|
|
void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
|
|
|
|
/* Bypass */
|
|
setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
|
|
setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
|
|
|
|
switch (pll_val) {
|
|
case MHZ(800):
|
|
val = readl(pll_cfg_reg2);
|
|
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
|
|
SSCG_PLL_REF_DIVR2_MASK);
|
|
val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
|
|
val |= SSCG_PLL_REF_DIVR2_VAL(29);
|
|
writel(val, pll_cfg_reg2);
|
|
break;
|
|
case MHZ(600):
|
|
val = readl(pll_cfg_reg2);
|
|
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
|
|
SSCG_PLL_REF_DIVR2_MASK);
|
|
val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
|
|
val |= SSCG_PLL_REF_DIVR2_VAL(29);
|
|
writel(val, pll_cfg_reg2);
|
|
break;
|
|
case MHZ(400):
|
|
val = readl(pll_cfg_reg2);
|
|
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
|
|
SSCG_PLL_REF_DIVR2_MASK);
|
|
val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
|
|
val |= SSCG_PLL_REF_DIVR2_VAL(29);
|
|
writel(val, pll_cfg_reg2);
|
|
break;
|
|
case MHZ(167):
|
|
val = readl(pll_cfg_reg2);
|
|
val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_MASK |
|
|
SSCG_PLL_FEEDBACK_DIV_F1_MASK |
|
|
SSCG_PLL_REF_DIVR2_MASK);
|
|
val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
|
|
val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
|
|
val |= SSCG_PLL_REF_DIVR2_VAL(30);
|
|
writel(val, pll_cfg_reg2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Clear power down bit */
|
|
clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
|
|
/* Eanble ARM_PLL/SYS_PLL */
|
|
setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
|
|
|
|
/* Clear bypass */
|
|
clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
|
|
__udelay(100);
|
|
clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
|
|
/* Wait lock */
|
|
while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
|
|
;
|
|
}
|
|
|
|
int frac_pll_init(u32 pll, enum frac_pll_out_val val)
|
|
{
|
|
void __iomem *pll_cfg0, __iomem *pll_cfg1;
|
|
u32 val_cfg0, val_cfg1;
|
|
int ret;
|
|
|
|
switch (pll) {
|
|
case ANATOP_ARM_PLL:
|
|
pll_cfg0 = &ana_pll->arm_pll_cfg0;
|
|
pll_cfg1 = &ana_pll->arm_pll_cfg1;
|
|
|
|
if (val == FRAC_PLL_OUT_1000M)
|
|
val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
|
|
else
|
|
val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
|
|
val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
|
|
FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
|
|
FRAC_PLL_REFCLK_DIV_VAL(4) |
|
|
FRAC_PLL_OUTPUT_DIV_VAL(0);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* bypass the clock */
|
|
setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
|
|
/* Set the value */
|
|
writel(val_cfg1, pll_cfg1);
|
|
writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
|
|
val_cfg0 = readl(pll_cfg0);
|
|
/* unbypass the clock */
|
|
clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
|
|
ret = readl_poll_timeout(pll_cfg0, val_cfg0,
|
|
val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
|
|
if (ret)
|
|
printf("%s timeout\n", __func__);
|
|
clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sscg_pll_init(u32 pll)
|
|
{
|
|
void __iomem *pll_cfg0, __iomem *pll_cfg1, __iomem *pll_cfg2;
|
|
u32 val_cfg0, val_cfg1, val_cfg2, val;
|
|
u32 bypass1_mask = 0x20, bypass2_mask = 0x10;
|
|
int ret;
|
|
|
|
switch (pll) {
|
|
case ANATOP_SYSTEM_PLL1:
|
|
pll_cfg0 = &ana_pll->sys_pll1_cfg0;
|
|
pll_cfg1 = &ana_pll->sys_pll1_cfg1;
|
|
pll_cfg2 = &ana_pll->sys_pll1_cfg2;
|
|
/* 800MHz */
|
|
val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
|
|
val_cfg1 = 0;
|
|
val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
|
|
SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
|
|
SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
|
|
SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
|
|
SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
|
|
SSCG_PLL_REFCLK_SEL_OSC_25M;
|
|
break;
|
|
case ANATOP_SYSTEM_PLL2:
|
|
pll_cfg0 = &ana_pll->sys_pll2_cfg0;
|
|
pll_cfg1 = &ana_pll->sys_pll2_cfg1;
|
|
pll_cfg2 = &ana_pll->sys_pll2_cfg2;
|
|
/* 1000MHz */
|
|
val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_VAL(4);
|
|
val_cfg1 = 0;
|
|
val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
|
|
SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
|
|
SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
|
|
SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
|
|
SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
|
|
SSCG_PLL_REFCLK_SEL_OSC_25M;
|
|
break;
|
|
case ANATOP_SYSTEM_PLL3:
|
|
pll_cfg0 = &ana_pll->sys_pll3_cfg0;
|
|
pll_cfg1 = &ana_pll->sys_pll3_cfg1;
|
|
pll_cfg2 = &ana_pll->sys_pll3_cfg2;
|
|
/* 800MHz */
|
|
val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
|
|
SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
|
|
val_cfg1 = 0;
|
|
val_cfg0 = SSCG_PLL_PLL3_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
|
|
SSCG_PLL_REFCLK_SEL_OSC_25M;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*bypass*/
|
|
setbits_le32(pll_cfg0, bypass1_mask | bypass2_mask);
|
|
/* set value */
|
|
writel(val_cfg2, pll_cfg2);
|
|
writel(val_cfg1, pll_cfg1);
|
|
/*unbypass1 and wait 70us */
|
|
writel(val_cfg0 | bypass2_mask, pll_cfg1);
|
|
|
|
__udelay(70);
|
|
|
|
/* unbypass2 and wait lock */
|
|
writel(val_cfg0, pll_cfg1);
|
|
ret = readl_poll_timeout(pll_cfg0, val, val & SSCG_PLL_LOCK_MASK, 1);
|
|
if (ret)
|
|
printf("%s timeout\n", __func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int clock_init(void)
|
|
{
|
|
u32 grade;
|
|
|
|
clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(0));
|
|
|
|
/*
|
|
* 8MQ only supports two grades: consumer and industrial.
|
|
* We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
|
|
*/
|
|
grade = get_cpu_temp_grade(NULL, NULL);
|
|
if (!grade) {
|
|
frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
|
|
clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1));
|
|
} else {
|
|
frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1600M);
|
|
clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1) |
|
|
CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
|
|
}
|
|
/*
|
|
* According to ANAMIX SPEC
|
|
* sys pll1 fixed at 800MHz
|
|
* sys pll2 fixed at 1GHz
|
|
* Here we only enable the outputs.
|
|
*/
|
|
setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
|
|
SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
|
|
SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
|
|
SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
|
|
SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
|
|
|
|
setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
|
|
SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
|
|
SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
|
|
SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
|
|
SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
|
|
|
|
clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
|
|
CLK_ROOT_SOURCE_SEL(1));
|
|
|
|
init_wdog_clk();
|
|
clock_enable(CCGR_TSENSOR, 1);
|
|
clock_enable(CCGR_OCOTP, 1);
|
|
|
|
/* config GIC ROOT to sys_pll2_200m */
|
|
clock_enable(CCGR_GIC, 0);
|
|
clock_set_target_val(GIC_CLK_ROOT,
|
|
CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
|
|
clock_enable(CCGR_GIC, 1);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Dump some clockes.
|
|
*/
|
|
#ifndef CONFIG_SPL_BUILD
|
|
int do_imx8m_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
|
|
char * const argv[])
|
|
{
|
|
u32 freq;
|
|
|
|
freq = decode_frac_pll(ARM_PLL_CLK);
|
|
printf("ARM_PLL %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
|
|
printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
|
|
printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
|
|
printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
|
|
printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
|
|
printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
|
|
printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
|
|
printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
|
|
printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
|
|
printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
|
|
printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
|
|
printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
|
|
printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
|
|
printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
|
|
printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
|
|
printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
|
|
printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
|
|
printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
|
|
printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000);
|
|
freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
|
|
printf("SYS_PLL3 %8d MHz\n", freq / 1000000);
|
|
freq = mxc_get_clock(UART1_CLK_ROOT);
|
|
printf("UART1 %8d MHz\n", freq / 1000000);
|
|
freq = mxc_get_clock(USDHC1_CLK_ROOT);
|
|
printf("USDHC1 %8d MHz\n", freq / 1000000);
|
|
freq = mxc_get_clock(QSPI_CLK_ROOT);
|
|
printf("QSPI %8d MHz\n", freq / 1000000);
|
|
return 0;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
clocks, CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
|
|
"display clocks",
|
|
""
|
|
);
|
|
#endif
|