mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-16 01:38:22 +00:00
3a6d56c209
Use generic 64bit division in nand_util.c. This makes nand_util.c independent of any toolchain 64bit division. Signed-off-by: Dirk Behme <dirk.behme@gmail.com>
861 lines
22 KiB
C
861 lines
22 KiB
C
/*
|
|
* drivers/nand/nand_util.c
|
|
*
|
|
* Copyright (C) 2006 by Weiss-Electronic GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* @author: Guido Classen <clagix@gmail.com>
|
|
* @descr: NAND Flash support
|
|
* @references: borrowed heavily from Linux mtd-utils code:
|
|
* flash_eraseall.c by Arcom Control System Ltd
|
|
* nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
|
|
* and Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
|
|
#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
|
|
|
|
#include <command.h>
|
|
#include <watchdog.h>
|
|
#include <malloc.h>
|
|
#include <div64.h>
|
|
|
|
#include <nand.h>
|
|
#include <jffs2/jffs2.h>
|
|
|
|
typedef struct erase_info erase_info_t;
|
|
typedef struct mtd_info mtd_info_t;
|
|
|
|
/* support only for native endian JFFS2 */
|
|
#define cpu_to_je16(x) (x)
|
|
#define cpu_to_je32(x) (x)
|
|
|
|
/*****************************************************************************/
|
|
static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_erase_opts: - erase NAND flash with support for various options
|
|
* (jffs2 formating)
|
|
*
|
|
* @param meminfo NAND device to erase
|
|
* @param opts options, @see struct nand_erase_options
|
|
* @return 0 in case of success
|
|
*
|
|
* This code is ported from flash_eraseall.c from Linux mtd utils by
|
|
* Arcom Control System Ltd.
|
|
*/
|
|
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
|
|
{
|
|
struct jffs2_unknown_node cleanmarker;
|
|
int clmpos = 0;
|
|
int clmlen = 8;
|
|
erase_info_t erase;
|
|
ulong erase_length;
|
|
int isNAND;
|
|
int bbtest = 1;
|
|
int result;
|
|
int percent_complete = -1;
|
|
int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
|
|
const char *mtd_device = meminfo->name;
|
|
|
|
memset(&erase, 0, sizeof(erase));
|
|
|
|
erase.mtd = meminfo;
|
|
erase.len = meminfo->erasesize;
|
|
erase.addr = opts->offset;
|
|
erase_length = opts->length;
|
|
|
|
isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
|
|
|
|
if (opts->jffs2) {
|
|
cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
|
|
cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
|
|
if (isNAND) {
|
|
struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
|
|
|
|
/* check for autoplacement */
|
|
if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
/* get the position of the free bytes */
|
|
if (!oobinfo->oobfree[0][1]) {
|
|
printf(" Eeep. Autoplacement selected "
|
|
"and no empty space in oob\n");
|
|
return -1;
|
|
}
|
|
clmpos = oobinfo->oobfree[0][0];
|
|
clmlen = oobinfo->oobfree[0][1];
|
|
if (clmlen > 8)
|
|
clmlen = 8;
|
|
} else {
|
|
/* legacy mode */
|
|
switch (meminfo->oobsize) {
|
|
case 8:
|
|
clmpos = 6;
|
|
clmlen = 2;
|
|
break;
|
|
case 16:
|
|
clmpos = 8;
|
|
clmlen = 8;
|
|
break;
|
|
case 64:
|
|
clmpos = 16;
|
|
clmlen = 8;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cleanmarker.totlen = cpu_to_je32(8);
|
|
} else {
|
|
cleanmarker.totlen =
|
|
cpu_to_je32(sizeof(struct jffs2_unknown_node));
|
|
}
|
|
cleanmarker.hdr_crc = cpu_to_je32(
|
|
crc32_no_comp(0, (unsigned char *) &cleanmarker,
|
|
sizeof(struct jffs2_unknown_node) - 4));
|
|
}
|
|
|
|
/* scrub option allows to erase badblock. To prevent internal
|
|
* check from erase() method, set block check method to dummy
|
|
* and disable bad block table while erasing.
|
|
*/
|
|
if (opts->scrub) {
|
|
struct nand_chip *priv_nand = meminfo->priv;
|
|
|
|
nand_block_bad_old = priv_nand->block_bad;
|
|
priv_nand->block_bad = nand_block_bad_scrub;
|
|
/* we don't need the bad block table anymore...
|
|
* after scrub, there are no bad blocks left!
|
|
*/
|
|
if (priv_nand->bbt) {
|
|
kfree(priv_nand->bbt);
|
|
}
|
|
priv_nand->bbt = NULL;
|
|
}
|
|
|
|
for (;
|
|
erase.addr < opts->offset + erase_length;
|
|
erase.addr += meminfo->erasesize) {
|
|
|
|
WATCHDOG_RESET ();
|
|
|
|
if (!opts->scrub && bbtest) {
|
|
int ret = meminfo->block_isbad(meminfo, erase.addr);
|
|
if (ret > 0) {
|
|
if (!opts->quiet)
|
|
printf("\rSkipping bad block at "
|
|
"0x%08x "
|
|
" \n",
|
|
erase.addr);
|
|
continue;
|
|
|
|
} else if (ret < 0) {
|
|
printf("\n%s: MTD get bad block failed: %d\n",
|
|
mtd_device,
|
|
ret);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
result = meminfo->erase(meminfo, &erase);
|
|
if (result != 0) {
|
|
printf("\n%s: MTD Erase failure: %d\n",
|
|
mtd_device, result);
|
|
continue;
|
|
}
|
|
|
|
/* format for JFFS2 ? */
|
|
if (opts->jffs2) {
|
|
|
|
/* write cleanmarker */
|
|
if (isNAND) {
|
|
size_t written;
|
|
result = meminfo->write_oob(meminfo,
|
|
erase.addr + clmpos,
|
|
clmlen,
|
|
&written,
|
|
(unsigned char *)
|
|
&cleanmarker);
|
|
if (result != 0) {
|
|
printf("\n%s: MTD writeoob failure: %d\n",
|
|
mtd_device, result);
|
|
continue;
|
|
}
|
|
} else {
|
|
printf("\n%s: this erase routine only supports"
|
|
" NAND devices!\n",
|
|
mtd_device);
|
|
}
|
|
}
|
|
|
|
if (!opts->quiet) {
|
|
unsigned long long n =(unsigned long long)
|
|
(erase.addr+meminfo->erasesize-opts->offset)
|
|
* 100;
|
|
int percent = (int)do_div(n, erase_length);
|
|
|
|
/* output progress message only at whole percent
|
|
* steps to reduce the number of messages printed
|
|
* on (slow) serial consoles
|
|
*/
|
|
if (percent != percent_complete) {
|
|
percent_complete = percent;
|
|
|
|
printf("\rErasing at 0x%x -- %3d%% complete.",
|
|
erase.addr, percent);
|
|
|
|
if (opts->jffs2 && result == 0)
|
|
printf(" Cleanmarker written at 0x%x.",
|
|
erase.addr);
|
|
}
|
|
}
|
|
}
|
|
if (!opts->quiet)
|
|
printf("\n");
|
|
|
|
if (nand_block_bad_old) {
|
|
struct nand_chip *priv_nand = meminfo->priv;
|
|
|
|
priv_nand->block_bad = nand_block_bad_old;
|
|
priv_nand->scan_bbt(meminfo);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define MAX_PAGE_SIZE 2048
|
|
#define MAX_OOB_SIZE 64
|
|
|
|
/*
|
|
* buffer array used for writing data
|
|
*/
|
|
static unsigned char data_buf[MAX_PAGE_SIZE];
|
|
static unsigned char oob_buf[MAX_OOB_SIZE];
|
|
|
|
/* OOB layouts to pass into the kernel as default */
|
|
static struct nand_oobinfo none_oobinfo = {
|
|
.useecc = MTD_NANDECC_OFF,
|
|
};
|
|
|
|
static struct nand_oobinfo jffs2_oobinfo = {
|
|
.useecc = MTD_NANDECC_PLACE,
|
|
.eccbytes = 6,
|
|
.eccpos = { 0, 1, 2, 3, 6, 7 }
|
|
};
|
|
|
|
static struct nand_oobinfo yaffs_oobinfo = {
|
|
.useecc = MTD_NANDECC_PLACE,
|
|
.eccbytes = 6,
|
|
.eccpos = { 8, 9, 10, 13, 14, 15}
|
|
};
|
|
|
|
static struct nand_oobinfo autoplace_oobinfo = {
|
|
.useecc = MTD_NANDECC_AUTOPLACE
|
|
};
|
|
|
|
/**
|
|
* nand_write_opts: - write image to NAND flash with support for various options
|
|
*
|
|
* @param meminfo NAND device to erase
|
|
* @param opts write options (@see nand_write_options)
|
|
* @return 0 in case of success
|
|
*
|
|
* This code is ported from nandwrite.c from Linux mtd utils by
|
|
* Steven J. Hill and Thomas Gleixner.
|
|
*/
|
|
int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
|
|
{
|
|
int imglen = 0;
|
|
int pagelen;
|
|
int baderaseblock;
|
|
int blockstart = -1;
|
|
loff_t offs;
|
|
int readlen;
|
|
int oobinfochanged = 0;
|
|
int percent_complete = -1;
|
|
struct nand_oobinfo old_oobinfo;
|
|
ulong mtdoffset = opts->offset;
|
|
ulong erasesize_blockalign;
|
|
u_char *buffer = opts->buffer;
|
|
size_t written;
|
|
int result;
|
|
|
|
if (opts->pad && opts->writeoob) {
|
|
printf("Can't pad when oob data is present.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* set erasesize to specified number of blocks - to match
|
|
* jffs2 (virtual) block size */
|
|
if (opts->blockalign == 0) {
|
|
erasesize_blockalign = meminfo->erasesize;
|
|
} else {
|
|
erasesize_blockalign = meminfo->erasesize * opts->blockalign;
|
|
}
|
|
|
|
/* make sure device page sizes are valid */
|
|
if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
|
|
&& !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
|
|
&& !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
|
|
printf("Unknown flash (not normal NAND)\n");
|
|
return -1;
|
|
}
|
|
|
|
/* read the current oob info */
|
|
memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
|
|
|
|
/* write without ecc? */
|
|
if (opts->noecc) {
|
|
memcpy(&meminfo->oobinfo, &none_oobinfo,
|
|
sizeof(meminfo->oobinfo));
|
|
oobinfochanged = 1;
|
|
}
|
|
|
|
/* autoplace ECC? */
|
|
if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
|
|
|
|
memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
|
|
sizeof(meminfo->oobinfo));
|
|
oobinfochanged = 1;
|
|
}
|
|
|
|
/* force OOB layout for jffs2 or yaffs? */
|
|
if (opts->forcejffs2 || opts->forceyaffs) {
|
|
struct nand_oobinfo *oobsel =
|
|
opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
|
|
|
|
if (meminfo->oobsize == 8) {
|
|
if (opts->forceyaffs) {
|
|
printf("YAFSS cannot operate on "
|
|
"256 Byte page size\n");
|
|
goto restoreoob;
|
|
}
|
|
/* Adjust number of ecc bytes */
|
|
jffs2_oobinfo.eccbytes = 3;
|
|
}
|
|
|
|
memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
|
|
}
|
|
|
|
/* get image length */
|
|
imglen = opts->length;
|
|
pagelen = meminfo->oobblock
|
|
+ ((opts->writeoob != 0) ? meminfo->oobsize : 0);
|
|
|
|
/* check, if file is pagealigned */
|
|
if ((!opts->pad) && ((imglen % pagelen) != 0)) {
|
|
printf("Input block length is not page aligned\n");
|
|
goto restoreoob;
|
|
}
|
|
|
|
/* check, if length fits into device */
|
|
if (((imglen / pagelen) * meminfo->oobblock)
|
|
> (meminfo->size - opts->offset)) {
|
|
printf("Image %d bytes, NAND page %d bytes, "
|
|
"OOB area %u bytes, device size %u bytes\n",
|
|
imglen, pagelen, meminfo->oobblock, meminfo->size);
|
|
printf("Input block does not fit into device\n");
|
|
goto restoreoob;
|
|
}
|
|
|
|
if (!opts->quiet)
|
|
printf("\n");
|
|
|
|
/* get data from input and write to the device */
|
|
while (imglen && (mtdoffset < meminfo->size)) {
|
|
|
|
WATCHDOG_RESET ();
|
|
|
|
/*
|
|
* new eraseblock, check for bad block(s). Stay in the
|
|
* loop to be sure if the offset changes because of
|
|
* a bad block, that the next block that will be
|
|
* written to is also checked. Thus avoiding errors if
|
|
* the block(s) after the skipped block(s) is also bad
|
|
* (number of blocks depending on the blockalign
|
|
*/
|
|
while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
|
|
blockstart = mtdoffset & (~erasesize_blockalign+1);
|
|
offs = blockstart;
|
|
baderaseblock = 0;
|
|
|
|
/* check all the blocks in an erase block for
|
|
* bad blocks */
|
|
do {
|
|
int ret = meminfo->block_isbad(meminfo, offs);
|
|
|
|
if (ret < 0) {
|
|
printf("Bad block check failed\n");
|
|
goto restoreoob;
|
|
}
|
|
if (ret == 1) {
|
|
baderaseblock = 1;
|
|
if (!opts->quiet)
|
|
printf("\rBad block at 0x%lx "
|
|
"in erase block from "
|
|
"0x%x will be skipped\n",
|
|
(long) offs,
|
|
blockstart);
|
|
}
|
|
|
|
if (baderaseblock) {
|
|
mtdoffset = blockstart
|
|
+ erasesize_blockalign;
|
|
}
|
|
offs += erasesize_blockalign
|
|
/ opts->blockalign;
|
|
} while (offs < blockstart + erasesize_blockalign);
|
|
}
|
|
|
|
readlen = meminfo->oobblock;
|
|
if (opts->pad && (imglen < readlen)) {
|
|
readlen = imglen;
|
|
memset(data_buf + readlen, 0xff,
|
|
meminfo->oobblock - readlen);
|
|
}
|
|
|
|
/* read page data from input memory buffer */
|
|
memcpy(data_buf, buffer, readlen);
|
|
buffer += readlen;
|
|
|
|
if (opts->writeoob) {
|
|
/* read OOB data from input memory block, exit
|
|
* on failure */
|
|
memcpy(oob_buf, buffer, meminfo->oobsize);
|
|
buffer += meminfo->oobsize;
|
|
|
|
/* write OOB data first, as ecc will be placed
|
|
* in there*/
|
|
result = meminfo->write_oob(meminfo,
|
|
mtdoffset,
|
|
meminfo->oobsize,
|
|
&written,
|
|
(unsigned char *)
|
|
&oob_buf);
|
|
|
|
if (result != 0) {
|
|
printf("\nMTD writeoob failure: %d\n",
|
|
result);
|
|
goto restoreoob;
|
|
}
|
|
imglen -= meminfo->oobsize;
|
|
}
|
|
|
|
/* write out the page data */
|
|
result = meminfo->write(meminfo,
|
|
mtdoffset,
|
|
meminfo->oobblock,
|
|
&written,
|
|
(unsigned char *) &data_buf);
|
|
|
|
if (result != 0) {
|
|
printf("writing NAND page at offset 0x%lx failed\n",
|
|
mtdoffset);
|
|
goto restoreoob;
|
|
}
|
|
imglen -= readlen;
|
|
|
|
if (!opts->quiet) {
|
|
unsigned long long n = (unsigned long long)
|
|
(opts->length-imglen) * 100;
|
|
int percent = (int)do_div(n, opts->length);
|
|
/* output progress message only at whole percent
|
|
* steps to reduce the number of messages printed
|
|
* on (slow) serial consoles
|
|
*/
|
|
if (percent != percent_complete) {
|
|
printf("\rWriting data at 0x%x "
|
|
"-- %3d%% complete.",
|
|
mtdoffset, percent);
|
|
percent_complete = percent;
|
|
}
|
|
}
|
|
|
|
mtdoffset += meminfo->oobblock;
|
|
}
|
|
|
|
if (!opts->quiet)
|
|
printf("\n");
|
|
|
|
restoreoob:
|
|
if (oobinfochanged) {
|
|
memcpy(&meminfo->oobinfo, &old_oobinfo,
|
|
sizeof(meminfo->oobinfo));
|
|
}
|
|
|
|
if (imglen > 0) {
|
|
printf("Data did not fit into device, due to bad blocks\n");
|
|
return -1;
|
|
}
|
|
|
|
/* return happy */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_opts: - read image from NAND flash with support for various options
|
|
*
|
|
* @param meminfo NAND device to erase
|
|
* @param opts read options (@see struct nand_read_options)
|
|
* @return 0 in case of success
|
|
*
|
|
*/
|
|
int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
|
|
{
|
|
int imglen = opts->length;
|
|
int pagelen;
|
|
int baderaseblock;
|
|
int blockstart = -1;
|
|
int percent_complete = -1;
|
|
loff_t offs;
|
|
size_t readlen;
|
|
ulong mtdoffset = opts->offset;
|
|
u_char *buffer = opts->buffer;
|
|
int result;
|
|
|
|
/* make sure device page sizes are valid */
|
|
if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
|
|
&& !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
|
|
&& !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
|
|
printf("Unknown flash (not normal NAND)\n");
|
|
return -1;
|
|
}
|
|
|
|
pagelen = meminfo->oobblock
|
|
+ ((opts->readoob != 0) ? meminfo->oobsize : 0);
|
|
|
|
/* check, if length is not larger than device */
|
|
if (((imglen / pagelen) * meminfo->oobblock)
|
|
> (meminfo->size - opts->offset)) {
|
|
printf("Image %d bytes, NAND page %d bytes, "
|
|
"OOB area %u bytes, device size %u bytes\n",
|
|
imglen, pagelen, meminfo->oobblock, meminfo->size);
|
|
printf("Input block is larger than device\n");
|
|
return -1;
|
|
}
|
|
|
|
if (!opts->quiet)
|
|
printf("\n");
|
|
|
|
/* get data from input and write to the device */
|
|
while (imglen && (mtdoffset < meminfo->size)) {
|
|
|
|
WATCHDOG_RESET ();
|
|
|
|
/*
|
|
* new eraseblock, check for bad block(s). Stay in the
|
|
* loop to be sure if the offset changes because of
|
|
* a bad block, that the next block that will be
|
|
* written to is also checked. Thus avoiding errors if
|
|
* the block(s) after the skipped block(s) is also bad
|
|
* (number of blocks depending on the blockalign
|
|
*/
|
|
while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
|
|
blockstart = mtdoffset & (~meminfo->erasesize+1);
|
|
offs = blockstart;
|
|
baderaseblock = 0;
|
|
|
|
/* check all the blocks in an erase block for
|
|
* bad blocks */
|
|
do {
|
|
int ret = meminfo->block_isbad(meminfo, offs);
|
|
|
|
if (ret < 0) {
|
|
printf("Bad block check failed\n");
|
|
return -1;
|
|
}
|
|
if (ret == 1) {
|
|
baderaseblock = 1;
|
|
if (!opts->quiet)
|
|
printf("\rBad block at 0x%lx "
|
|
"in erase block from "
|
|
"0x%x will be skipped\n",
|
|
(long) offs,
|
|
blockstart);
|
|
}
|
|
|
|
if (baderaseblock) {
|
|
mtdoffset = blockstart
|
|
+ meminfo->erasesize;
|
|
}
|
|
offs += meminfo->erasesize;
|
|
|
|
} while (offs < blockstart + meminfo->erasesize);
|
|
}
|
|
|
|
|
|
/* read page data to memory buffer */
|
|
result = meminfo->read(meminfo,
|
|
mtdoffset,
|
|
meminfo->oobblock,
|
|
&readlen,
|
|
(unsigned char *) &data_buf);
|
|
|
|
if (result != 0) {
|
|
printf("reading NAND page at offset 0x%lx failed\n",
|
|
mtdoffset);
|
|
return -1;
|
|
}
|
|
|
|
if (imglen < readlen) {
|
|
readlen = imglen;
|
|
}
|
|
|
|
memcpy(buffer, data_buf, readlen);
|
|
buffer += readlen;
|
|
imglen -= readlen;
|
|
|
|
if (opts->readoob) {
|
|
result = meminfo->read_oob(meminfo,
|
|
mtdoffset,
|
|
meminfo->oobsize,
|
|
&readlen,
|
|
(unsigned char *)
|
|
&oob_buf);
|
|
|
|
if (result != 0) {
|
|
printf("\nMTD readoob failure: %d\n",
|
|
result);
|
|
return -1;
|
|
}
|
|
|
|
|
|
if (imglen < readlen) {
|
|
readlen = imglen;
|
|
}
|
|
|
|
memcpy(buffer, oob_buf, readlen);
|
|
|
|
buffer += readlen;
|
|
imglen -= readlen;
|
|
}
|
|
|
|
if (!opts->quiet) {
|
|
unsigned long long n = (unsigned long long)
|
|
(opts->length-imglen) * 100;
|
|
int percent = (int)do_div(n ,opts->length);
|
|
/* output progress message only at whole percent
|
|
* steps to reduce the number of messages printed
|
|
* on (slow) serial consoles
|
|
*/
|
|
if (percent != percent_complete) {
|
|
if (!opts->quiet)
|
|
printf("\rReading data from 0x%x "
|
|
"-- %3d%% complete.",
|
|
mtdoffset, percent);
|
|
percent_complete = percent;
|
|
}
|
|
}
|
|
|
|
mtdoffset += meminfo->oobblock;
|
|
}
|
|
|
|
if (!opts->quiet)
|
|
printf("\n");
|
|
|
|
if (imglen > 0) {
|
|
printf("Could not read entire image due to bad blocks\n");
|
|
return -1;
|
|
}
|
|
|
|
/* return happy */
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Support for locking / unlocking operations of some NAND devices
|
|
*****************************************************************************/
|
|
|
|
#define NAND_CMD_LOCK 0x2a
|
|
#define NAND_CMD_LOCK_TIGHT 0x2c
|
|
#define NAND_CMD_UNLOCK1 0x23
|
|
#define NAND_CMD_UNLOCK2 0x24
|
|
#define NAND_CMD_LOCK_STATUS 0x7a
|
|
|
|
/**
|
|
* nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
|
|
* state
|
|
*
|
|
* @param meminfo nand mtd instance
|
|
* @param tight bring device in lock tight mode
|
|
*
|
|
* @return 0 on success, -1 in case of error
|
|
*
|
|
* The lock / lock-tight command only applies to the whole chip. To get some
|
|
* parts of the chip lock and others unlocked use the following sequence:
|
|
*
|
|
* - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
|
|
* - Call nand_unlock() once for each consecutive area to be unlocked
|
|
* - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
|
|
*
|
|
* If the device is in lock-tight state software can't change the
|
|
* current active lock/unlock state of all pages. nand_lock() / nand_unlock()
|
|
* calls will fail. It is only posible to leave lock-tight state by
|
|
* an hardware signal (low pulse on _WP pin) or by power down.
|
|
*/
|
|
int nand_lock(nand_info_t *meminfo, int tight)
|
|
{
|
|
int ret = 0;
|
|
int status;
|
|
struct nand_chip *this = meminfo->priv;
|
|
|
|
/* select the NAND device */
|
|
this->select_chip(meminfo, 0);
|
|
|
|
this->cmdfunc(meminfo,
|
|
(tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
|
|
-1, -1);
|
|
|
|
/* call wait ready function */
|
|
status = this->waitfunc(meminfo, this, FL_WRITING);
|
|
|
|
/* see if device thinks it succeeded */
|
|
if (status & 0x01) {
|
|
ret = -1;
|
|
}
|
|
|
|
/* de-select the NAND device */
|
|
this->select_chip(meminfo, -1);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_get_lock_status: - query current lock state from one page of NAND
|
|
* flash
|
|
*
|
|
* @param meminfo nand mtd instance
|
|
* @param offset page address to query (muss be page aligned!)
|
|
*
|
|
* @return -1 in case of error
|
|
* >0 lock status:
|
|
* bitfield with the following combinations:
|
|
* NAND_LOCK_STATUS_TIGHT: page in tight state
|
|
* NAND_LOCK_STATUS_LOCK: page locked
|
|
* NAND_LOCK_STATUS_UNLOCK: page unlocked
|
|
*
|
|
*/
|
|
int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
|
|
{
|
|
int ret = 0;
|
|
int chipnr;
|
|
int page;
|
|
struct nand_chip *this = meminfo->priv;
|
|
|
|
/* select the NAND device */
|
|
chipnr = (int)(offset >> this->chip_shift);
|
|
this->select_chip(meminfo, chipnr);
|
|
|
|
|
|
if ((offset & (meminfo->oobblock - 1)) != 0) {
|
|
printf ("nand_get_lock_status: "
|
|
"Start address must be beginning of "
|
|
"nand page!\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* check the Lock Status */
|
|
page = (int)(offset >> this->page_shift);
|
|
this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
|
|
|
|
ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
|
|
| NAND_LOCK_STATUS_LOCK
|
|
| NAND_LOCK_STATUS_UNLOCK);
|
|
|
|
out:
|
|
/* de-select the NAND device */
|
|
this->select_chip(meminfo, -1);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_unlock: - Unlock area of NAND pages
|
|
* only one consecutive area can be unlocked at one time!
|
|
*
|
|
* @param meminfo nand mtd instance
|
|
* @param start start byte address
|
|
* @param length number of bytes to unlock (must be a multiple of
|
|
* page size nand->oobblock)
|
|
*
|
|
* @return 0 on success, -1 in case of error
|
|
*/
|
|
int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
|
|
{
|
|
int ret = 0;
|
|
int chipnr;
|
|
int status;
|
|
int page;
|
|
struct nand_chip *this = meminfo->priv;
|
|
printf ("nand_unlock: start: %08x, length: %d!\n",
|
|
(int)start, (int)length);
|
|
|
|
/* select the NAND device */
|
|
chipnr = (int)(start >> this->chip_shift);
|
|
this->select_chip(meminfo, chipnr);
|
|
|
|
/* check the WP bit */
|
|
this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
|
|
if ((this->read_byte(meminfo) & 0x80) == 0) {
|
|
printf ("nand_unlock: Device is write protected!\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
if ((start & (meminfo->oobblock - 1)) != 0) {
|
|
printf ("nand_unlock: Start address must be beginning of "
|
|
"nand page!\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
|
|
printf ("nand_unlock: Length must be a multiple of nand page "
|
|
"size!\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* submit address of first page to unlock */
|
|
page = (int)(start >> this->page_shift);
|
|
this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
|
|
|
|
/* submit ADDRESS of LAST page to unlock */
|
|
page += (int)(length >> this->page_shift) - 1;
|
|
this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
|
|
|
|
/* call wait ready function */
|
|
status = this->waitfunc(meminfo, this, FL_WRITING);
|
|
/* see if device thinks it succeeded */
|
|
if (status & 0x01) {
|
|
/* there was an error */
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
/* de-select the NAND device */
|
|
this->select_chip(meminfo, -1);
|
|
return ret;
|
|
}
|
|
|
|
#endif
|