u-boot/drivers/ddr/imx/phy/helper.c
Ye Li 99c7cc58e1 ddr: imx: Add i.MX9 DDR controller driver
Since i.MX9 uses same DDR PHY with i.MX8M, split the DDRPHY to a common
directory under imx, then use dedicated ddr controller driver for each
iMX9 and iMX8M.

The DDRPHY registers are space compressed, so it needs conversion to
access the DDRPHY address. Introduce a common PHY address remap function
for both iMX8M and iMX9 for all PHY registers accessing.

Signed-off-by: Ye Li <ye.li@nxp.com>
Signed-off-by: Peng Fan <peng.fan@nxp.com>
2022-07-26 11:29:01 +02:00

185 lines
4.8 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018 NXP
*/
#include <common.h>
#include <log.h>
#include <spl.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/ddr.h>
#include <asm/sections.h>
DECLARE_GLOBAL_DATA_PTR;
#define IMEM_LEN 32768 /* byte */
#define DMEM_LEN 16384 /* byte */
#define IMEM_2D_OFFSET 49152
#define IMEM_OFFSET_ADDR 0x00050000
#define DMEM_OFFSET_ADDR 0x00054000
#define DDR_TRAIN_CODE_BASE_ADDR IP2APB_DDRPHY_IPS_BASE_ADDR(0)
/* We need PHY iMEM PHY is 32KB padded */
void ddr_load_train_firmware(enum fw_type type)
{
u32 tmp32, i;
u32 error = 0;
unsigned long pr_to32, pr_from32;
unsigned long fw_offset = type ? IMEM_2D_OFFSET : 0;
unsigned long imem_start = (unsigned long)&_end + fw_offset;
unsigned long dmem_start;
#ifdef CONFIG_SPL_OF_CONTROL
if (gd->fdt_blob && !fdt_check_header(gd->fdt_blob)) {
imem_start = roundup((unsigned long)&_end +
fdt_totalsize(gd->fdt_blob), 4) +
fw_offset;
}
#endif
dmem_start = imem_start + IMEM_LEN;
pr_from32 = imem_start;
pr_to32 = IMEM_OFFSET_ADDR;
for (i = 0x0; i < IMEM_LEN; ) {
tmp32 = readl(pr_from32);
writew(tmp32 & 0x0000ffff, DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32));
pr_to32 += 1;
writew((tmp32 >> 16) & 0x0000ffff,
DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32));
pr_to32 += 1;
pr_from32 += 4;
i += 4;
}
pr_from32 = dmem_start;
pr_to32 = DMEM_OFFSET_ADDR;
for (i = 0x0; i < DMEM_LEN; ) {
tmp32 = readl(pr_from32);
writew(tmp32 & 0x0000ffff, DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32));
pr_to32 += 1;
writew((tmp32 >> 16) & 0x0000ffff,
DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32));
pr_to32 += 1;
pr_from32 += 4;
i += 4;
}
debug("check ddr_pmu_train_imem code\n");
pr_from32 = imem_start;
pr_to32 = IMEM_OFFSET_ADDR;
for (i = 0x0; i < IMEM_LEN; ) {
tmp32 = (readw(DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32)) & 0x0000ffff);
pr_to32 += 1;
tmp32 += ((readw(DDR_TRAIN_CODE_BASE_ADDR +
ddrphy_addr_remap(pr_to32)) & 0x0000ffff) << 16);
if (tmp32 != readl(pr_from32)) {
debug("%lx %lx\n", pr_from32, pr_to32);
error++;
}
pr_from32 += 4;
pr_to32 += 1;
i += 4;
}
if (error)
printf("check ddr_pmu_train_imem code fail=%d\n", error);
else
debug("check ddr_pmu_train_imem code pass\n");
debug("check ddr4_pmu_train_dmem code\n");
pr_from32 = dmem_start;
pr_to32 = DMEM_OFFSET_ADDR;
for (i = 0x0; i < DMEM_LEN;) {
tmp32 = (readw(DDR_TRAIN_CODE_BASE_ADDR + ddrphy_addr_remap(pr_to32)) & 0x0000ffff);
pr_to32 += 1;
tmp32 += ((readw(DDR_TRAIN_CODE_BASE_ADDR +
ddrphy_addr_remap(pr_to32)) & 0x0000ffff) << 16);
if (tmp32 != readl(pr_from32)) {
debug("%lx %lx\n", pr_from32, pr_to32);
error++;
}
pr_from32 += 4;
pr_to32 += 1;
i += 4;
}
if (error)
printf("check ddr_pmu_train_dmem code fail=%d", error);
else
debug("check ddr_pmu_train_dmem code pass\n");
}
void ddrphy_trained_csr_save(struct dram_cfg_param *ddrphy_csr,
unsigned int num)
{
int i = 0;
/* enable the ddrphy apb */
dwc_ddrphy_apb_wr(0xd0000, 0x0);
dwc_ddrphy_apb_wr(0xc0080, 0x3);
for (i = 0; i < num; i++) {
ddrphy_csr->val = dwc_ddrphy_apb_rd(ddrphy_csr->reg);
ddrphy_csr++;
}
/* disable the ddrphy apb */
dwc_ddrphy_apb_wr(0xc0080, 0x2);
dwc_ddrphy_apb_wr(0xd0000, 0x1);
}
void dram_config_save(struct dram_timing_info *timing_info,
unsigned long saved_timing_base)
{
int i = 0;
struct dram_timing_info *saved_timing = (struct dram_timing_info *)saved_timing_base;
struct dram_cfg_param *cfg;
saved_timing->ddrc_cfg_num = timing_info->ddrc_cfg_num;
saved_timing->ddrphy_cfg_num = timing_info->ddrphy_cfg_num;
saved_timing->ddrphy_trained_csr_num = ddrphy_trained_csr_num;
saved_timing->ddrphy_pie_num = timing_info->ddrphy_pie_num;
/* save the fsp table */
for (i = 0; i < 4; i++)
saved_timing->fsp_table[i] = timing_info->fsp_table[i];
cfg = (struct dram_cfg_param *)(saved_timing_base +
sizeof(*timing_info));
/* save ddrc config */
saved_timing->ddrc_cfg = cfg;
for (i = 0; i < timing_info->ddrc_cfg_num; i++) {
cfg->reg = timing_info->ddrc_cfg[i].reg;
cfg->val = timing_info->ddrc_cfg[i].val;
cfg++;
}
/* save ddrphy config */
saved_timing->ddrphy_cfg = cfg;
for (i = 0; i < timing_info->ddrphy_cfg_num; i++) {
cfg->reg = timing_info->ddrphy_cfg[i].reg;
cfg->val = timing_info->ddrphy_cfg[i].val;
cfg++;
}
/* save the ddrphy csr */
saved_timing->ddrphy_trained_csr = cfg;
for (i = 0; i < ddrphy_trained_csr_num; i++) {
cfg->reg = ddrphy_trained_csr[i].reg;
cfg->val = ddrphy_trained_csr[i].val;
cfg++;
}
/* save the ddrphy pie */
saved_timing->ddrphy_pie = cfg;
for (i = 0; i < timing_info->ddrphy_pie_num; i++) {
cfg->reg = timing_info->ddrphy_pie[i].reg;
cfg->val = timing_info->ddrphy_pie[i].val;
cfg++;
}
}