u-boot/drivers/ram/sifive/fu540_ddr.c
Bin Meng 9981a8009e ram: sifive: Remove regmap dependency
The usage of regmap API in the SiFive RAM driver is not correct.
The reg address should be obtained via dev_read_addr_index() API.

Signed-off-by: Bin Meng <bin.meng@windriver.com>
2020-09-30 08:54:38 +08:00

409 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* (C) Copyright 2020 SiFive, Inc.
*
* Authors:
* Pragnesh Patel <pragnesh.patel@sifive.com>
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <init.h>
#include <ram.h>
#include <syscon.h>
#include <asm/io.h>
#include <clk.h>
#include <wait_bit.h>
#include <linux/bitops.h>
#define DENALI_CTL_0 0
#define DENALI_CTL_21 21
#define DENALI_CTL_120 120
#define DENALI_CTL_132 132
#define DENALI_CTL_136 136
#define DENALI_CTL_170 170
#define DENALI_CTL_181 181
#define DENALI_CTL_182 182
#define DENALI_CTL_184 184
#define DENALI_CTL_208 208
#define DENALI_CTL_209 209
#define DENALI_CTL_210 210
#define DENALI_CTL_212 212
#define DENALI_CTL_214 214
#define DENALI_CTL_216 216
#define DENALI_CTL_224 224
#define DENALI_CTL_225 225
#define DENALI_CTL_260 260
#define DENALI_PHY_1152 1152
#define DENALI_PHY_1214 1214
#define DRAM_CLASS_OFFSET 8
#define DRAM_CLASS_DDR4 0xA
#define OPTIMAL_RMODW_EN_OFFSET 0
#define DISABLE_RD_INTERLEAVE_OFFSET 16
#define OUT_OF_RANGE_OFFSET 1
#define MULTIPLE_OUT_OF_RANGE_OFFSET 2
#define PORT_COMMAND_CHANNEL_ERROR_OFFSET 7
#define MC_INIT_COMPLETE_OFFSET 8
#define LEVELING_OPERATION_COMPLETED_OFFSET 22
#define DFI_PHY_WRLELV_MODE_OFFSET 24
#define DFI_PHY_RDLVL_MODE_OFFSET 24
#define DFI_PHY_RDLVL_GATE_MODE_OFFSET 0
#define VREF_EN_OFFSET 24
#define PORT_ADDR_PROTECTION_EN_OFFSET 0
#define AXI0_ADDRESS_RANGE_ENABLE 8
#define AXI0_RANGE_PROT_BITS_0_OFFSET 24
#define RDLVL_EN_OFFSET 16
#define RDLVL_GATE_EN_OFFSET 24
#define WRLVL_EN_OFFSET 0
#define PHY_RX_CAL_DQ0_0_OFFSET 0
#define PHY_RX_CAL_DQ1_0_OFFSET 16
DECLARE_GLOBAL_DATA_PTR;
struct fu540_ddrctl {
volatile u32 denali_ctl[265];
};
struct fu540_ddrphy {
volatile u32 denali_phy[1215];
};
/**
* struct fu540_ddr_info
*
* @dev : pointer for the device
* @info : UCLASS RAM information
* @ctl : DDR controller base address
* @phy : DDR PHY base address
* @ctrl : DDR control base address
* @physical_filter_ctrl : DDR physical filter control base address
*/
struct fu540_ddr_info {
struct udevice *dev;
struct ram_info info;
struct fu540_ddrctl *ctl;
struct fu540_ddrphy *phy;
struct clk ddr_clk;
u32 *physical_filter_ctrl;
};
#if defined(CONFIG_SPL_BUILD)
struct fu540_ddr_params {
struct fu540_ddrctl pctl_regs;
struct fu540_ddrphy phy_regs;
};
struct sifive_dmc_plat {
struct fu540_ddr_params ddr_params;
};
/*
* TODO : It can be possible to use common sdram_copy_to_reg() API
* n: Unit bytes
*/
static void sdram_copy_to_reg(volatile u32 *dest,
volatile u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
writel(*src, dest);
src++;
dest++;
}
}
static void fu540_ddr_setup_range_protection(volatile u32 *ctl, u64 end_addr)
{
u32 end_addr_16kblocks = ((end_addr >> 14) & 0x7FFFFF) - 1;
writel(0x0, DENALI_CTL_209 + ctl);
writel(end_addr_16kblocks, DENALI_CTL_210 + ctl);
writel(0x0, DENALI_CTL_212 + ctl);
writel(0x0, DENALI_CTL_214 + ctl);
writel(0x0, DENALI_CTL_216 + ctl);
setbits_le32(DENALI_CTL_224 + ctl,
0x3 << AXI0_RANGE_PROT_BITS_0_OFFSET);
writel(0xFFFFFFFF, DENALI_CTL_225 + ctl);
setbits_le32(DENALI_CTL_208 + ctl, 0x1 << AXI0_ADDRESS_RANGE_ENABLE);
setbits_le32(DENALI_CTL_208 + ctl,
0x1 << PORT_ADDR_PROTECTION_EN_OFFSET);
}
static void fu540_ddr_start(volatile u32 *ctl, u32 *physical_filter_ctrl,
u64 ddr_end)
{
volatile u64 *filterreg = (volatile u64 *)physical_filter_ctrl;
setbits_le32(DENALI_CTL_0 + ctl, 0x1);
wait_for_bit_le32((void *)ctl + DENALI_CTL_132,
BIT(MC_INIT_COMPLETE_OFFSET), false, 100, false);
/* Disable the BusBlocker in front of the controller AXI slave ports */
filterreg[0] = 0x0f00000000000000UL | (ddr_end >> 2);
}
static void fu540_ddr_check_errata(u32 regbase, u32 updownreg)
{
u64 fails = 0;
u32 dq = 0;
u32 down, up;
u8 failc0, failc1;
u32 phy_rx_cal_dqn_0_offset;
for (u32 bit = 0; bit < 2; bit++) {
if (bit == 0) {
phy_rx_cal_dqn_0_offset =
PHY_RX_CAL_DQ0_0_OFFSET;
} else {
phy_rx_cal_dqn_0_offset =
PHY_RX_CAL_DQ1_0_OFFSET;
}
down = (updownreg >>
phy_rx_cal_dqn_0_offset) & 0x3F;
up = (updownreg >>
(phy_rx_cal_dqn_0_offset + 6)) &
0x3F;
failc0 = ((down == 0) && (up == 0x3F));
failc1 = ((up == 0) && (down == 0x3F));
/* print error message on failure */
if (failc0 || failc1) {
if (fails == 0)
printf("DDR error in fixing up\n");
fails |= (1 << dq);
char slicelsc = '0';
char slicemsc = '0';
slicelsc += (dq % 10);
slicemsc += (dq / 10);
printf("S ");
printf("%c", slicemsc);
printf("%c", slicelsc);
if (failc0)
printf("U");
else
printf("D");
printf("\n");
}
dq++;
}
}
static u64 fu540_ddr_phy_fixup(volatile u32 *ddrphyreg)
{
u32 slicebase = 0;
/* check errata condition */
for (u32 slice = 0; slice < 8; slice++) {
u32 regbase = slicebase + 34;
for (u32 reg = 0; reg < 4; reg++) {
u32 updownreg = readl(regbase + reg + ddrphyreg);
fu540_ddr_check_errata(regbase, updownreg);
}
slicebase += 128;
}
return(0);
}
static u32 fu540_ddr_get_dram_class(volatile u32 *ctl)
{
u32 reg = readl(DENALI_CTL_0 + ctl);
return ((reg >> DRAM_CLASS_OFFSET) & 0xF);
}
static int fu540_ddr_setup(struct udevice *dev)
{
struct fu540_ddr_info *priv = dev_get_priv(dev);
struct sifive_dmc_plat *plat = dev_get_platdata(dev);
struct fu540_ddr_params *params = &plat->ddr_params;
volatile u32 *denali_ctl = priv->ctl->denali_ctl;
volatile u32 *denali_phy = priv->phy->denali_phy;
const u64 ddr_size = priv->info.size;
const u64 ddr_end = priv->info.base + ddr_size;
int ret, i;
u32 physet;
ret = dev_read_u32_array(dev, "sifive,ddr-params",
(u32 *)&plat->ddr_params,
sizeof(plat->ddr_params) / sizeof(u32));
if (ret) {
printf("%s: Cannot read sifive,ddr-params %d\n",
__func__, ret);
return ret;
}
sdram_copy_to_reg(priv->ctl->denali_ctl,
params->pctl_regs.denali_ctl,
sizeof(struct fu540_ddrctl));
/* phy reset */
for (i = DENALI_PHY_1152; i <= DENALI_PHY_1214; i++) {
physet = params->phy_regs.denali_phy[i];
priv->phy->denali_phy[i] = physet;
}
for (i = 0; i < DENALI_PHY_1152; i++) {
physet = params->phy_regs.denali_phy[i];
priv->phy->denali_phy[i] = physet;
}
/* Disable read interleave DENALI_CTL_120 */
setbits_le32(DENALI_CTL_120 + denali_ctl,
1 << DISABLE_RD_INTERLEAVE_OFFSET);
/* Disable optimal read/modify/write logic DENALI_CTL_21 */
clrbits_le32(DENALI_CTL_21 + denali_ctl, 1 << OPTIMAL_RMODW_EN_OFFSET);
/* Enable write Leveling DENALI_CTL_170 */
setbits_le32(DENALI_CTL_170 + denali_ctl, (1 << WRLVL_EN_OFFSET)
| (1 << DFI_PHY_WRLELV_MODE_OFFSET));
/* Enable read leveling DENALI_CTL_181 and DENALI_CTL_260 */
setbits_le32(DENALI_CTL_181 + denali_ctl,
1 << DFI_PHY_RDLVL_MODE_OFFSET);
setbits_le32(DENALI_CTL_260 + denali_ctl, 1 << RDLVL_EN_OFFSET);
/* Enable read leveling gate DENALI_CTL_260 and DENALI_CTL_182 */
setbits_le32(DENALI_CTL_260 + denali_ctl, 1 << RDLVL_GATE_EN_OFFSET);
setbits_le32(DENALI_CTL_182 + denali_ctl,
1 << DFI_PHY_RDLVL_GATE_MODE_OFFSET);
if (fu540_ddr_get_dram_class(denali_ctl) == DRAM_CLASS_DDR4) {
/* Enable vref training DENALI_CTL_184 */
setbits_le32(DENALI_CTL_184 + denali_ctl, 1 << VREF_EN_OFFSET);
}
/* Mask off leveling completion interrupt DENALI_CTL_136 */
setbits_le32(DENALI_CTL_136 + denali_ctl,
1 << LEVELING_OPERATION_COMPLETED_OFFSET);
/* Mask off MC init complete interrupt DENALI_CTL_136 */
setbits_le32(DENALI_CTL_136 + denali_ctl, 1 << MC_INIT_COMPLETE_OFFSET);
/* Mask off out of range interrupts DENALI_CTL_136 */
setbits_le32(DENALI_CTL_136 + denali_ctl, (1 << OUT_OF_RANGE_OFFSET)
| (1 << MULTIPLE_OUT_OF_RANGE_OFFSET));
/* set up range protection */
fu540_ddr_setup_range_protection(denali_ctl, priv->info.size);
/* Mask off port command error interrupt DENALI_CTL_136 */
setbits_le32(DENALI_CTL_136 + denali_ctl,
1 << PORT_COMMAND_CHANNEL_ERROR_OFFSET);
fu540_ddr_start(denali_ctl, priv->physical_filter_ctrl, ddr_end);
fu540_ddr_phy_fixup(denali_phy);
/* check size */
priv->info.size = get_ram_size((long *)priv->info.base,
ddr_size);
debug("%s : %lx\n", __func__, (uintptr_t)priv->info.size);
/* check memory access for all memory */
if (priv->info.size != ddr_size) {
printf("DDR invalid size : 0x%lx, expected 0x%lx\n",
(uintptr_t)priv->info.size, (uintptr_t)ddr_size);
return -EINVAL;
}
return 0;
}
#endif
static int fu540_ddr_probe(struct udevice *dev)
{
struct fu540_ddr_info *priv = dev_get_priv(dev);
/* Read memory base and size from DT */
fdtdec_setup_mem_size_base();
priv->info.base = gd->ram_base;
priv->info.size = gd->ram_size;
#if defined(CONFIG_SPL_BUILD)
int ret;
u32 clock = 0;
debug("FU540 DDR probe\n");
priv->dev = dev;
ret = clk_get_by_index(dev, 0, &priv->ddr_clk);
if (ret) {
debug("clk get failed %d\n", ret);
return ret;
}
ret = dev_read_u32(dev, "clock-frequency", &clock);
if (ret) {
debug("clock-frequency not found in dt %d\n", ret);
return ret;
} else {
ret = clk_set_rate(&priv->ddr_clk, clock);
if (ret < 0) {
debug("Could not set DDR clock\n");
return ret;
}
}
ret = clk_enable(&priv->ddr_clk);
if (ret < 0) {
debug("Could not enable DDR clock\n");
return ret;
}
priv->ctl = (struct fu540_ddrctl *)dev_read_addr_index(dev, 0);
priv->phy = (struct fu540_ddrphy *)dev_read_addr_index(dev, 1);
priv->physical_filter_ctrl = (u32 *)dev_read_addr_index(dev, 2);
return fu540_ddr_setup(dev);
#endif
return 0;
}
static int fu540_ddr_get_info(struct udevice *dev, struct ram_info *info)
{
struct fu540_ddr_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops fu540_ddr_ops = {
.get_info = fu540_ddr_get_info,
};
static const struct udevice_id fu540_ddr_ids[] = {
{ .compatible = "sifive,fu540-c000-ddr" },
{ }
};
U_BOOT_DRIVER(fu540_ddr) = {
.name = "fu540_ddr",
.id = UCLASS_RAM,
.of_match = fu540_ddr_ids,
.ops = &fu540_ddr_ops,
.probe = fu540_ddr_probe,
.priv_auto_alloc_size = sizeof(struct fu540_ddr_info),
#if defined(CONFIG_SPL_BUILD)
.platdata_auto_alloc_size = sizeof(struct sifive_dmc_plat),
#endif
};