mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-24 12:03:39 +00:00
eadc4f512f
Before commit 4c289425752f ("mv_ddr: a38x: add support for ddr async mode"), Asynchornous Mode was only used when the CPU Subsystem Clock Options[4:0] field in the SAR1 register was set to value 0x13: CPU at 2 GHz and DDR at 933 MHz. Then commit 4c289425752f ("mv_ddr: a38x: add support for ddr async mode") added support for Asynchornous Modes with frequencies other than 933 MHz (but at least 467 MHz), but the code it added to check for whether Asynchornous Mode should be used is wrong: it checks whether the frequency setting in board DDR topology map is set to value other than MV_DDR_FREQ_SAR. Thus boards which define a specific value, greater than 400 MHz, for DDR frequency in their board topology (e.g. Turris Omnia defines MV_DDR_FREQ_800), are incorrectly put into Asynchornous Mode after that commit. The A38x Functional Specification, section 10.12 DRAM Clocking, says: In Synchornous mode, the DRAM and CPU clocks are edge aligned and run in 1:2 or 1:3 CPU to DRAM frequency ratios. Change the check for whether Asynchornous Mode should be used according to this explanation in Functional Specification. Signed-off-by: Marek Behún <marek.behun@nic.cz> Tested-by: Chris Packham <judge.packham@gmail.com> Reviewed-by: Stefan Roese <sr@denx.de>
1443 lines
36 KiB
C
1443 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) Marvell International Ltd. and its affiliates
|
|
*/
|
|
|
|
#include "ddr3_init.h"
|
|
#include "mv_ddr_common.h"
|
|
#include "mv_ddr_training_db.h"
|
|
#include "mv_ddr_regs.h"
|
|
#include "mv_ddr_sys_env_lib.h"
|
|
|
|
#define DDR_INTERFACES_NUM 1
|
|
#define DDR_INTERFACE_OCTETS_NUM 5
|
|
|
|
/*
|
|
* 1. L2 filter should be set at binary header to 0xD000000,
|
|
* to avoid conflict with internal register IO.
|
|
* 2. U-Boot modifies internal registers base to 0xf100000,
|
|
* and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
|
|
*/
|
|
#define L2_FILTER_FOR_MAX_MEMORY_SIZE 0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
|
|
#define ADDRESS_FILTERING_END_REGISTER 0x8c04
|
|
|
|
#define DYNAMIC_CS_SIZE_CONFIG
|
|
#define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
|
|
|
|
/* Termal Sensor Registers */
|
|
#define TSEN_CONTROL_LSB_REG 0xE4070
|
|
#define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
|
|
#define TSEN_CONTROL_LSB_TC_TRIM_MASK (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
|
|
#define TSEN_CONTROL_MSB_REG 0xE4074
|
|
#define TSEN_CONTROL_MSB_RST_OFFSET 8
|
|
#define TSEN_CONTROL_MSB_RST_MASK (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
|
|
#define TSEN_STATUS_REG 0xe4078
|
|
#define TSEN_STATUS_READOUT_VALID_OFFSET 10
|
|
#define TSEN_STATUS_READOUT_VALID_MASK (0x1 << \
|
|
TSEN_STATUS_READOUT_VALID_OFFSET)
|
|
#define TSEN_STATUS_TEMP_OUT_OFFSET 0
|
|
#define TSEN_STATUS_TEMP_OUT_MASK (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
|
|
|
|
static struct dlb_config ddr3_dlb_config_table[] = {
|
|
{DLB_CTRL_REG, 0x2000005c},
|
|
{DLB_BUS_OPT_WT_REG, 0x00880000},
|
|
{DLB_AGING_REG, 0x0f7f007f},
|
|
{DLB_EVICTION_CTRL_REG, 0x0000129f},
|
|
{DLB_EVICTION_TIMERS_REG, 0x00ff0000},
|
|
{DLB_WTS_DIFF_CS_REG, 0x04030802},
|
|
{DLB_WTS_DIFF_BG_REG, 0x00000a02},
|
|
{DLB_WTS_SAME_BG_REG, 0x09000a01},
|
|
{DLB_WTS_CMDS_REG, 0x00020005},
|
|
{DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
|
|
{DLB_QUEUE_MAP_REG, 0x00000543},
|
|
{DLB_SPLIT_REG, 0x00000000},
|
|
{DLB_USER_CMD_REG, 0x00000000},
|
|
{0x0, 0x0}
|
|
};
|
|
|
|
static struct dlb_config *sys_env_dlb_config_ptr_get(void)
|
|
{
|
|
return &ddr3_dlb_config_table[0];
|
|
}
|
|
|
|
static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
|
|
0x3, /* MV_DDR_FREQ_100 */
|
|
0x4, /* MV_DDR_FREQ_400 */
|
|
0x4, /* MV_DDR_FREQ_533 */
|
|
0x5, /* MV_DDR_FREQ_667 */
|
|
0x5, /* MV_DDR_FREQ_800 */
|
|
0x5, /* MV_DDR_FREQ_933 */
|
|
0x5, /* MV_DDR_FREQ_1066 */
|
|
0x3, /* MV_DDR_FREQ_311 */
|
|
0x3, /* MV_DDR_FREQ_333 */
|
|
0x4, /* MV_DDR_FREQ_467 */
|
|
0x5, /* MV_DDR_FREQ_850 */
|
|
0x5, /* MV_DDR_FREQ_600 */
|
|
0x3, /* MV_DDR_FREQ_300 */
|
|
0x5, /* MV_DDR_FREQ_900 */
|
|
0x3, /* MV_DDR_FREQ_360 */
|
|
0x5 /* MV_DDR_FREQ_1000 */
|
|
};
|
|
|
|
static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
|
|
0x1, /* MV_DDR_FREQ_100 */
|
|
0x2, /* MV_DDR_FREQ_400 */
|
|
0x2, /* MV_DDR_FREQ_533 */
|
|
0x2, /* MV_DDR_FREQ_667 */
|
|
0x2, /* MV_DDR_FREQ_800 */
|
|
0x3, /* MV_DDR_FREQ_933 */
|
|
0x3, /* MV_DDR_FREQ_1066 */
|
|
0x1, /* MV_DDR_FREQ_311 */
|
|
0x1, /* MV_DDR_FREQ_333 */
|
|
0x2, /* MV_DDR_FREQ_467 */
|
|
0x2, /* MV_DDR_FREQ_850 */
|
|
0x2, /* MV_DDR_FREQ_600 */
|
|
0x1, /* MV_DDR_FREQ_300 */
|
|
0x2, /* MV_DDR_FREQ_900 */
|
|
0x1, /* MV_DDR_FREQ_360 */
|
|
0x2 /* MV_DDR_FREQ_1000 */
|
|
};
|
|
|
|
static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
|
|
666, /* 0 */
|
|
1332,
|
|
800,
|
|
1600,
|
|
1066,
|
|
2132,
|
|
1200,
|
|
2400,
|
|
1332,
|
|
1332,
|
|
1500,
|
|
1500,
|
|
1600, /* 12 */
|
|
1600,
|
|
1700,
|
|
1700,
|
|
1866,
|
|
1866,
|
|
1800, /* 18 */
|
|
2000,
|
|
2000,
|
|
4000,
|
|
2132,
|
|
2132,
|
|
2300,
|
|
2300,
|
|
2400,
|
|
2400,
|
|
2500,
|
|
2500,
|
|
800
|
|
};
|
|
|
|
static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
|
|
666, /* 0 */
|
|
1332,
|
|
800,
|
|
800, /* 0x3 */
|
|
1066,
|
|
1066, /* 0x5 */
|
|
1200,
|
|
2400,
|
|
1332,
|
|
1332,
|
|
1500, /* 10 */
|
|
1600, /* 0xB */
|
|
1600,
|
|
1600,
|
|
1700,
|
|
1560, /* 0xF */
|
|
1866,
|
|
1866,
|
|
1800,
|
|
2000,
|
|
2000, /* 20 */
|
|
4000,
|
|
2132,
|
|
2132,
|
|
2300,
|
|
2300,
|
|
2400,
|
|
2400,
|
|
2500,
|
|
2500,
|
|
1800 /* 30 - 0x1E */
|
|
};
|
|
|
|
|
|
static u32 dq_bit_map_2_phy_pin[] = {
|
|
1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
|
|
8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
|
|
3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
|
|
1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
|
|
0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
|
|
};
|
|
|
|
void mv_ddr_mem_scrubbing(void)
|
|
{
|
|
ddr3_new_tip_ecc_scrub();
|
|
}
|
|
|
|
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
|
|
enum mv_ddr_freq freq);
|
|
|
|
/*
|
|
* Read temperature TJ value
|
|
*/
|
|
static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
|
|
{
|
|
int reg = 0;
|
|
|
|
/* Initiates TSEN hardware reset once */
|
|
if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
|
|
reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
|
|
/* set Tsen Tc Trim to correct default value (errata #132698) */
|
|
reg = reg_read(TSEN_CONTROL_LSB_REG);
|
|
reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
|
|
reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
|
|
reg_write(TSEN_CONTROL_LSB_REG, reg);
|
|
}
|
|
mdelay(10);
|
|
|
|
/* Check if the readout field is valid */
|
|
if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
|
|
printf("%s: TSEN not ready\n", __func__);
|
|
return 0;
|
|
}
|
|
|
|
reg = reg_read(TSEN_STATUS_REG);
|
|
reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
|
|
|
|
return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
|
|
}
|
|
|
|
/*
|
|
* Name: ddr3_tip_a38x_get_freq_config.
|
|
* Desc:
|
|
* Args:
|
|
* Notes:
|
|
* Returns: MV_OK if success, other error code if fail.
|
|
*/
|
|
static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
|
|
struct hws_tip_freq_config_info
|
|
*freq_config_info)
|
|
{
|
|
if (a38x_bw_per_freq[freq] == 0xff)
|
|
return MV_NOT_SUPPORTED;
|
|
|
|
if (freq_config_info == NULL)
|
|
return MV_BAD_PARAM;
|
|
|
|
freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
|
|
freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
|
|
freq_config_info->is_supported = 1;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static void dunit_read(u32 addr, u32 mask, u32 *data)
|
|
{
|
|
*data = reg_read(addr) & mask;
|
|
}
|
|
|
|
static void dunit_write(u32 addr, u32 mask, u32 data)
|
|
{
|
|
u32 reg_val = data;
|
|
|
|
if (mask != MASK_ALL_BITS) {
|
|
dunit_read(addr, MASK_ALL_BITS, ®_val);
|
|
reg_val &= (~mask);
|
|
reg_val |= (data & mask);
|
|
}
|
|
|
|
reg_write(addr, reg_val);
|
|
}
|
|
|
|
#define ODPG_ENABLE_REG 0x186d4
|
|
#define ODPG_EN_OFFS 0
|
|
#define ODPG_EN_MASK 0x1
|
|
#define ODPG_EN_ENA 1
|
|
#define ODPG_EN_DONE 0
|
|
#define ODPG_DIS_OFFS 8
|
|
#define ODPG_DIS_MASK 0x1
|
|
#define ODPG_DIS_DIS 1
|
|
void mv_ddr_odpg_enable(void)
|
|
{
|
|
dunit_write(ODPG_ENABLE_REG,
|
|
ODPG_EN_MASK << ODPG_EN_OFFS,
|
|
ODPG_EN_ENA << ODPG_EN_OFFS);
|
|
}
|
|
|
|
void mv_ddr_odpg_disable(void)
|
|
{
|
|
dunit_write(ODPG_ENABLE_REG,
|
|
ODPG_DIS_MASK << ODPG_DIS_OFFS,
|
|
ODPG_DIS_DIS << ODPG_DIS_OFFS);
|
|
}
|
|
|
|
void mv_ddr_odpg_done_clr(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
int mv_ddr_is_odpg_done(u32 count)
|
|
{
|
|
u32 i, data;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
|
|
if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
|
|
ODPG_EN_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i >= count) {
|
|
printf("%s: timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
void mv_ddr_training_enable(void)
|
|
{
|
|
dunit_write(GLOB_CTRL_STATUS_REG,
|
|
TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
|
|
TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
|
|
}
|
|
|
|
#define DRAM_INIT_CTRL_STATUS_REG 0x18488
|
|
#define TRAINING_TRIGGER_OFFS 0
|
|
#define TRAINING_TRIGGER_MASK 0x1
|
|
#define TRAINING_TRIGGER_ENA 1
|
|
#define TRAINING_DONE_OFFS 1
|
|
#define TRAINING_DONE_MASK 0x1
|
|
#define TRAINING_DONE_DONE 1
|
|
#define TRAINING_DONE_NOT_DONE 0
|
|
#define TRAINING_RESULT_OFFS 2
|
|
#define TRAINING_RESULT_MASK 0x1
|
|
#define TRAINING_RESULT_PASS 0
|
|
#define TRAINING_RESULT_FAIL 1
|
|
int mv_ddr_is_training_done(u32 count, u32 *result)
|
|
{
|
|
u32 i, data;
|
|
|
|
if (result == NULL) {
|
|
printf("%s: NULL result pointer found\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
|
|
if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
|
|
TRAINING_DONE_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i >= count) {
|
|
printf("%s: timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
|
|
*result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
#define DM_PAD 10
|
|
u32 mv_ddr_dm_pad_get(void)
|
|
{
|
|
return DM_PAD;
|
|
}
|
|
|
|
/*
|
|
* Name: ddr3_tip_a38x_select_ddr_controller.
|
|
* Desc: Enable/Disable access to Marvell's server.
|
|
* Args: dev_num - device number
|
|
* enable - whether to enable or disable the server
|
|
* Notes:
|
|
* Returns: MV_OK if success, other error code if fail.
|
|
*/
|
|
static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = reg_read(DUAL_DUNIT_CFG_REG);
|
|
|
|
if (enable)
|
|
reg |= (1 << 6);
|
|
else
|
|
reg &= ~(1 << 6);
|
|
|
|
reg_write(DUAL_DUNIT_CFG_REG, reg);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static u8 ddr3_tip_clock_mode(u32 frequency)
|
|
{
|
|
if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
|
|
return 1;
|
|
|
|
return 2;
|
|
}
|
|
|
|
static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
|
|
{
|
|
u32 reg, ref_clk_satr;
|
|
|
|
/* Read sample at reset setting */
|
|
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
|
|
switch (reg) {
|
|
case 0x1:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x0:
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0x3:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x2:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0xd:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x4:
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0x6:
|
|
*freq = MV_DDR_FREQ_600;
|
|
break;
|
|
case 0x11:
|
|
case 0x14:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0x8:
|
|
*freq = MV_DDR_FREQ_667;
|
|
break;
|
|
case 0x15:
|
|
case 0x1b:
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
|
|
reg));
|
|
/* fallthrough */
|
|
case 0xc:
|
|
*freq = MV_DDR_FREQ_800;
|
|
break;
|
|
case 0x10:
|
|
*freq = MV_DDR_FREQ_933;
|
|
break;
|
|
case 0x12:
|
|
*freq = MV_DDR_FREQ_900;
|
|
break;
|
|
case 0x13:
|
|
*freq = MV_DDR_FREQ_933;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
} else { /* REFCLK 40MHz case */
|
|
switch (reg) {
|
|
case 0x3:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x5:
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0xb:
|
|
*freq = MV_DDR_FREQ_800;
|
|
break;
|
|
case 0x1e:
|
|
*freq = MV_DDR_FREQ_900;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
|
|
{
|
|
u32 reg, ref_clk_satr;
|
|
|
|
/* Read sample at reset setting */
|
|
reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
|
|
switch (reg) {
|
|
case 0x0:
|
|
case 0x1:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0x2:
|
|
case 0x3:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x4:
|
|
case 0xd:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0x8:
|
|
case 0x10:
|
|
case 0x11:
|
|
case 0x14:
|
|
*freq = MV_DDR_FREQ_333;
|
|
break;
|
|
case 0xc:
|
|
case 0x15:
|
|
case 0x1b:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x6:
|
|
*freq = MV_DDR_FREQ_300;
|
|
break;
|
|
case 0x12:
|
|
*freq = MV_DDR_FREQ_360;
|
|
break;
|
|
case 0x13:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
} else { /* REFCLK 40MHz case */
|
|
switch (reg) {
|
|
case 0x3:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x5:
|
|
/* Medium is same as TF to run PBS in this freq */
|
|
*freq = MV_DDR_FREQ_533;
|
|
break;
|
|
case 0xb:
|
|
*freq = MV_DDR_FREQ_400;
|
|
break;
|
|
case 0x1e:
|
|
*freq = MV_DDR_FREQ_360;
|
|
break;
|
|
default:
|
|
*freq = 0;
|
|
return MV_NOT_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
|
|
{
|
|
info_ptr->device_id = 0x6800;
|
|
info_ptr->ck_delay = ck_delay;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* check indirect access to phy register file completed */
|
|
static int is_prfa_done(void)
|
|
{
|
|
u32 reg_val;
|
|
u32 iter = 0;
|
|
|
|
do {
|
|
if (iter++ > MAX_POLLING_ITERATIONS) {
|
|
printf("error: %s: polling timeout\n", __func__);
|
|
return MV_FAIL;
|
|
}
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
reg_val >>= PRFA_REQ_OFFS;
|
|
reg_val &= PRFA_REQ_MASK;
|
|
} while (reg_val == PRFA_REQ_ENA); /* request pending */
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* write to phy register thru indirect access */
|
|
static int prfa_write(enum hws_access_type phy_access, u32 phy,
|
|
enum hws_ddr_phy phy_type, u32 addr,
|
|
u32 data, enum hws_operation op_type)
|
|
{
|
|
u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
|
|
((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
|
|
((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
|
|
((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
|
|
((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
|
|
(((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
|
|
((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
|
|
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
|
|
reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
|
|
dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
|
|
|
|
/* polling for prfa request completion */
|
|
if (is_prfa_done() != MV_OK)
|
|
return MV_FAIL;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* read from phy register thru indirect access */
|
|
static int prfa_read(enum hws_access_type phy_access, u32 phy,
|
|
enum hws_ddr_phy phy_type, u32 addr, u32 *data)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
|
|
u32 i, reg_val;
|
|
|
|
if (phy_access == ACCESS_TYPE_MULTICAST) {
|
|
for (i = 0; i < max_phy; i++) {
|
|
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
|
|
if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
|
|
return MV_FAIL;
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
|
|
}
|
|
} else {
|
|
if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
|
|
return MV_FAIL;
|
|
dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, ®_val);
|
|
*data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
|
|
{
|
|
struct hws_tip_config_func_db config_func;
|
|
|
|
/* new read leveling version */
|
|
config_func.mv_ddr_dunit_read = dunit_read;
|
|
config_func.mv_ddr_dunit_write = dunit_write;
|
|
config_func.tip_dunit_mux_select_func =
|
|
ddr3_tip_a38x_select_ddr_controller;
|
|
config_func.tip_get_freq_config_info_func =
|
|
ddr3_tip_a38x_get_freq_config;
|
|
config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
|
|
config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
|
|
config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
|
|
config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
|
|
config_func.tip_external_read = ddr3_tip_ext_read;
|
|
config_func.tip_external_write = ddr3_tip_ext_write;
|
|
config_func.mv_ddr_phy_read = prfa_read;
|
|
config_func.mv_ddr_phy_write = prfa_write;
|
|
|
|
ddr3_tip_init_config_func(dev_num, &config_func);
|
|
|
|
ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
|
|
|
|
/* set device attributes*/
|
|
ddr3_tip_dev_attr_init(dev_num);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
|
|
ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
|
|
|
|
ca_delay = 0;
|
|
delay_enable = 1;
|
|
dfs_low_freq = DFS_LOW_FREQ_VALUE;
|
|
calibration_update_control = 1;
|
|
|
|
ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int mv_ddr_training_mask_set(void)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
|
|
|
|
mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
|
|
LOAD_PATTERN_MASK_BIT |
|
|
SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_MASK_BIT |
|
|
READ_LEVELING_MASK_BIT |
|
|
PBS_RX_MASK_BIT |
|
|
PBS_TX_MASK_BIT |
|
|
SET_TARGET_FREQ_MASK_BIT |
|
|
WRITE_LEVELING_TF_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_TF_MASK_BIT |
|
|
READ_LEVELING_TF_MASK_BIT |
|
|
CENTRALIZATION_RX_MASK_BIT |
|
|
CENTRALIZATION_TX_MASK_BIT);
|
|
rl_mid_freq_wa = 1;
|
|
|
|
if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
|
|
mask_tune_func = (WRITE_LEVELING_MASK_BIT |
|
|
LOAD_PATTERN_2_MASK_BIT |
|
|
WRITE_LEVELING_SUPP_MASK_BIT |
|
|
READ_LEVELING_MASK_BIT |
|
|
PBS_RX_MASK_BIT |
|
|
PBS_TX_MASK_BIT |
|
|
CENTRALIZATION_RX_MASK_BIT |
|
|
CENTRALIZATION_TX_MASK_BIT);
|
|
rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
|
|
}
|
|
|
|
/* Supplementary not supported for ECC modes */
|
|
if (mv_ddr_is_ecc_ena()) {
|
|
mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
|
|
mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
|
|
mask_tune_func &= ~PBS_TX_MASK_BIT;
|
|
mask_tune_func &= ~PBS_RX_MASK_BIT;
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* function: mv_ddr_set_calib_controller
|
|
* this function sets the controller which will control
|
|
* the calibration cycle in the end of the training.
|
|
* 1 - internal controller
|
|
* 2 - external controller
|
|
*/
|
|
void mv_ddr_set_calib_controller(void)
|
|
{
|
|
calibration_update_control = CAL_UPDATE_CTRL_INT;
|
|
}
|
|
|
|
static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
|
|
enum mv_ddr_freq frequency)
|
|
{
|
|
u32 divider = 0;
|
|
u32 sar_val, ref_clk_satr;
|
|
u32 async_val;
|
|
u32 cpu_freq;
|
|
u32 ddr_freq = mv_ddr_freq_get(frequency);
|
|
|
|
if (if_id != 0) {
|
|
DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
|
|
("A38x does not support interface 0x%x\n",
|
|
if_id));
|
|
return MV_BAD_PARAM;
|
|
}
|
|
|
|
/* get VCO freq index */
|
|
sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
|
|
RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
|
|
|
|
ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
|
|
if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
|
|
DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
|
|
cpu_freq = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val];
|
|
else
|
|
cpu_freq = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val];
|
|
|
|
divider = cpu_freq / ddr_freq;
|
|
|
|
if (((cpu_freq % ddr_freq != 0) || (divider != 2 && divider != 3)) &&
|
|
(ddr_freq > 400)) {
|
|
/* Set async mode */
|
|
dunit_write(0x20220, 0x1000, 0x1000);
|
|
dunit_write(0xe42f4, 0x200, 0x200);
|
|
|
|
/* Wait for async mode setup */
|
|
mdelay(5);
|
|
|
|
/* Set KNL values */
|
|
switch (frequency) {
|
|
case MV_DDR_FREQ_467:
|
|
async_val = 0x806f012;
|
|
break;
|
|
case MV_DDR_FREQ_533:
|
|
async_val = 0x807f012;
|
|
break;
|
|
case MV_DDR_FREQ_600:
|
|
async_val = 0x805f00a;
|
|
break;
|
|
case MV_DDR_FREQ_667:
|
|
async_val = 0x809f012;
|
|
break;
|
|
case MV_DDR_FREQ_800:
|
|
async_val = 0x807f00a;
|
|
break;
|
|
case MV_DDR_FREQ_850:
|
|
async_val = 0x80cb012;
|
|
break;
|
|
case MV_DDR_FREQ_900:
|
|
async_val = 0x80d7012;
|
|
break;
|
|
case MV_DDR_FREQ_933:
|
|
async_val = 0x80df012;
|
|
break;
|
|
case MV_DDR_FREQ_1000:
|
|
async_val = 0x80ef012;
|
|
break;
|
|
case MV_DDR_FREQ_1066:
|
|
async_val = 0x80ff012;
|
|
break;
|
|
default:
|
|
/* set MV_DDR_FREQ_667 as default */
|
|
async_val = 0x809f012;
|
|
}
|
|
dunit_write(0xe42f0, 0xffffffff, async_val);
|
|
} else {
|
|
/* Set sync mode */
|
|
dunit_write(0x20220, 0x1000, 0x0);
|
|
dunit_write(0xe42f4, 0x200, 0x0);
|
|
|
|
/* cpupll_clkdiv_reset_mask */
|
|
dunit_write(0xe4264, 0xff, 0x1f);
|
|
|
|
/* cpupll_clkdiv_reload_smooth */
|
|
dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
|
|
|
|
/* cpupll_clkdiv_relax_en */
|
|
dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
|
|
|
|
/* write the divider */
|
|
dunit_write(0xe4268, (0x3f << 8), (divider << 8));
|
|
|
|
/* set cpupll_clkdiv_reload_ratio */
|
|
dunit_write(0xe4264, (1 << 8), (1 << 8));
|
|
|
|
/* undet cpupll_clkdiv_reload_ratio */
|
|
dunit_write(0xe4264, (1 << 8), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_reload_force */
|
|
dunit_write(0xe4260, (0xff << 8), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_relax_en */
|
|
dunit_write(0xe4260, (0xff << 24), 0x0);
|
|
|
|
/* clear cpupll_clkdiv_reset_mask */
|
|
dunit_write(0xe4264, 0xff, 0x0);
|
|
}
|
|
|
|
/* Dunit training clock + 1:1/2:1 mode */
|
|
dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
|
|
dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/*
|
|
* external read from memory
|
|
*/
|
|
int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
|
|
u32 num_of_bursts, u32 *data)
|
|
{
|
|
u32 burst_num;
|
|
|
|
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
|
|
data[burst_num] = readl(reg_addr + 4 * burst_num);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/*
|
|
* external write to memory
|
|
*/
|
|
int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
|
|
u32 num_of_bursts, u32 *data) {
|
|
u32 burst_num;
|
|
|
|
for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
|
|
writel(data[burst_num], reg_addr + 4 * burst_num);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_early_init(void)
|
|
{
|
|
/* FIXME: change this configuration per ddr type
|
|
* configure a380 and a390 to work with receiver odt timing
|
|
* the odt_config is defined:
|
|
* '1' in ddr4
|
|
* '0' in ddr3
|
|
* here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
|
|
* to configure the odt to work with timing restrictions
|
|
*/
|
|
|
|
mv_ddr_sw_db_init(0, 0);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_early_init2(void)
|
|
{
|
|
mv_ddr_training_mask_set();
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_pre_training_fixup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int mv_ddr_post_training_fixup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int ddr3_post_run_alg(void)
|
|
{
|
|
return MV_OK;
|
|
}
|
|
|
|
int ddr3_silicon_post_init(void)
|
|
{
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
/* Set half bus width */
|
|
if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
|
|
CHECK_STATUS(ddr3_tip_if_write
|
|
(0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
|
|
SDRAM_CFG_REG, 0x0, 0x8000));
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
u32 mv_ddr_init_freq_get(void)
|
|
{
|
|
enum mv_ddr_freq freq;
|
|
|
|
mv_ddr_sar_freq_get(0, &freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static u32 ddr3_get_bus_width(void)
|
|
{
|
|
u32 bus_width;
|
|
|
|
bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
|
|
BUS_IN_USE_OFFS;
|
|
|
|
return (bus_width == 0) ? 16 : 32;
|
|
}
|
|
|
|
static u32 ddr3_get_device_width(u32 cs)
|
|
{
|
|
u32 device_width;
|
|
|
|
device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
|
|
(CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
|
|
CS_STRUCT_OFFS(cs);
|
|
|
|
return (device_width == 0) ? 8 : 16;
|
|
}
|
|
|
|
static u32 ddr3_get_device_size(u32 cs)
|
|
{
|
|
u32 device_size_low, device_size_high, device_size;
|
|
u32 data, cs_low_offset, cs_high_offset;
|
|
|
|
cs_low_offset = CS_SIZE_OFFS(cs);
|
|
cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
|
|
|
|
data = reg_read(SDRAM_ADDR_CTRL_REG);
|
|
device_size_low = (data >> cs_low_offset) & 0x3;
|
|
device_size_high = (data >> cs_high_offset) & 0x1;
|
|
|
|
device_size = device_size_low | (device_size_high << 2);
|
|
|
|
switch (device_size) {
|
|
case 0:
|
|
return 2048;
|
|
case 2:
|
|
return 512;
|
|
case 3:
|
|
return 1024;
|
|
case 4:
|
|
return 4096;
|
|
case 5:
|
|
return 8192;
|
|
case 1:
|
|
default:
|
|
DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
|
|
/* zeroes mem size in ddr3_calc_mem_cs_size */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
|
|
{
|
|
u32 cs_mem_size;
|
|
|
|
/* Calculate in MiB */
|
|
cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
|
|
ddr3_get_device_size(cs)) / 8;
|
|
|
|
/*
|
|
* Multiple controller bus width, 2x for 64 bit
|
|
* (SoC controller may be 32 or 64 bit,
|
|
* so bit 15 in 0x1400, that means if whole bus used or only half,
|
|
* have a differnt meaning
|
|
*/
|
|
cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
|
|
|
|
if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
|
|
DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
|
|
return MV_BAD_VALUE;
|
|
}
|
|
|
|
*cs_size = cs_mem_size;
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
|
|
{
|
|
u32 reg, cs;
|
|
uint64_t mem_total_size = 0;
|
|
uint64_t cs_mem_size_mb = 0;
|
|
uint64_t cs_mem_size = 0;
|
|
uint64_t mem_total_size_c, cs_mem_size_c;
|
|
|
|
|
|
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
u32 physical_mem_size;
|
|
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
#endif
|
|
|
|
/* Open fast path windows */
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
/* get CS size */
|
|
if (ddr3_calc_mem_cs_size(cs, &cs_mem_size_mb) != MV_OK)
|
|
return MV_FAIL;
|
|
cs_mem_size = cs_mem_size_mb * _1M;
|
|
|
|
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
/*
|
|
* if number of address pins doesn't allow to use max
|
|
* mem size that is defined in topology
|
|
* mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
|
|
*/
|
|
physical_mem_size = mem_size
|
|
[tm->interface_params[0].memory_size];
|
|
|
|
if (ddr3_get_device_width(cs) == 16) {
|
|
/*
|
|
* 16bit mem device can be twice more - no need
|
|
* in less significant pin
|
|
*/
|
|
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
|
|
}
|
|
|
|
if (physical_mem_size > max_mem_size) {
|
|
cs_mem_size = max_mem_size *
|
|
(ddr3_get_bus_width() /
|
|
ddr3_get_device_width(cs));
|
|
printf("Updated Physical Mem size is from 0x%x to %x\n",
|
|
physical_mem_size,
|
|
DEVICE_MAX_DRAM_ADDRESS_SIZE);
|
|
}
|
|
#endif
|
|
|
|
/* set fast path window control for the cs */
|
|
reg = 0xffffe1;
|
|
reg |= (cs << 2);
|
|
reg |= (cs_mem_size - 1) & 0xffff0000;
|
|
/*Open fast path Window */
|
|
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
|
|
|
|
/* Set fast path window base address for the cs */
|
|
reg = ((cs_mem_size) * cs) & 0xffff0000;
|
|
/* Set base address */
|
|
reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
|
|
|
|
/*
|
|
* Since memory size may be bigger than 4G the summ may
|
|
* be more than 32 bit word,
|
|
* so to estimate the result divide mem_total_size and
|
|
* cs_mem_size by 0x10000 (it is equal to >> 16)
|
|
*/
|
|
mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
|
|
cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
|
|
|
|
/* if the sum less than 2 G - calculate the value */
|
|
if (mem_total_size_c + cs_mem_size_c < 0x10000)
|
|
mem_total_size += cs_mem_size;
|
|
else /* put max possible size */
|
|
mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Set L2 filtering to Max Memory size */
|
|
reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
|
|
{
|
|
u32 win_ctrl_reg, num_of_win_regs;
|
|
u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
|
|
u32 ui;
|
|
|
|
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
|
|
num_of_win_regs = 16;
|
|
|
|
/* Return XBAR windows 4-7 or 16-19 init configuration */
|
|
for (ui = 0; ui < num_of_win_regs; ui++)
|
|
reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
|
|
|
|
printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
|
|
ddr_type);
|
|
|
|
#if defined DYNAMIC_CS_SIZE_CONFIG
|
|
if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
|
|
printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
|
|
#else
|
|
u32 reg, cs;
|
|
reg = 0x1fffffe1;
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
reg |= (cs << 2);
|
|
break;
|
|
}
|
|
}
|
|
/* Open fast path Window to - 0.5G */
|
|
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
|
|
#endif
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_save_and_set_training_windows(u32 *win)
|
|
{
|
|
u32 cs_ena;
|
|
u32 reg, tmp_count, cs, ui;
|
|
u32 win_ctrl_reg, win_base_reg, win_remap_reg;
|
|
u32 num_of_win_regs, win_jump_index;
|
|
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
|
|
win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
|
|
win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
|
|
win_jump_index = 0x10;
|
|
num_of_win_regs = 16;
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
|
|
/*
|
|
* Disable L2 filtering during DDR training
|
|
* (when Cross Bar window is open)
|
|
*/
|
|
reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
|
|
#endif
|
|
|
|
cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
|
|
|
|
/* Close XBAR Window 19 - Not needed */
|
|
/* {0x000200e8} - Open Mbus Window - 2G */
|
|
reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
|
|
|
|
/* Save XBAR Windows 4-19 init configurations */
|
|
for (ui = 0; ui < num_of_win_regs; ui++)
|
|
win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
|
|
|
|
/* Open XBAR Windows 4-7 or 16-19 for other CS */
|
|
reg = 0;
|
|
tmp_count = 0;
|
|
for (cs = 0; cs < MAX_CS_NUM; cs++) {
|
|
if (cs_ena & (1 << cs)) {
|
|
switch (cs) {
|
|
case 0:
|
|
reg = 0x0e00;
|
|
break;
|
|
case 1:
|
|
reg = 0x0d00;
|
|
break;
|
|
case 2:
|
|
reg = 0x0b00;
|
|
break;
|
|
case 3:
|
|
reg = 0x0700;
|
|
break;
|
|
}
|
|
reg |= (1 << 0);
|
|
reg |= (SDRAM_CS_SIZE & 0xffff0000);
|
|
|
|
reg_write(win_ctrl_reg + win_jump_index * tmp_count,
|
|
reg);
|
|
reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
|
|
0xffff0000);
|
|
reg_write(win_base_reg + win_jump_index * tmp_count,
|
|
reg);
|
|
|
|
if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
|
|
reg_write(win_remap_reg +
|
|
win_jump_index * tmp_count, 0);
|
|
|
|
tmp_count++;
|
|
}
|
|
}
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static u32 win[16];
|
|
|
|
int mv_ddr_pre_training_soc_config(const char *ddr_type)
|
|
{
|
|
u32 soc_num;
|
|
u32 reg_val;
|
|
|
|
/* Switching CPU to MRVL ID */
|
|
soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
|
|
SAR1_CPU_CORE_OFFSET;
|
|
switch (soc_num) {
|
|
case 0x3:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
|
|
reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
case 0x1:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
case 0x0:
|
|
reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
|
|
/* fallthrough */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set DRAM Reset Mask in case detected GPIO indication of wakeup from
|
|
* suspend i.e the DRAM values will not be overwritten / reset when
|
|
* waking from suspend
|
|
*/
|
|
if (mv_ddr_sys_env_suspend_wakeup_check() ==
|
|
SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
|
|
reg_bit_set(SDRAM_INIT_CTRL_REG,
|
|
DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
|
|
}
|
|
|
|
/* Check if DRAM is already initialized */
|
|
if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
|
|
(1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
|
|
printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
|
|
return MV_OK;
|
|
}
|
|
|
|
/* Fix read ready phases for all SOC in reg 0x15c8 */
|
|
reg_val = reg_read(TRAINING_DBG_3_REG);
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
|
|
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0)); /* phase 0 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
|
|
reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1)); /* phase 1 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3)); /* phase 3 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4)); /* phase 4 */
|
|
|
|
reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
|
|
reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5)); /* phase 5 */
|
|
|
|
reg_write(TRAINING_DBG_3_REG, reg_val);
|
|
|
|
/*
|
|
* Axi_bresp_mode[8] = Compliant,
|
|
* Axi_addr_decode_cntrl[11] = Internal,
|
|
* Axi_data_bus_width[0] = 128bit
|
|
* */
|
|
/* 0x14a8 - AXI Control Register */
|
|
reg_write(AXI_CTRL_REG, 0);
|
|
|
|
/*
|
|
* Stage 2 - Training Values Setup
|
|
*/
|
|
/* Set X-BAR windows for the training sequence */
|
|
ddr3_save_and_set_training_windows(win);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
static int ddr3_new_tip_dlb_config(void)
|
|
{
|
|
u32 reg, i = 0;
|
|
struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
|
|
|
|
/* Write the configuration */
|
|
while (config_table_ptr[i].reg_addr != 0) {
|
|
reg_write(config_table_ptr[i].reg_addr,
|
|
config_table_ptr[i].reg_data);
|
|
i++;
|
|
}
|
|
|
|
|
|
/* Enable DLB */
|
|
reg = reg_read(DLB_CTRL_REG);
|
|
reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
|
|
~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
|
|
~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
|
|
~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
|
|
~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
|
|
|
|
reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
|
|
(WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
|
|
(AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
|
|
(MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
|
|
(PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
|
|
|
|
reg_write(DLB_CTRL_REG, reg);
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
int mv_ddr_post_training_soc_config(const char *ddr_type)
|
|
{
|
|
u32 reg_val;
|
|
|
|
/* Restore and set windows */
|
|
ddr3_restore_and_set_final_windows(win, ddr_type);
|
|
|
|
/* Update DRAM init indication in bootROM register */
|
|
reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
|
|
reg_write(REG_BOOTROM_ROUTINE_ADDR,
|
|
reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
|
|
|
|
/* DLB config */
|
|
ddr3_new_tip_dlb_config();
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
void mv_ddr_mc_config(void)
|
|
{
|
|
/* Memory controller initializations */
|
|
struct init_cntr_param init_param;
|
|
int status;
|
|
|
|
init_param.do_mrs_phy = 1;
|
|
init_param.is_ctrl64_bit = 0;
|
|
init_param.init_phy = 1;
|
|
init_param.msys_init = 1;
|
|
status = hws_ddr3_tip_init_controller(0, &init_param);
|
|
if (status != MV_OK)
|
|
printf("DDR3 init controller - FAILED 0x%x\n", status);
|
|
|
|
status = mv_ddr_mc_init();
|
|
if (status != MV_OK)
|
|
printf("DDR3 init_sequence - FAILED 0x%x\n", status);
|
|
}
|
|
/* function: mv_ddr_mc_init
|
|
* this function enables the dunit after init controller configuration
|
|
*/
|
|
int mv_ddr_mc_init(void)
|
|
{
|
|
CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
/* function: ddr3_tip_configure_phy
|
|
* configures phy and electrical parameters
|
|
*/
|
|
int ddr3_tip_configure_phy(u32 dev_num)
|
|
{
|
|
u32 if_id, phy_id;
|
|
u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
|
|
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
|
|
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_ZRI_CAL_PHY_REG,
|
|
((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
PAD_ZRI_CAL_PHY_REG,
|
|
((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_ODT_CAL_PHY_REG,
|
|
((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
PAD_ODT_CAL_PHY_REG,
|
|
((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
|
|
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
PAD_PRE_DISABLE_PHY_REG, 0));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
|
|
CMOS_CONFIG_PHY_REG, 0));
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
|
|
CMOS_CONFIG_PHY_REG, 0));
|
|
|
|
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
|
|
/* check if the interface is enabled */
|
|
VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
|
|
|
|
for (phy_id = 0;
|
|
phy_id < octets_per_if_num;
|
|
phy_id++) {
|
|
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
|
|
/* Vref & clamp */
|
|
CHECK_STATUS(ddr3_tip_bus_read_modify_write
|
|
(dev_num, ACCESS_TYPE_UNICAST,
|
|
if_id, phy_id, DDR_PHY_DATA,
|
|
PAD_CFG_PHY_REG,
|
|
((clamp_tbl[if_id] << 4) | vref_init_val),
|
|
((0x7 << 4) | 0x7)));
|
|
/* clamp not relevant for control */
|
|
CHECK_STATUS(ddr3_tip_bus_read_modify_write
|
|
(dev_num, ACCESS_TYPE_UNICAST,
|
|
if_id, phy_id, DDR_PHY_CONTROL,
|
|
PAD_CFG_PHY_REG, 0x4, 0x7));
|
|
}
|
|
}
|
|
|
|
if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
|
|
MV_DDR_PHY_EDGE_POSITIVE)
|
|
CHECK_STATUS(ddr3_tip_bus_write
|
|
(dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
|
|
DDR_PHY_DATA, 0x90, 0x6002));
|
|
|
|
|
|
return MV_OK;
|
|
}
|
|
|
|
|
|
int mv_ddr_manual_cal_do(void)
|
|
{
|
|
return 0;
|
|
}
|