mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-23 19:43:33 +00:00
185f812c41
Sphinx expects Return: and not @return to indicate a return value. find . -name '*.c' -exec \ sed -i 's/^\(\s\)\*\(\s*\)@return\(\s\)/\1*\2Return:\3/' {} \; find . -name '*.h' -exec \ sed -i 's/^\(\s\)\*\(\s*\)@return\(\s\)/\1*\2Return:\3/' {} \; Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
336 lines
10 KiB
C
336 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* SEC Descriptor Construction Library
|
|
* Basic job descriptor construction
|
|
*
|
|
* Copyright 2014 Freescale Semiconductor, Inc.
|
|
* Copyright 2018 NXP
|
|
*
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <cpu_func.h>
|
|
#include <fsl_sec.h>
|
|
#include "desc_constr.h"
|
|
#include "jobdesc.h"
|
|
#include "rsa_caam.h"
|
|
#include <asm/cache.h>
|
|
|
|
#if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_MX7ULP) || \
|
|
defined(CONFIG_IMX8M)
|
|
/*!
|
|
* Secure memory run command
|
|
*
|
|
* @param sec_mem_cmd Secure memory command register
|
|
* Return: cmd_status Secure memory command status register
|
|
*/
|
|
uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
|
|
{
|
|
uint32_t temp_reg;
|
|
|
|
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
|
|
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
|
|
uint32_t jr_id = 0;
|
|
|
|
sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
|
|
|
|
do {
|
|
temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
|
|
} while (temp_reg & CMD_COMPLETE);
|
|
|
|
return temp_reg;
|
|
}
|
|
|
|
/*!
|
|
* CAAM page allocation:
|
|
* Allocates a partition from secure memory, with the id
|
|
* equal to partition_num. This will de-allocate the page
|
|
* if it is already allocated. The partition will have
|
|
* full access permissions. The permissions are set before,
|
|
* running a job descriptor. A memory page of secure RAM
|
|
* is allocated for the partition.
|
|
*
|
|
* @param page Number of the page to allocate.
|
|
* @param partition Number of the partition to allocate.
|
|
* Return: 0 on success, ERROR_IN_PAGE_ALLOC otherwise
|
|
*/
|
|
int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
|
|
{
|
|
uint32_t temp_reg;
|
|
|
|
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
|
|
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
|
|
uint32_t jr_id = 0;
|
|
|
|
/*
|
|
* De-Allocate partition_num if already allocated to ARM core
|
|
*/
|
|
if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
|
|
temp_reg = secmem_set_cmd(PARTITION(partition_num) |
|
|
CMD_PART_DEALLOC);
|
|
if (temp_reg & SMCSJR_AERR) {
|
|
printf("Error: De-allocation status 0x%X\n", temp_reg);
|
|
return ERROR_IN_PAGE_ALLOC;
|
|
}
|
|
}
|
|
|
|
/* set the access rights to allow full access */
|
|
sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
|
|
sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
|
|
sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
|
|
|
|
/* Now need to allocate partition_num of secure RAM. */
|
|
/* De-Allocate page_num by starting with a page inquiry command */
|
|
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
|
|
|
|
/* if the page is owned, de-allocate it */
|
|
if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
|
|
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
|
|
if (temp_reg & SMCSJR_AERR) {
|
|
printf("Error: Allocation status 0x%X\n", temp_reg);
|
|
return ERROR_IN_PAGE_ALLOC;
|
|
}
|
|
}
|
|
|
|
/* Allocate page_num to partition_num */
|
|
temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
|
|
| CMD_PAGE_ALLOC);
|
|
if (temp_reg & SMCSJR_AERR) {
|
|
printf("Error: Allocation status 0x%X\n", temp_reg);
|
|
return ERROR_IN_PAGE_ALLOC;
|
|
}
|
|
/* page inquiry command to ensure that the page was allocated */
|
|
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
|
|
|
|
/* if the page is not owned => problem */
|
|
if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
|
|
printf("Allocation of page %u in partition %u failed 0x%X\n",
|
|
page_num, partition_num, temp_reg);
|
|
|
|
return ERROR_IN_PAGE_ALLOC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
|
|
uint8_t *dek_blob, uint32_t in_sz)
|
|
{
|
|
ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
|
|
uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
|
|
uint32_t jr_id = 0;
|
|
|
|
uint32_t ret = 0;
|
|
u32 aad_w1, aad_w2;
|
|
/* output blob will have 32 bytes key blob in beginning and
|
|
* 16 byte HMAC identifier at end of data blob */
|
|
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
|
|
/* Setting HDR for blob */
|
|
uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
|
|
HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
|
|
|
|
/* initialize the blob array */
|
|
memset(dek_blob, 0, out_sz + 8);
|
|
/* Copy the header into the DEK blob buffer */
|
|
memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
|
|
|
|
/* allocating secure memory */
|
|
ret = caam_page_alloc(PAGE_1, PARTITION_1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write DEK to secure memory */
|
|
memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
|
|
|
|
unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
|
|
~(ARCH_DMA_MINALIGN - 1);
|
|
unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
|
|
flush_dcache_range(start, end);
|
|
|
|
/* Now configure the access rights of the partition */
|
|
sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
|
|
sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
|
|
sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
|
|
|
|
/* construct aad for AES */
|
|
aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
|
|
aad_w2 = 0x0;
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
|
|
(0x0c << LDST_OFFSET_SHIFT) | 0x08);
|
|
|
|
append_u32(desc, aad_w1);
|
|
|
|
append_u32(desc, aad_w2);
|
|
|
|
append_cmd_ptr(desc, (caam_dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
|
|
|
|
append_cmd_ptr(desc, (caam_dma_addr_t)(ulong)(dek_blob + 8), out_sz, CMD_SEQ_OUT_PTR);
|
|
|
|
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
|
|
OP_PCLID_SECMEM);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
void inline_cnstr_jobdesc_hash(uint32_t *desc,
|
|
const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
|
|
u32 alg_type, uint32_t alg_size, int sg_tbl)
|
|
{
|
|
/* SHA 256 , output is of length 32 words */
|
|
uint32_t storelen = alg_size;
|
|
u32 options;
|
|
caam_dma_addr_t dma_addr_in, dma_addr_out;
|
|
|
|
dma_addr_in = virt_to_phys((void *)msg);
|
|
dma_addr_out = virt_to_phys((void *)digest);
|
|
|
|
init_job_desc(desc, 0);
|
|
append_operation(desc, OP_TYPE_CLASS2_ALG |
|
|
OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
|
|
OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
|
|
|
|
options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
|
|
if (sg_tbl)
|
|
options |= FIFOLDST_SGF;
|
|
if (msgsz > 0xffff) {
|
|
options |= FIFOLDST_EXT;
|
|
append_fifo_load(desc, dma_addr_in, 0, options);
|
|
append_cmd(desc, msgsz);
|
|
} else {
|
|
append_fifo_load(desc, dma_addr_in, msgsz, options);
|
|
}
|
|
|
|
append_store(desc, dma_addr_out, storelen,
|
|
LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
|
|
}
|
|
#ifndef CONFIG_SPL_BUILD
|
|
void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
|
|
uint8_t *plain_txt, uint8_t *enc_blob,
|
|
uint32_t in_sz)
|
|
{
|
|
caam_dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
|
|
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
|
|
/* output blob will have 32 bytes key blob in beginning and
|
|
* 16 byte HMAC identifier at end of data blob */
|
|
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
|
|
|
|
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
|
|
dma_addr_in = virt_to_phys((void *)plain_txt);
|
|
dma_addr_out = virt_to_phys((void *)enc_blob);
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
|
|
|
|
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
|
|
|
|
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
|
|
|
|
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
|
|
}
|
|
|
|
void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
|
|
uint8_t *enc_blob, uint8_t *plain_txt,
|
|
uint32_t out_sz)
|
|
{
|
|
caam_dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
|
|
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
|
|
uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
|
|
|
|
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
|
|
dma_addr_in = virt_to_phys((void *)enc_blob);
|
|
dma_addr_out = virt_to_phys((void *)plain_txt);
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
|
|
|
|
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
|
|
|
|
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
|
|
|
|
append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
|
|
}
|
|
#endif
|
|
/*
|
|
* Descriptor to instantiate RNG State Handle 0 in normal mode and
|
|
* load the JDKEK, TDKEK and TDSK registers
|
|
*/
|
|
void inline_cnstr_jobdesc_rng_instantiation(u32 *desc, int handle, int do_sk)
|
|
{
|
|
u32 *jump_cmd;
|
|
|
|
init_job_desc(desc, 0);
|
|
|
|
/* INIT RNG in non-test mode */
|
|
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
|
|
(handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT |
|
|
OP_ALG_PR_ON);
|
|
|
|
/* For SH0, Secure Keys must be generated as well */
|
|
if (!handle && do_sk) {
|
|
/* wait for done */
|
|
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
|
|
set_jump_tgt_here(desc, jump_cmd);
|
|
|
|
/*
|
|
* load 1 to clear written reg:
|
|
* resets the done interrupt and returns the RNG to idle.
|
|
*/
|
|
append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
|
|
|
|
/* generate secure keys (non-test) */
|
|
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
|
|
OP_ALG_RNG4_SK);
|
|
}
|
|
}
|
|
|
|
/* Descriptor for deinstantiation of the RNG block. */
|
|
void inline_cnstr_jobdesc_rng_deinstantiation(u32 *desc, int handle)
|
|
{
|
|
init_job_desc(desc, 0);
|
|
|
|
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
|
|
(handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INITFINAL);
|
|
}
|
|
|
|
void inline_cnstr_jobdesc_rng(u32 *desc, void *data_out, u32 size)
|
|
{
|
|
caam_dma_addr_t dma_data_out = virt_to_phys(data_out);
|
|
|
|
init_job_desc(desc, 0);
|
|
append_operation(desc, OP_ALG_ALGSEL_RNG | OP_TYPE_CLASS1_ALG |
|
|
OP_ALG_PR_ON);
|
|
append_fifo_store(desc, dma_data_out, size, FIFOST_TYPE_RNGSTORE);
|
|
}
|
|
|
|
/* Change key size to bytes form bits in calling function*/
|
|
void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
|
|
struct pk_in_params *pkin, uint8_t *out,
|
|
uint32_t out_siz)
|
|
{
|
|
caam_dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
|
|
|
|
dma_addr_e = virt_to_phys((void *)pkin->e);
|
|
dma_addr_a = virt_to_phys((void *)pkin->a);
|
|
dma_addr_n = virt_to_phys((void *)pkin->n);
|
|
dma_addr_out = virt_to_phys((void *)out);
|
|
|
|
init_job_desc(desc, 0);
|
|
append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
|
|
|
|
append_fifo_load(desc, dma_addr_a,
|
|
pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
|
|
|
|
append_fifo_load(desc, dma_addr_n,
|
|
pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
|
|
|
|
append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
|
|
|
|
append_fifo_store(desc, dma_addr_out, out_siz,
|
|
LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
|
|
}
|