u-boot/arch/mips/mach-octeon/include/mach/cvmx-fpa3.h
Stefan Roese 98036b0d70 mips: octeon: Misc changes to existing headers for upcoming eth support
This patch includes misc changes to already present Octeon MIPS header
files, which are necessary for the upcoming ethernet support.

The changes are mostly:
- DM GPIO & I2C infrastructure
- Coding style cleanup while reworking the headers

Signed-off-by: Stefan Roese <sr@denx.de>
2022-05-04 03:38:20 +02:00

529 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2020 Marvell International Ltd.
*
* Interface to the CN78XX Free Pool Allocator, a.k.a. FPA3
*/
#include "cvmx-address.h"
#include "cvmx-fpa-defs.h"
#include "cvmx-scratch.h"
#ifndef __CVMX_FPA3_H__
#define __CVMX_FPA3_H__
typedef struct {
unsigned res0 : 6;
unsigned node : 2;
unsigned res1 : 2;
unsigned lpool : 6;
unsigned valid_magic : 16;
} cvmx_fpa3_pool_t;
typedef struct {
unsigned res0 : 6;
unsigned node : 2;
unsigned res1 : 6;
unsigned laura : 10;
unsigned valid_magic : 16;
} cvmx_fpa3_gaura_t;
#define CVMX_FPA3_VALID_MAGIC 0xf9a3
#define CVMX_FPA3_INVALID_GAURA ((cvmx_fpa3_gaura_t){ 0, 0, 0, 0, 0 })
#define CVMX_FPA3_INVALID_POOL ((cvmx_fpa3_pool_t){ 0, 0, 0, 0, 0 })
static inline bool __cvmx_fpa3_aura_valid(cvmx_fpa3_gaura_t aura)
{
if (aura.valid_magic != CVMX_FPA3_VALID_MAGIC)
return false;
return true;
}
static inline bool __cvmx_fpa3_pool_valid(cvmx_fpa3_pool_t pool)
{
if (pool.valid_magic != CVMX_FPA3_VALID_MAGIC)
return false;
return true;
}
static inline cvmx_fpa3_gaura_t __cvmx_fpa3_gaura(int node, int laura)
{
cvmx_fpa3_gaura_t aura;
if (node < 0)
node = cvmx_get_node_num();
if (laura < 0)
return CVMX_FPA3_INVALID_GAURA;
aura.node = node;
aura.laura = laura;
aura.valid_magic = CVMX_FPA3_VALID_MAGIC;
return aura;
}
static inline cvmx_fpa3_pool_t __cvmx_fpa3_pool(int node, int lpool)
{
cvmx_fpa3_pool_t pool;
if (node < 0)
node = cvmx_get_node_num();
if (lpool < 0)
return CVMX_FPA3_INVALID_POOL;
pool.node = node;
pool.lpool = lpool;
pool.valid_magic = CVMX_FPA3_VALID_MAGIC;
return pool;
}
#undef CVMX_FPA3_VALID_MAGIC
/**
* Structure describing the data format used for stores to the FPA.
*/
typedef union {
u64 u64;
struct {
u64 scraddr : 8;
u64 len : 8;
u64 did : 8;
u64 addr : 40;
} s;
struct {
u64 scraddr : 8;
u64 len : 8;
u64 did : 8;
u64 node : 4;
u64 red : 1;
u64 reserved2 : 9;
u64 aura : 10;
u64 reserved3 : 16;
} cn78xx;
} cvmx_fpa3_iobdma_data_t;
/**
* Struct describing load allocate operation addresses for FPA pool.
*/
union cvmx_fpa3_load_data {
u64 u64;
struct {
u64 seg : 2;
u64 reserved1 : 13;
u64 io : 1;
u64 did : 8;
u64 node : 4;
u64 red : 1;
u64 reserved2 : 9;
u64 aura : 10;
u64 reserved3 : 16;
};
};
typedef union cvmx_fpa3_load_data cvmx_fpa3_load_data_t;
/**
* Struct describing store free operation addresses from FPA pool.
*/
union cvmx_fpa3_store_addr {
u64 u64;
struct {
u64 seg : 2;
u64 reserved1 : 13;
u64 io : 1;
u64 did : 8;
u64 node : 4;
u64 reserved2 : 10;
u64 aura : 10;
u64 fabs : 1;
u64 reserved3 : 3;
u64 dwb_count : 9;
u64 reserved4 : 3;
};
};
typedef union cvmx_fpa3_store_addr cvmx_fpa3_store_addr_t;
enum cvmx_fpa3_pool_alignment_e {
FPA_NATURAL_ALIGNMENT,
FPA_OFFSET_ALIGNMENT,
FPA_OPAQUE_ALIGNMENT
};
#define CVMX_FPA3_AURAX_LIMIT_MAX ((1ull << 40) - 1)
/**
* @INTERNAL
* Accessor functions to return number of POOLS in an FPA3
* depending on SoC model.
* The number is per-node for models supporting multi-node configurations.
*/
static inline int cvmx_fpa3_num_pools(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN78XX))
return 64;
if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
return 32;
if (OCTEON_IS_MODEL(OCTEON_CN73XX))
return 32;
printf("ERROR: %s: Unknowm model\n", __func__);
return -1;
}
/**
* @INTERNAL
* Accessor functions to return number of AURAS in an FPA3
* depending on SoC model.
* The number is per-node for models supporting multi-node configurations.
*/
static inline int cvmx_fpa3_num_auras(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN78XX))
return 1024;
if (OCTEON_IS_MODEL(OCTEON_CNF75XX))
return 512;
if (OCTEON_IS_MODEL(OCTEON_CN73XX))
return 512;
printf("ERROR: %s: Unknowm model\n", __func__);
return -1;
}
/**
* Get the FPA3 POOL underneath FPA3 AURA, containing all its buffers
*
*/
static inline cvmx_fpa3_pool_t cvmx_fpa3_aura_to_pool(cvmx_fpa3_gaura_t aura)
{
cvmx_fpa3_pool_t pool;
cvmx_fpa_aurax_pool_t aurax_pool;
aurax_pool.u64 = cvmx_read_csr_node(aura.node, CVMX_FPA_AURAX_POOL(aura.laura));
pool = __cvmx_fpa3_pool(aura.node, aurax_pool.s.pool);
return pool;
}
/**
* Get a new block from the FPA pool
*
* @param aura - aura number
* Return: pointer to the block or NULL on failure
*/
static inline void *cvmx_fpa3_alloc(cvmx_fpa3_gaura_t aura)
{
u64 address;
cvmx_fpa3_load_data_t load_addr;
load_addr.u64 = 0;
load_addr.seg = CVMX_MIPS_SPACE_XKPHYS;
load_addr.io = 1;
load_addr.did = 0x29; /* Device ID. Indicates FPA. */
load_addr.node = aura.node;
load_addr.red = 0; /* Perform RED on allocation.
* FIXME to use config option
*/
load_addr.aura = aura.laura;
address = cvmx_read64_uint64(load_addr.u64);
if (!address)
return NULL;
return cvmx_phys_to_ptr(address);
}
/**
* Asynchronously get a new block from the FPA
*
* The result of cvmx_fpa_async_alloc() may be retrieved using
* cvmx_fpa_async_alloc_finish().
*
* @param scr_addr Local scratch address to put response in. This is a byte
* address but must be 8 byte aligned.
* @param aura Global aura to get the block from
*/
static inline void cvmx_fpa3_async_alloc(u64 scr_addr, cvmx_fpa3_gaura_t aura)
{
cvmx_fpa3_iobdma_data_t data;
/* Hardware only uses 64 bit aligned locations, so convert from byte
* address to 64-bit index
*/
data.u64 = 0ull;
data.cn78xx.scraddr = scr_addr >> 3;
data.cn78xx.len = 1;
data.cn78xx.did = 0x29;
data.cn78xx.node = aura.node;
data.cn78xx.aura = aura.laura;
cvmx_scratch_write64(scr_addr, 0ull);
CVMX_SYNCW;
cvmx_send_single(data.u64);
}
/**
* Retrieve the result of cvmx_fpa3_async_alloc
*
* @param scr_addr The Local scratch address. Must be the same value
* passed to cvmx_fpa_async_alloc().
*
* @param aura Global aura the block came from. Must be the same value
* passed to cvmx_fpa_async_alloc.
*
* Return: Pointer to the block or NULL on failure
*/
static inline void *cvmx_fpa3_async_alloc_finish(u64 scr_addr, cvmx_fpa3_gaura_t aura)
{
u64 address;
CVMX_SYNCIOBDMA;
address = cvmx_scratch_read64(scr_addr);
if (cvmx_likely(address))
return cvmx_phys_to_ptr(address);
else
/* Try regular alloc if async failed */
return cvmx_fpa3_alloc(aura);
}
/**
* Free a pointer back to the pool.
*
* @param aura global aura number
* @param ptr physical address of block to free.
* @param num_cache_lines Cache lines to invalidate
*/
static inline void cvmx_fpa3_free(void *ptr, cvmx_fpa3_gaura_t aura, unsigned int num_cache_lines)
{
cvmx_fpa3_store_addr_t newptr;
cvmx_addr_t newdata;
newdata.u64 = cvmx_ptr_to_phys(ptr);
/* Make sure that any previous writes to memory go out before we free
this buffer. This also serves as a barrier to prevent GCC from
reordering operations to after the free. */
CVMX_SYNCWS;
newptr.u64 = 0;
newptr.seg = CVMX_MIPS_SPACE_XKPHYS;
newptr.io = 1;
newptr.did = 0x29; /* Device id, indicates FPA */
newptr.node = aura.node;
newptr.aura = aura.laura;
newptr.fabs = 0; /* Free absolute. FIXME to use config option */
newptr.dwb_count = num_cache_lines;
cvmx_write_io(newptr.u64, newdata.u64);
}
/**
* Free a pointer back to the pool without flushing the write buffer.
*
* @param aura global aura number
* @param ptr physical address of block to free.
* @param num_cache_lines Cache lines to invalidate
*/
static inline void cvmx_fpa3_free_nosync(void *ptr, cvmx_fpa3_gaura_t aura,
unsigned int num_cache_lines)
{
cvmx_fpa3_store_addr_t newptr;
cvmx_addr_t newdata;
newdata.u64 = cvmx_ptr_to_phys(ptr);
/* Prevent GCC from reordering writes to (*ptr) */
asm volatile("" : : : "memory");
newptr.u64 = 0;
newptr.seg = CVMX_MIPS_SPACE_XKPHYS;
newptr.io = 1;
newptr.did = 0x29; /* Device id, indicates FPA */
newptr.node = aura.node;
newptr.aura = aura.laura;
newptr.fabs = 0; /* Free absolute. FIXME to use config option */
newptr.dwb_count = num_cache_lines;
cvmx_write_io(newptr.u64, newdata.u64);
}
static inline int cvmx_fpa3_pool_is_enabled(cvmx_fpa3_pool_t pool)
{
cvmx_fpa_poolx_cfg_t pool_cfg;
if (!__cvmx_fpa3_pool_valid(pool))
return -1;
pool_cfg.u64 = cvmx_read_csr_node(pool.node, CVMX_FPA_POOLX_CFG(pool.lpool));
return pool_cfg.cn78xx.ena;
}
static inline int cvmx_fpa3_config_red_params(unsigned int node, int qos_avg_en, int red_lvl_dly,
int avg_dly)
{
cvmx_fpa_gen_cfg_t fpa_cfg;
cvmx_fpa_red_delay_t red_delay;
fpa_cfg.u64 = cvmx_read_csr_node(node, CVMX_FPA_GEN_CFG);
fpa_cfg.s.avg_en = qos_avg_en;
fpa_cfg.s.lvl_dly = red_lvl_dly;
cvmx_write_csr_node(node, CVMX_FPA_GEN_CFG, fpa_cfg.u64);
red_delay.u64 = cvmx_read_csr_node(node, CVMX_FPA_RED_DELAY);
red_delay.s.avg_dly = avg_dly;
cvmx_write_csr_node(node, CVMX_FPA_RED_DELAY, red_delay.u64);
return 0;
}
/**
* Gets the buffer size of the specified pool,
*
* @param aura Global aura number
* Return: Returns size of the buffers in the specified pool.
*/
static inline int cvmx_fpa3_get_aura_buf_size(cvmx_fpa3_gaura_t aura)
{
cvmx_fpa3_pool_t pool;
cvmx_fpa_poolx_cfg_t pool_cfg;
int block_size;
pool = cvmx_fpa3_aura_to_pool(aura);
pool_cfg.u64 = cvmx_read_csr_node(pool.node, CVMX_FPA_POOLX_CFG(pool.lpool));
block_size = pool_cfg.cn78xx.buf_size << 7;
return block_size;
}
/**
* Return the number of available buffers in an AURA
*
* @param aura to receive count for
* Return: available buffer count
*/
static inline long long cvmx_fpa3_get_available(cvmx_fpa3_gaura_t aura)
{
cvmx_fpa3_pool_t pool;
cvmx_fpa_poolx_available_t avail_reg;
cvmx_fpa_aurax_cnt_t cnt_reg;
cvmx_fpa_aurax_cnt_limit_t limit_reg;
long long ret;
pool = cvmx_fpa3_aura_to_pool(aura);
/* Get POOL available buffer count */
avail_reg.u64 = cvmx_read_csr_node(pool.node, CVMX_FPA_POOLX_AVAILABLE(pool.lpool));
/* Get AURA current available count */
cnt_reg.u64 = cvmx_read_csr_node(aura.node, CVMX_FPA_AURAX_CNT(aura.laura));
limit_reg.u64 = cvmx_read_csr_node(aura.node, CVMX_FPA_AURAX_CNT_LIMIT(aura.laura));
if (limit_reg.cn78xx.limit < cnt_reg.cn78xx.cnt)
return 0;
/* Calculate AURA-based buffer allowance */
ret = limit_reg.cn78xx.limit - cnt_reg.cn78xx.cnt;
/* Use POOL real buffer availability when less then allowance */
if (ret > (long long)avail_reg.cn78xx.count)
ret = avail_reg.cn78xx.count;
return ret;
}
/**
* Configure the QoS parameters of an FPA3 AURA
*
* @param aura is the FPA3 AURA handle
* @param ena_bp enables backpressure when outstanding count exceeds 'bp_thresh'
* @param ena_red enables random early discard when outstanding count exceeds 'pass_thresh'
* @param pass_thresh is the maximum count to invoke flow control
* @param drop_thresh is the count threshold to begin dropping packets
* @param bp_thresh is the back-pressure threshold
*
*/
static inline void cvmx_fpa3_setup_aura_qos(cvmx_fpa3_gaura_t aura, bool ena_red, u64 pass_thresh,
u64 drop_thresh, bool ena_bp, u64 bp_thresh)
{
unsigned int shift = 0;
u64 shift_thresh;
cvmx_fpa_aurax_cnt_limit_t limit_reg;
cvmx_fpa_aurax_cnt_levels_t aura_level;
if (!__cvmx_fpa3_aura_valid(aura))
return;
/* Get AURAX count limit for validation */
limit_reg.u64 = cvmx_read_csr_node(aura.node, CVMX_FPA_AURAX_CNT_LIMIT(aura.laura));
if (pass_thresh < 256)
pass_thresh = 255;
if (drop_thresh <= pass_thresh || drop_thresh > limit_reg.cn78xx.limit)
drop_thresh = limit_reg.cn78xx.limit;
if (bp_thresh < 256 || bp_thresh > limit_reg.cn78xx.limit)
bp_thresh = limit_reg.cn78xx.limit >> 1;
shift_thresh = (bp_thresh > drop_thresh) ? bp_thresh : drop_thresh;
/* Calculate shift so that the largest threshold fits in 8 bits */
for (shift = 0; shift < (1 << 6); shift++) {
if (0 == ((shift_thresh >> shift) & ~0xffull))
break;
};
aura_level.u64 = cvmx_read_csr_node(aura.node, CVMX_FPA_AURAX_CNT_LEVELS(aura.laura));
aura_level.s.pass = pass_thresh >> shift;
aura_level.s.drop = drop_thresh >> shift;
aura_level.s.bp = bp_thresh >> shift;
aura_level.s.shift = shift;
aura_level.s.red_ena = ena_red;
aura_level.s.bp_ena = ena_bp;
cvmx_write_csr_node(aura.node, CVMX_FPA_AURAX_CNT_LEVELS(aura.laura), aura_level.u64);
}
cvmx_fpa3_gaura_t cvmx_fpa3_reserve_aura(int node, int desired_aura_num);
int cvmx_fpa3_release_aura(cvmx_fpa3_gaura_t aura);
cvmx_fpa3_pool_t cvmx_fpa3_reserve_pool(int node, int desired_pool_num);
int cvmx_fpa3_release_pool(cvmx_fpa3_pool_t pool);
int cvmx_fpa3_is_aura_available(int node, int aura_num);
int cvmx_fpa3_is_pool_available(int node, int pool_num);
cvmx_fpa3_pool_t cvmx_fpa3_setup_fill_pool(int node, int desired_pool, const char *name,
unsigned int block_size, unsigned int num_blocks,
void *buffer);
/**
* Function to attach an aura to an existing pool
*
* @param node - configure fpa on this node
* @param pool - configured pool to attach aura to
* @param desired_aura - pointer to aura to use, set to -1 to allocate
* @param name - name to register
* @param block_size - size of buffers to use
* @param num_blocks - number of blocks to allocate
*
* Return: configured gaura on success, CVMX_FPA3_INVALID_GAURA on failure
*/
cvmx_fpa3_gaura_t cvmx_fpa3_set_aura_for_pool(cvmx_fpa3_pool_t pool, int desired_aura,
const char *name, unsigned int block_size,
unsigned int num_blocks);
/**
* Function to setup and initialize a pool.
*
* @param node - configure fpa on this node
* @param desired_aura - aura to use, -1 for dynamic allocation
* @param name - name to register
* @param block_size - size of buffers in pool
* @param num_blocks - max number of buffers allowed
*/
cvmx_fpa3_gaura_t cvmx_fpa3_setup_aura_and_pool(int node, int desired_aura, const char *name,
void *buffer, unsigned int block_size,
unsigned int num_blocks);
int cvmx_fpa3_shutdown_aura_and_pool(cvmx_fpa3_gaura_t aura);
int cvmx_fpa3_shutdown_aura(cvmx_fpa3_gaura_t aura);
int cvmx_fpa3_shutdown_pool(cvmx_fpa3_pool_t pool);
const char *cvmx_fpa3_get_pool_name(cvmx_fpa3_pool_t pool);
int cvmx_fpa3_get_pool_buf_size(cvmx_fpa3_pool_t pool);
const char *cvmx_fpa3_get_aura_name(cvmx_fpa3_gaura_t aura);
#endif /* __CVMX_FPA3_H__ */