mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-05 20:54:31 +00:00
6b69f15fd6
clk: - Add driver for Xilinx Clocking Wizard IP fdt: - Also record architecture in /fit-images net: - Fix plat/priv data handling in axi emac - Add support for 10G/25G speeds pca953x: - Add missing dependency on i2c serial: - Fix dependencies for DEBUG uart for pl010/pl011 - Add setconfig option for cadence serial driver watchdog: - Add cadence wdt expire now function zynq: - Update DT bindings to reflect the latest state and descriptions zynqmp: - Update DT bindings to reflect the latest state and descriptions - SPL: Add support for ECC DRAM initialization - Fix R5 core 1 handling logic - Enable firmware driver for mini configurations - Enable secure boot, regulators, wdt - Add support xck devices and 67dr - Add psu init for sm/smk-k26 SOMs - Add handling for MMC seq number via mmc_get_env_dev() - Handle reserved memory locations - Add support for u-boot.itb generation for secure OS - Handle BL32 handoffs for secure OS - Add support for 64bit addresses for u-boot.its generation - Change eeprom handling via nvmem aliases -----BEGIN PGP SIGNATURE----- iF0EABECAB0WIQQbPNTMvXmYlBPRwx7KSWXLKUoMIQUCYN105QAKCRDKSWXLKUoM IZiFAJ9CIiEpHiBbnAhA0VOMGoaXHGULywCdED/5dNgVtc1C7y4avzETbEyWzD4= =CdMa -----END PGP SIGNATURE----- Merge tag 'xilinx-for-v2021.10' of https://source.denx.de/u-boot/custodians/u-boot-microblaze into next Xilinx changes for v2021.10 clk: - Add driver for Xilinx Clocking Wizard IP fdt: - Also record architecture in /fit-images net: - Fix plat/priv data handling in axi emac - Add support for 10G/25G speeds pca953x: - Add missing dependency on i2c serial: - Fix dependencies for DEBUG uart for pl010/pl011 - Add setconfig option for cadence serial driver watchdog: - Add cadence wdt expire now function zynq: - Update DT bindings to reflect the latest state and descriptions zynqmp: - Update DT bindings to reflect the latest state and descriptions - SPL: Add support for ECC DRAM initialization - Fix R5 core 1 handling logic - Enable firmware driver for mini configurations - Enable secure boot, regulators, wdt - Add support xck devices and 67dr - Add psu init for sm/smk-k26 SOMs - Add handling for MMC seq number via mmc_get_env_dev() - Handle reserved memory locations - Add support for u-boot.itb generation for secure OS - Handle BL32 handoffs for secure OS - Add support for 64bit addresses for u-boot.its generation - Change eeprom handling via nvmem aliases
811 lines
21 KiB
C
811 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2016 Google, Inc
|
|
* Written by Simon Glass <sjg@chromium.org>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <fpga.h>
|
|
#include <gzip.h>
|
|
#include <image.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <mapmem.h>
|
|
#include <spl.h>
|
|
#include <sysinfo.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/global_data.h>
|
|
#include <linux/libfdt.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
#ifndef CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ
|
|
#define CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ (64 * 1024)
|
|
#endif
|
|
|
|
#ifndef CONFIG_SYS_BOOTM_LEN
|
|
#define CONFIG_SYS_BOOTM_LEN (64 << 20)
|
|
#endif
|
|
|
|
struct spl_fit_info {
|
|
const void *fit; /* Pointer to a valid FIT blob */
|
|
size_t ext_data_offset; /* Offset to FIT external data (end of FIT) */
|
|
int images_node; /* FDT offset to "/images" node */
|
|
int conf_node; /* FDT offset to selected configuration node */
|
|
};
|
|
|
|
__weak void board_spl_fit_post_load(const void *fit)
|
|
{
|
|
}
|
|
|
|
__weak ulong board_spl_fit_size_align(ulong size)
|
|
{
|
|
return size;
|
|
}
|
|
|
|
static int find_node_from_desc(const void *fit, int node, const char *str)
|
|
{
|
|
int child;
|
|
|
|
if (node < 0)
|
|
return -EINVAL;
|
|
|
|
/* iterate the FIT nodes and find a matching description */
|
|
for (child = fdt_first_subnode(fit, node); child >= 0;
|
|
child = fdt_next_subnode(fit, child)) {
|
|
int len;
|
|
const char *desc = fdt_getprop(fit, child, "description", &len);
|
|
|
|
if (!desc)
|
|
continue;
|
|
|
|
if (!strcmp(desc, str))
|
|
return child;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* spl_fit_get_image_name(): By using the matching configuration subnode,
|
|
* retrieve the name of an image, specified by a property name and an index
|
|
* into that.
|
|
* @fit: Pointer to the FDT blob.
|
|
* @images: Offset of the /images subnode.
|
|
* @type: Name of the property within the configuration subnode.
|
|
* @index: Index into the list of strings in this property.
|
|
* @outname: Name of the image
|
|
*
|
|
* Return: 0 on success, or a negative error number
|
|
*/
|
|
static int spl_fit_get_image_name(const struct spl_fit_info *ctx,
|
|
const char *type, int index,
|
|
const char **outname)
|
|
{
|
|
struct udevice *sysinfo;
|
|
const char *name, *str;
|
|
__maybe_unused int node;
|
|
int len, i;
|
|
bool found = true;
|
|
|
|
name = fdt_getprop(ctx->fit, ctx->conf_node, type, &len);
|
|
if (!name) {
|
|
debug("cannot find property '%s': %d\n", type, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
str = name;
|
|
for (i = 0; i < index; i++) {
|
|
str = strchr(str, '\0') + 1;
|
|
if (!str || (str - name >= len)) {
|
|
found = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found && CONFIG_IS_ENABLED(SYSINFO) && !sysinfo_get(&sysinfo)) {
|
|
int rc;
|
|
/*
|
|
* no string in the property for this index. Check if the
|
|
* sysinfo-level code can supply one.
|
|
*/
|
|
rc = sysinfo_detect(sysinfo);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = sysinfo_get_fit_loadable(sysinfo, index - i - 1, type,
|
|
&str);
|
|
if (rc && rc != -ENOENT)
|
|
return rc;
|
|
|
|
if (!rc) {
|
|
/*
|
|
* The sysinfo provided a name for a loadable.
|
|
* Try to match it against the description properties
|
|
* first. If no matching node is found, use it as a
|
|
* node name.
|
|
*/
|
|
int node;
|
|
int images = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
|
|
|
|
node = find_node_from_desc(ctx->fit, images, str);
|
|
if (node > 0)
|
|
str = fdt_get_name(ctx->fit, node, NULL);
|
|
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
debug("no string for index %d\n", index);
|
|
return -E2BIG;
|
|
}
|
|
|
|
*outname = str;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spl_fit_get_image_node(): By using the matching configuration subnode,
|
|
* retrieve the name of an image, specified by a property name and an index
|
|
* into that.
|
|
* @fit: Pointer to the FDT blob.
|
|
* @images: Offset of the /images subnode.
|
|
* @type: Name of the property within the configuration subnode.
|
|
* @index: Index into the list of strings in this property.
|
|
*
|
|
* Return: the node offset of the respective image node or a negative
|
|
* error number.
|
|
*/
|
|
static int spl_fit_get_image_node(const struct spl_fit_info *ctx,
|
|
const char *type, int index)
|
|
{
|
|
const char *str;
|
|
int err;
|
|
int node;
|
|
|
|
err = spl_fit_get_image_name(ctx, type, index, &str);
|
|
if (err)
|
|
return err;
|
|
|
|
debug("%s: '%s'\n", type, str);
|
|
|
|
node = fdt_subnode_offset(ctx->fit, ctx->images_node, str);
|
|
if (node < 0) {
|
|
pr_err("cannot find image node '%s': %d\n", str, node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static int get_aligned_image_offset(struct spl_load_info *info, int offset)
|
|
{
|
|
/*
|
|
* If it is a FS read, get the first address before offset which is
|
|
* aligned to ARCH_DMA_MINALIGN. If it is raw read return the
|
|
* block number to which offset belongs.
|
|
*/
|
|
if (info->filename)
|
|
return offset & ~(ARCH_DMA_MINALIGN - 1);
|
|
|
|
return offset / info->bl_len;
|
|
}
|
|
|
|
static int get_aligned_image_overhead(struct spl_load_info *info, int offset)
|
|
{
|
|
/*
|
|
* If it is a FS read, get the difference between the offset and
|
|
* the first address before offset which is aligned to
|
|
* ARCH_DMA_MINALIGN. If it is raw read return the offset within the
|
|
* block.
|
|
*/
|
|
if (info->filename)
|
|
return offset & (ARCH_DMA_MINALIGN - 1);
|
|
|
|
return offset % info->bl_len;
|
|
}
|
|
|
|
static int get_aligned_image_size(struct spl_load_info *info, int data_size,
|
|
int offset)
|
|
{
|
|
data_size = data_size + get_aligned_image_overhead(info, offset);
|
|
|
|
if (info->filename)
|
|
return data_size;
|
|
|
|
return (data_size + info->bl_len - 1) / info->bl_len;
|
|
}
|
|
|
|
/**
|
|
* spl_load_fit_image(): load the image described in a certain FIT node
|
|
* @info: points to information about the device to load data from
|
|
* @sector: the start sector of the FIT image on the device
|
|
* @ctx: points to the FIT context structure
|
|
* @node: offset of the DT node describing the image to load (relative
|
|
* to @fit)
|
|
* @image_info: will be filled with information about the loaded image
|
|
* If the FIT node does not contain a "load" (address) property,
|
|
* the image gets loaded to the address pointed to by the
|
|
* load_addr member in this struct, if load_addr is not 0
|
|
*
|
|
* Return: 0 on success or a negative error number.
|
|
*/
|
|
static int spl_load_fit_image(struct spl_load_info *info, ulong sector,
|
|
const struct spl_fit_info *ctx, int node,
|
|
struct spl_image_info *image_info)
|
|
{
|
|
int offset;
|
|
size_t length;
|
|
int len;
|
|
ulong size;
|
|
ulong load_addr;
|
|
void *load_ptr;
|
|
void *src;
|
|
ulong overhead;
|
|
int nr_sectors;
|
|
uint8_t image_comp = -1, type = -1;
|
|
const void *data;
|
|
const void *fit = ctx->fit;
|
|
bool external_data = false;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FPGA) ||
|
|
(IS_ENABLED(CONFIG_SPL_OS_BOOT) && IS_ENABLED(CONFIG_SPL_GZIP))) {
|
|
if (fit_image_get_type(fit, node, &type))
|
|
puts("Cannot get image type.\n");
|
|
else
|
|
debug("%s ", genimg_get_type_name(type));
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_GZIP)) {
|
|
fit_image_get_comp(fit, node, &image_comp);
|
|
debug("%s ", genimg_get_comp_name(image_comp));
|
|
}
|
|
|
|
if (fit_image_get_load(fit, node, &load_addr)) {
|
|
if (!image_info->load_addr) {
|
|
printf("Can't load %s: No load address and no buffer\n",
|
|
fit_get_name(fit, node, NULL));
|
|
return -ENOBUFS;
|
|
}
|
|
load_addr = image_info->load_addr;
|
|
}
|
|
|
|
if (!fit_image_get_data_position(fit, node, &offset)) {
|
|
external_data = true;
|
|
} else if (!fit_image_get_data_offset(fit, node, &offset)) {
|
|
offset += ctx->ext_data_offset;
|
|
external_data = true;
|
|
}
|
|
|
|
if (external_data) {
|
|
void *src_ptr;
|
|
|
|
/* External data */
|
|
if (fit_image_get_data_size(fit, node, &len))
|
|
return -ENOENT;
|
|
|
|
src_ptr = map_sysmem(ALIGN(load_addr, ARCH_DMA_MINALIGN), len);
|
|
length = len;
|
|
|
|
overhead = get_aligned_image_overhead(info, offset);
|
|
nr_sectors = get_aligned_image_size(info, length, offset);
|
|
|
|
if (info->read(info,
|
|
sector + get_aligned_image_offset(info, offset),
|
|
nr_sectors, src_ptr) != nr_sectors)
|
|
return -EIO;
|
|
|
|
debug("External data: dst=%p, offset=%x, size=%lx\n",
|
|
src_ptr, offset, (unsigned long)length);
|
|
src = src_ptr + overhead;
|
|
} else {
|
|
/* Embedded data */
|
|
if (fit_image_get_data(fit, node, &data, &length)) {
|
|
puts("Cannot get image data/size\n");
|
|
return -ENOENT;
|
|
}
|
|
debug("Embedded data: dst=%lx, size=%lx\n", load_addr,
|
|
(unsigned long)length);
|
|
src = (void *)data; /* cast away const */
|
|
}
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) {
|
|
printf("## Checking hash(es) for Image %s ... ",
|
|
fit_get_name(fit, node, NULL));
|
|
if (!fit_image_verify_with_data(fit, node, src, length))
|
|
return -EPERM;
|
|
puts("OK\n");
|
|
}
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS))
|
|
board_fit_image_post_process(fit, node, &src, &length);
|
|
|
|
load_ptr = map_sysmem(load_addr, length);
|
|
if (IS_ENABLED(CONFIG_SPL_GZIP) && image_comp == IH_COMP_GZIP) {
|
|
size = length;
|
|
if (gunzip(load_ptr, CONFIG_SYS_BOOTM_LEN, src, &size)) {
|
|
puts("Uncompressing error\n");
|
|
return -EIO;
|
|
}
|
|
length = size;
|
|
} else {
|
|
memcpy(load_ptr, src, length);
|
|
}
|
|
|
|
if (image_info) {
|
|
ulong entry_point;
|
|
|
|
image_info->load_addr = load_addr;
|
|
image_info->size = length;
|
|
|
|
if (!fit_image_get_entry(fit, node, &entry_point))
|
|
image_info->entry_point = entry_point;
|
|
else
|
|
image_info->entry_point = FDT_ERROR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool os_takes_devicetree(uint8_t os)
|
|
{
|
|
switch (os) {
|
|
case IH_OS_U_BOOT:
|
|
return true;
|
|
case IH_OS_LINUX:
|
|
return IS_ENABLED(CONFIG_SPL_OS_BOOT);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int spl_fit_append_fdt(struct spl_image_info *spl_image,
|
|
struct spl_load_info *info, ulong sector,
|
|
const struct spl_fit_info *ctx)
|
|
{
|
|
struct spl_image_info image_info;
|
|
int node, ret = 0, index = 0;
|
|
|
|
/*
|
|
* Use the address following the image as target address for the
|
|
* device tree.
|
|
*/
|
|
image_info.load_addr = spl_image->load_addr + spl_image->size;
|
|
|
|
/* Figure out which device tree the board wants to use */
|
|
node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index++);
|
|
if (node < 0) {
|
|
debug("%s: cannot find FDT node\n", __func__);
|
|
|
|
/*
|
|
* U-Boot did not find a device tree inside the FIT image. Use
|
|
* the U-Boot device tree instead.
|
|
*/
|
|
if (gd->fdt_blob)
|
|
memcpy((void *)image_info.load_addr, gd->fdt_blob,
|
|
fdt_totalsize(gd->fdt_blob));
|
|
else
|
|
return node;
|
|
} else {
|
|
ret = spl_load_fit_image(info, sector, ctx, node,
|
|
&image_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Make the load-address of the FDT available for the SPL framework */
|
|
spl_image->fdt_addr = map_sysmem(image_info.load_addr, 0);
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY))
|
|
return 0;
|
|
|
|
if (CONFIG_IS_ENABLED(LOAD_FIT_APPLY_OVERLAY)) {
|
|
void *tmpbuffer = NULL;
|
|
|
|
for (; ; index++) {
|
|
node = spl_fit_get_image_node(ctx, FIT_FDT_PROP, index);
|
|
if (node == -E2BIG) {
|
|
debug("%s: No additional FDT node\n", __func__);
|
|
break;
|
|
} else if (node < 0) {
|
|
debug("%s: unable to find FDT node %d\n",
|
|
__func__, index);
|
|
continue;
|
|
}
|
|
|
|
if (!tmpbuffer) {
|
|
/*
|
|
* allocate memory to store the DT overlay
|
|
* before it is applied. It may not be used
|
|
* depending on how the overlay is stored, so
|
|
* don't fail yet if the allocation failed.
|
|
*/
|
|
tmpbuffer = malloc(CONFIG_SPL_LOAD_FIT_APPLY_OVERLAY_BUF_SZ);
|
|
if (!tmpbuffer)
|
|
debug("%s: unable to allocate space for overlays\n",
|
|
__func__);
|
|
}
|
|
image_info.load_addr = (ulong)tmpbuffer;
|
|
ret = spl_load_fit_image(info, sector, ctx,
|
|
node, &image_info);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/* Make room in FDT for changes from the overlay */
|
|
ret = fdt_increase_size(spl_image->fdt_addr,
|
|
image_info.size);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
ret = fdt_overlay_apply_verbose(spl_image->fdt_addr,
|
|
(void *)image_info.load_addr);
|
|
if (ret) {
|
|
pr_err("failed to apply DT overlay %s\n",
|
|
fit_get_name(ctx->fit, node, NULL));
|
|
break;
|
|
}
|
|
|
|
debug("%s: DT overlay %s applied\n", __func__,
|
|
fit_get_name(ctx->fit, node, NULL));
|
|
}
|
|
free(tmpbuffer);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/* Try to make space, so we can inject details on the loadables */
|
|
ret = fdt_shrink_to_minimum(spl_image->fdt_addr, 8192);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spl_fit_record_loadable(const struct spl_fit_info *ctx, int index,
|
|
void *blob, struct spl_image_info *image)
|
|
{
|
|
int ret = 0;
|
|
const char *name;
|
|
int node;
|
|
|
|
if (CONFIG_IS_ENABLED(FIT_IMAGE_TINY))
|
|
return 0;
|
|
|
|
ret = spl_fit_get_image_name(ctx, "loadables", index, &name);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
node = spl_fit_get_image_node(ctx, "loadables", index);
|
|
|
|
ret = fdt_record_loadable(blob, index, name, image->load_addr,
|
|
image->size, image->entry_point,
|
|
fdt_getprop(ctx->fit, node, "type", NULL),
|
|
fdt_getprop(ctx->fit, node, "os", NULL),
|
|
fdt_getprop(ctx->fit, node, "arch", NULL));
|
|
return ret;
|
|
}
|
|
|
|
static int spl_fit_image_is_fpga(const void *fit, int node)
|
|
{
|
|
const char *type;
|
|
|
|
if (!IS_ENABLED(CONFIG_SPL_FPGA))
|
|
return 0;
|
|
|
|
type = fdt_getprop(fit, node, FIT_TYPE_PROP, NULL);
|
|
if (!type)
|
|
return 0;
|
|
|
|
return !strcmp(type, "fpga");
|
|
}
|
|
|
|
static int spl_fit_image_get_os(const void *fit, int noffset, uint8_t *os)
|
|
{
|
|
if (!CONFIG_IS_ENABLED(FIT_IMAGE_TINY) || CONFIG_IS_ENABLED(OS_BOOT))
|
|
return fit_image_get_os(fit, noffset, os);
|
|
|
|
const char *name = fdt_getprop(fit, noffset, FIT_OS_PROP, NULL);
|
|
if (!name)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* We don't care what the type of the image actually is,
|
|
* only whether or not it is U-Boot. This saves some
|
|
* space by omitting the large table of OS types.
|
|
*/
|
|
if (!strcmp(name, "u-boot"))
|
|
*os = IH_OS_U_BOOT;
|
|
else
|
|
*os = IH_OS_INVALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The purpose of the FIT load buffer is to provide a memory location that is
|
|
* independent of the load address of any FIT component.
|
|
*/
|
|
static void *spl_get_fit_load_buffer(size_t size)
|
|
{
|
|
void *buf;
|
|
|
|
buf = malloc(size);
|
|
if (!buf) {
|
|
pr_err("Could not get FIT buffer of %lu bytes\n", (ulong)size);
|
|
pr_err("\tcheck CONFIG_SYS_SPL_MALLOC_SIZE\n");
|
|
buf = spl_get_load_buffer(0, size);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Weak default function to allow customizing SPL fit loading for load-only
|
|
* use cases by allowing to skip the parsing/processing of the FIT contents
|
|
* (so that this can be done separately in a more customized fashion)
|
|
*/
|
|
__weak bool spl_load_simple_fit_skip_processing(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static void warn_deprecated(const char *msg)
|
|
{
|
|
printf("DEPRECATED: %s\n", msg);
|
|
printf("\tSee doc/uImage.FIT/source_file_format.txt\n");
|
|
}
|
|
|
|
static int spl_fit_upload_fpga(struct spl_fit_info *ctx, int node,
|
|
struct spl_image_info *fpga_image)
|
|
{
|
|
const char *compatible;
|
|
int ret;
|
|
|
|
debug("FPGA bitstream at: %x, size: %x\n",
|
|
(u32)fpga_image->load_addr, fpga_image->size);
|
|
|
|
compatible = fdt_getprop(ctx->fit, node, "compatible", NULL);
|
|
if (!compatible)
|
|
warn_deprecated("'fpga' image without 'compatible' property");
|
|
else if (strcmp(compatible, "u-boot,fpga-legacy"))
|
|
printf("Ignoring compatible = %s property\n", compatible);
|
|
|
|
ret = fpga_load(0, (void *)fpga_image->load_addr, fpga_image->size,
|
|
BIT_FULL);
|
|
if (ret) {
|
|
printf("%s: Cannot load the image to the FPGA\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
puts("FPGA image loaded from FIT\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spl_fit_load_fpga(struct spl_fit_info *ctx,
|
|
struct spl_load_info *info, ulong sector)
|
|
{
|
|
int node, ret;
|
|
|
|
struct spl_image_info fpga_image = {
|
|
.load_addr = 0,
|
|
};
|
|
|
|
node = spl_fit_get_image_node(ctx, "fpga", 0);
|
|
if (node < 0)
|
|
return node;
|
|
|
|
warn_deprecated("'fpga' property in config node. Use 'loadables'");
|
|
|
|
/* Load the image and set up the fpga_image structure */
|
|
ret = spl_load_fit_image(info, sector, ctx, node, &fpga_image);
|
|
if (ret) {
|
|
printf("%s: Cannot load the FPGA: %i\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
return spl_fit_upload_fpga(ctx, node, &fpga_image);
|
|
}
|
|
|
|
static int spl_simple_fit_read(struct spl_fit_info *ctx,
|
|
struct spl_load_info *info, ulong sector,
|
|
const void *fit_header)
|
|
{
|
|
unsigned long count, size;
|
|
int sectors;
|
|
void *buf;
|
|
|
|
/*
|
|
* For FIT with external data, figure out where the external images
|
|
* start. This is the base for the data-offset properties in each
|
|
* image.
|
|
*/
|
|
size = ALIGN(fdt_totalsize(fit_header), 4);
|
|
size = board_spl_fit_size_align(size);
|
|
ctx->ext_data_offset = ALIGN(size, 4);
|
|
|
|
/*
|
|
* So far we only have one block of data from the FIT. Read the entire
|
|
* thing, including that first block.
|
|
*
|
|
* For FIT with data embedded, data is loaded as part of FIT image.
|
|
* For FIT with external data, data is not loaded in this step.
|
|
*/
|
|
sectors = get_aligned_image_size(info, size, 0);
|
|
buf = spl_get_fit_load_buffer(sectors * info->bl_len);
|
|
|
|
count = info->read(info, sector, sectors, buf);
|
|
ctx->fit = buf;
|
|
debug("fit read sector %lx, sectors=%d, dst=%p, count=%lu, size=0x%lx\n",
|
|
sector, sectors, buf, count, size);
|
|
|
|
return (count == 0) ? -EIO : 0;
|
|
}
|
|
|
|
static int spl_simple_fit_parse(struct spl_fit_info *ctx)
|
|
{
|
|
/* Find the correct subnode under "/configurations" */
|
|
ctx->conf_node = fit_find_config_node(ctx->fit);
|
|
if (ctx->conf_node < 0)
|
|
return -EINVAL;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FIT_SIGNATURE)) {
|
|
printf("## Checking hash(es) for config %s ... ",
|
|
fit_get_name(ctx->fit, ctx->conf_node, NULL));
|
|
if (fit_config_verify(ctx->fit, ctx->conf_node))
|
|
return -EPERM;
|
|
puts("OK\n");
|
|
}
|
|
|
|
/* find the node holding the images information */
|
|
ctx->images_node = fdt_path_offset(ctx->fit, FIT_IMAGES_PATH);
|
|
if (ctx->images_node < 0) {
|
|
debug("%s: Cannot find /images node: %d\n", __func__,
|
|
ctx->images_node);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int spl_load_simple_fit(struct spl_image_info *spl_image,
|
|
struct spl_load_info *info, ulong sector, void *fit)
|
|
{
|
|
struct spl_image_info image_info;
|
|
struct spl_fit_info ctx;
|
|
int node = -1;
|
|
int ret;
|
|
int index = 0;
|
|
int firmware_node;
|
|
|
|
ret = spl_simple_fit_read(&ctx, info, sector, fit);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* skip further processing if requested to enable load-only use cases */
|
|
if (spl_load_simple_fit_skip_processing())
|
|
return 0;
|
|
|
|
ret = spl_simple_fit_parse(&ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_FPGA))
|
|
spl_fit_load_fpga(&ctx, info, sector);
|
|
|
|
/*
|
|
* Find the U-Boot image using the following search order:
|
|
* - start at 'firmware' (e.g. an ARM Trusted Firmware)
|
|
* - fall back 'kernel' (e.g. a Falcon-mode OS boot
|
|
* - fall back to using the first 'loadables' entry
|
|
*/
|
|
if (node < 0)
|
|
node = spl_fit_get_image_node(&ctx, FIT_FIRMWARE_PROP, 0);
|
|
|
|
if (node < 0 && IS_ENABLED(CONFIG_SPL_OS_BOOT))
|
|
node = spl_fit_get_image_node(&ctx, FIT_KERNEL_PROP, 0);
|
|
|
|
if (node < 0) {
|
|
debug("could not find firmware image, trying loadables...\n");
|
|
node = spl_fit_get_image_node(&ctx, "loadables", 0);
|
|
/*
|
|
* If we pick the U-Boot image from "loadables", start at
|
|
* the second image when later loading additional images.
|
|
*/
|
|
index = 1;
|
|
}
|
|
if (node < 0) {
|
|
debug("%s: Cannot find u-boot image node: %d\n",
|
|
__func__, node);
|
|
return -1;
|
|
}
|
|
|
|
/* Load the image and set up the spl_image structure */
|
|
ret = spl_load_fit_image(info, sector, &ctx, node, spl_image);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* For backward compatibility, we treat the first node that is
|
|
* as a U-Boot image, if no OS-type has been declared.
|
|
*/
|
|
if (!spl_fit_image_get_os(ctx.fit, node, &spl_image->os))
|
|
debug("Image OS is %s\n", genimg_get_os_name(spl_image->os));
|
|
else if (!IS_ENABLED(CONFIG_SPL_OS_BOOT))
|
|
spl_image->os = IH_OS_U_BOOT;
|
|
|
|
/*
|
|
* Booting a next-stage U-Boot may require us to append the FDT.
|
|
* We allow this to fail, as the U-Boot image might embed its FDT.
|
|
*/
|
|
if (os_takes_devicetree(spl_image->os)) {
|
|
ret = spl_fit_append_fdt(spl_image, info, sector, &ctx);
|
|
if (ret < 0 && spl_image->os != IH_OS_U_BOOT)
|
|
return ret;
|
|
}
|
|
|
|
firmware_node = node;
|
|
/* Now check if there are more images for us to load */
|
|
for (; ; index++) {
|
|
uint8_t os_type = IH_OS_INVALID;
|
|
|
|
node = spl_fit_get_image_node(&ctx, "loadables", index);
|
|
if (node < 0)
|
|
break;
|
|
|
|
/*
|
|
* if the firmware is also a loadable, skip it because
|
|
* it already has been loaded. This is typically the case with
|
|
* u-boot.img generated by mkimage.
|
|
*/
|
|
if (firmware_node == node)
|
|
continue;
|
|
|
|
image_info.load_addr = 0;
|
|
ret = spl_load_fit_image(info, sector, &ctx, node, &image_info);
|
|
if (ret < 0) {
|
|
printf("%s: can't load image loadables index %d (ret = %d)\n",
|
|
__func__, index, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (spl_fit_image_is_fpga(ctx.fit, node))
|
|
spl_fit_upload_fpga(&ctx, node, &image_info);
|
|
|
|
if (!spl_fit_image_get_os(ctx.fit, node, &os_type))
|
|
debug("Loadable is %s\n", genimg_get_os_name(os_type));
|
|
|
|
if (os_takes_devicetree(os_type)) {
|
|
spl_fit_append_fdt(&image_info, info, sector, &ctx);
|
|
spl_image->fdt_addr = image_info.fdt_addr;
|
|
}
|
|
|
|
/*
|
|
* If the "firmware" image did not provide an entry point,
|
|
* use the first valid entry point from the loadables.
|
|
*/
|
|
if (spl_image->entry_point == FDT_ERROR &&
|
|
image_info.entry_point != FDT_ERROR)
|
|
spl_image->entry_point = image_info.entry_point;
|
|
|
|
/* Record our loadables into the FDT */
|
|
if (spl_image->fdt_addr)
|
|
spl_fit_record_loadable(&ctx, index,
|
|
spl_image->fdt_addr,
|
|
&image_info);
|
|
}
|
|
|
|
/*
|
|
* If a platform does not provide CONFIG_SYS_UBOOT_START, U-Boot's
|
|
* Makefile will set it to 0 and it will end up as the entry point
|
|
* here. What it actually means is: use the load address.
|
|
*/
|
|
if (spl_image->entry_point == FDT_ERROR || spl_image->entry_point == 0)
|
|
spl_image->entry_point = spl_image->load_addr;
|
|
|
|
spl_image->flags |= SPL_FIT_FOUND;
|
|
|
|
if (IS_ENABLED(CONFIG_IMX_HAB))
|
|
board_spl_fit_post_load(ctx.fit);
|
|
|
|
return 0;
|
|
}
|