mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-11 07:34:31 +00:00
449697f14e
Move common definitions to udc.h This allows musb_udc.h to be removed as well. Signed-off-by: Troy Kisky <troy.kisky@boundarydevices.com>
1019 lines
26 KiB
C
1019 lines
26 KiB
C
/*
|
|
* Based on drivers/usb/gadget/omap1510_udc.c
|
|
* TI OMAP1510 USB bus interface driver
|
|
*
|
|
* (C) Copyright 2009
|
|
* Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <usbdevice.h>
|
|
#include "ep0.h"
|
|
#include <usb/designware_udc.h>
|
|
#include <usb/udc.h>
|
|
#include <asm/arch/hardware.h>
|
|
|
|
#define UDC_INIT_MDELAY 80 /* Device settle delay */
|
|
|
|
/* Some kind of debugging output... */
|
|
#ifndef DEBUG_DWUSBTTY
|
|
#define UDCDBG(str)
|
|
#define UDCDBGA(fmt, args...)
|
|
#else
|
|
#define UDCDBG(str) serial_printf(str "\n")
|
|
#define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
|
|
#endif
|
|
|
|
static struct urb *ep0_urb;
|
|
static struct usb_device_instance *udc_device;
|
|
|
|
static struct plug_regs *const plug_regs_p =
|
|
(struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
|
|
static struct udc_regs *const udc_regs_p =
|
|
(struct udc_regs * const)CONFIG_SYS_USBD_BASE;
|
|
static struct udc_endp_regs *const outep_regs_p =
|
|
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
|
|
static struct udc_endp_regs *const inep_regs_p =
|
|
&((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
|
|
|
|
/*
|
|
* udc_state_transition - Write the next packet to TxFIFO.
|
|
* @initial: Initial state.
|
|
* @final: Final state.
|
|
*
|
|
* Helper function to implement device state changes. The device states and
|
|
* the events that transition between them are:
|
|
*
|
|
* STATE_ATTACHED
|
|
* || /\
|
|
* \/ ||
|
|
* DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET
|
|
* || /\
|
|
* \/ ||
|
|
* STATE_POWERED
|
|
* || /\
|
|
* \/ ||
|
|
* DEVICE_RESET DEVICE_POWER_INTERRUPTION
|
|
* || /\
|
|
* \/ ||
|
|
* STATE_DEFAULT
|
|
* || /\
|
|
* \/ ||
|
|
* DEVICE_ADDRESS_ASSIGNED DEVICE_RESET
|
|
* || /\
|
|
* \/ ||
|
|
* STATE_ADDRESSED
|
|
* || /\
|
|
* \/ ||
|
|
* DEVICE_CONFIGURED DEVICE_DE_CONFIGURED
|
|
* || /\
|
|
* \/ ||
|
|
* STATE_CONFIGURED
|
|
*
|
|
* udc_state_transition transitions up (in the direction from STATE_ATTACHED
|
|
* to STATE_CONFIGURED) from the specified initial state to the specified final
|
|
* state, passing through each intermediate state on the way. If the initial
|
|
* state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
|
|
* no state transitions will take place.
|
|
*
|
|
* udc_state_transition also transitions down (in the direction from
|
|
* STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
|
|
* specified final state, passing through each intermediate state on the way.
|
|
* If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
|
|
* state, then no state transitions will take place.
|
|
*
|
|
* This function must only be called with interrupts disabled.
|
|
*/
|
|
static void udc_state_transition(usb_device_state_t initial,
|
|
usb_device_state_t final)
|
|
{
|
|
if (initial < final) {
|
|
switch (initial) {
|
|
case STATE_ATTACHED:
|
|
usbd_device_event_irq(udc_device,
|
|
DEVICE_HUB_CONFIGURED, 0);
|
|
if (final == STATE_POWERED)
|
|
break;
|
|
case STATE_POWERED:
|
|
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
|
|
if (final == STATE_DEFAULT)
|
|
break;
|
|
case STATE_DEFAULT:
|
|
usbd_device_event_irq(udc_device,
|
|
DEVICE_ADDRESS_ASSIGNED, 0);
|
|
if (final == STATE_ADDRESSED)
|
|
break;
|
|
case STATE_ADDRESSED:
|
|
usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
|
|
case STATE_CONFIGURED:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (initial > final) {
|
|
switch (initial) {
|
|
case STATE_CONFIGURED:
|
|
usbd_device_event_irq(udc_device,
|
|
DEVICE_DE_CONFIGURED, 0);
|
|
if (final == STATE_ADDRESSED)
|
|
break;
|
|
case STATE_ADDRESSED:
|
|
usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
|
|
if (final == STATE_DEFAULT)
|
|
break;
|
|
case STATE_DEFAULT:
|
|
usbd_device_event_irq(udc_device,
|
|
DEVICE_POWER_INTERRUPTION, 0);
|
|
if (final == STATE_POWERED)
|
|
break;
|
|
case STATE_POWERED:
|
|
usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
|
|
case STATE_ATTACHED:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stall endpoint */
|
|
static void udc_stall_ep(u32 ep_num)
|
|
{
|
|
writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
|
|
&inep_regs_p[ep_num].endp_cntl);
|
|
|
|
writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
|
|
&outep_regs_p[ep_num].endp_cntl);
|
|
}
|
|
|
|
static void *get_fifo(int ep_num, int in)
|
|
{
|
|
u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
|
|
|
|
switch (ep_num) {
|
|
case UDC_EP3:
|
|
fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
|
|
/* break intentionally left out */
|
|
|
|
case UDC_EP1:
|
|
fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
|
|
/* break intentionally left out */
|
|
|
|
case UDC_EP0:
|
|
default:
|
|
if (in) {
|
|
fifo_ptr +=
|
|
readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
|
|
/* break intentionally left out */
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
case UDC_EP2:
|
|
fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
|
|
/* break intentionally left out */
|
|
}
|
|
|
|
return (void *)fifo_ptr;
|
|
}
|
|
|
|
static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
|
|
{
|
|
u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
|
|
u32 i, nw, nb;
|
|
u32 *wrdp;
|
|
u8 *bytp;
|
|
u32 tmp[128];
|
|
|
|
if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
|
|
return -1;
|
|
|
|
nw = len / sizeof(u32);
|
|
nb = len % sizeof(u32);
|
|
|
|
/* use tmp buf if bufp is not word aligned */
|
|
if ((int)bufp & 0x3)
|
|
wrdp = (u32 *)&tmp[0];
|
|
else
|
|
wrdp = (u32 *)bufp;
|
|
|
|
for (i = 0; i < nw; i++) {
|
|
writel(readl(fifo_ptr), wrdp);
|
|
wrdp++;
|
|
}
|
|
|
|
bytp = (u8 *)wrdp;
|
|
for (i = 0; i < nb; i++) {
|
|
writeb(readb(fifo_ptr), bytp);
|
|
fifo_ptr++;
|
|
bytp++;
|
|
}
|
|
readl(&outep_regs_p[epNum].write_done);
|
|
|
|
/* copy back tmp buffer to bufp if bufp is not word aligned */
|
|
if ((int)bufp & 0x3)
|
|
memcpy(bufp, tmp, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
|
|
{
|
|
u32 i, nw, nb;
|
|
u32 *wrdp;
|
|
u8 *bytp;
|
|
u8 *fifo_ptr = get_fifo(epNum, 1);
|
|
|
|
nw = len / sizeof(int);
|
|
nb = len % sizeof(int);
|
|
wrdp = (u32 *)bufp;
|
|
for (i = 0; i < nw; i++) {
|
|
writel(*wrdp, fifo_ptr);
|
|
wrdp++;
|
|
}
|
|
|
|
bytp = (u8 *)wrdp;
|
|
for (i = 0; i < nb; i++) {
|
|
writeb(*bytp, fifo_ptr);
|
|
fifo_ptr++;
|
|
bytp++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
|
|
* @endpoint: Endpoint pointer.
|
|
*
|
|
* If the endpoint has an active tx_urb, then the next packet of data from the
|
|
* URB is written to the tx FIFO. The total amount of data in the urb is given
|
|
* by urb->actual_length. The maximum amount of data that can be sent in any
|
|
* one packet is given by endpoint->tx_packetSize. The number of data bytes
|
|
* from this URB that have already been transmitted is given by endpoint->sent.
|
|
* endpoint->last is updated by this routine with the number of data bytes
|
|
* transmitted in this packet.
|
|
*
|
|
*/
|
|
static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
|
|
*endpoint)
|
|
{
|
|
struct urb *urb = endpoint->tx_urb;
|
|
int align;
|
|
|
|
if (urb) {
|
|
u32 last;
|
|
|
|
UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
|
|
urb->buffer, urb->buffer_length, urb->actual_length);
|
|
|
|
last = MIN(urb->actual_length - endpoint->sent,
|
|
endpoint->tx_packetSize);
|
|
|
|
if (last) {
|
|
u8 *cp = urb->buffer + endpoint->sent;
|
|
|
|
/*
|
|
* This ensures that USBD packet fifo is accessed
|
|
* - through word aligned pointer or
|
|
* - through non word aligned pointer but only
|
|
* with a max length to make the next packet
|
|
* word aligned
|
|
*/
|
|
|
|
align = ((ulong)cp % sizeof(int));
|
|
if (align)
|
|
last = MIN(last, sizeof(int) - align);
|
|
|
|
UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
|
|
endpoint->sent, endpoint->tx_packetSize, last);
|
|
|
|
usbputpcktofifo(endpoint->endpoint_address &
|
|
USB_ENDPOINT_NUMBER_MASK, cp, last);
|
|
}
|
|
endpoint->last = last;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle SETUP USB interrupt.
|
|
* This function implements TRM Figure 14-14.
|
|
*/
|
|
static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
|
|
{
|
|
u8 *datap = (u8 *)&ep0_urb->device_request;
|
|
int ep_addr = endpoint->endpoint_address;
|
|
|
|
UDCDBG("-> Entering device setup");
|
|
usbgetpckfromfifo(ep_addr, datap, 8);
|
|
|
|
/* Try to process setup packet */
|
|
if (ep0_recv_setup(ep0_urb)) {
|
|
/* Not a setup packet, stall next EP0 transaction */
|
|
udc_stall_ep(0);
|
|
UDCDBG("can't parse setup packet, still waiting for setup");
|
|
return;
|
|
}
|
|
|
|
/* Check direction */
|
|
if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
|
|
== USB_REQ_HOST2DEVICE) {
|
|
UDCDBG("control write on EP0");
|
|
if (le16_to_cpu(ep0_urb->device_request.wLength)) {
|
|
/* Stall this request */
|
|
UDCDBG("Stalling unsupported EP0 control write data "
|
|
"stage.");
|
|
udc_stall_ep(0);
|
|
}
|
|
} else {
|
|
|
|
UDCDBG("control read on EP0");
|
|
/*
|
|
* The ep0_recv_setup function has already placed our response
|
|
* packet data in ep0_urb->buffer and the packet length in
|
|
* ep0_urb->actual_length.
|
|
*/
|
|
endpoint->tx_urb = ep0_urb;
|
|
endpoint->sent = 0;
|
|
/*
|
|
* Write packet data to the FIFO. dw_write_noniso_tx_fifo
|
|
* will update endpoint->last with the number of bytes written
|
|
* to the FIFO.
|
|
*/
|
|
dw_write_noniso_tx_fifo(endpoint);
|
|
|
|
writel(0x0, &inep_regs_p[ep_addr].write_done);
|
|
}
|
|
|
|
udc_unset_nak(endpoint->endpoint_address);
|
|
|
|
UDCDBG("<- Leaving device setup");
|
|
}
|
|
|
|
/*
|
|
* Handle endpoint 0 RX interrupt
|
|
*/
|
|
static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
|
|
{
|
|
u8 dummy[64];
|
|
|
|
UDCDBG("RX on EP0");
|
|
|
|
/* Check direction */
|
|
if ((ep0_urb->device_request.bmRequestType
|
|
& USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
|
|
/*
|
|
* This rx interrupt must be for a control write data
|
|
* stage packet.
|
|
*
|
|
* We don't support control write data stages.
|
|
* We should never end up here.
|
|
*/
|
|
|
|
UDCDBG("Stalling unexpected EP0 control write "
|
|
"data stage packet");
|
|
udc_stall_ep(0);
|
|
} else {
|
|
/*
|
|
* This rx interrupt must be for a control read status
|
|
* stage packet.
|
|
*/
|
|
UDCDBG("ACK on EP0 control read status stage packet");
|
|
u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
|
|
usbgetpckfromfifo(0, dummy, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle endpoint 0 TX interrupt
|
|
*/
|
|
static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
|
|
{
|
|
struct usb_device_request *request = &ep0_urb->device_request;
|
|
int ep_addr;
|
|
|
|
UDCDBG("TX on EP0");
|
|
|
|
/* Check direction */
|
|
if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
|
|
USB_REQ_HOST2DEVICE) {
|
|
/*
|
|
* This tx interrupt must be for a control write status
|
|
* stage packet.
|
|
*/
|
|
UDCDBG("ACK on EP0 control write status stage packet");
|
|
} else {
|
|
/*
|
|
* This tx interrupt must be for a control read data
|
|
* stage packet.
|
|
*/
|
|
int wLength = le16_to_cpu(request->wLength);
|
|
|
|
/*
|
|
* Update our count of bytes sent so far in this
|
|
* transfer.
|
|
*/
|
|
endpoint->sent += endpoint->last;
|
|
|
|
/*
|
|
* We are finished with this transfer if we have sent
|
|
* all of the bytes in our tx urb (urb->actual_length)
|
|
* unless we need a zero-length terminating packet. We
|
|
* need a zero-length terminating packet if we returned
|
|
* fewer bytes than were requested (wLength) by the host,
|
|
* and the number of bytes we returned is an exact
|
|
* multiple of the packet size endpoint->tx_packetSize.
|
|
*/
|
|
if ((endpoint->sent == ep0_urb->actual_length) &&
|
|
((ep0_urb->actual_length == wLength) ||
|
|
(endpoint->last != endpoint->tx_packetSize))) {
|
|
/* Done with control read data stage. */
|
|
UDCDBG("control read data stage complete");
|
|
} else {
|
|
/*
|
|
* We still have another packet of data to send
|
|
* in this control read data stage or else we
|
|
* need a zero-length terminating packet.
|
|
*/
|
|
UDCDBG("ACK control read data stage packet");
|
|
dw_write_noniso_tx_fifo(endpoint);
|
|
|
|
ep_addr = endpoint->endpoint_address;
|
|
writel(0x0, &inep_regs_p[ep_addr].write_done);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct usb_endpoint_instance *dw_find_ep(int ep)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < udc_device->bus->max_endpoints; i++) {
|
|
if ((udc_device->bus->endpoint_array[i].endpoint_address &
|
|
USB_ENDPOINT_NUMBER_MASK) == ep)
|
|
return &udc_device->bus->endpoint_array[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Handle RX transaction on non-ISO endpoint.
|
|
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
|
|
* in the range 1 to 15.
|
|
*/
|
|
static void dw_udc_epn_rx(int ep)
|
|
{
|
|
int nbytes = 0;
|
|
struct urb *urb;
|
|
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
|
|
|
|
if (endpoint) {
|
|
urb = endpoint->rcv_urb;
|
|
|
|
if (urb) {
|
|
u8 *cp = urb->buffer + urb->actual_length;
|
|
|
|
nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
|
|
0xfff;
|
|
usbgetpckfromfifo(ep, cp, nbytes);
|
|
usbd_rcv_complete(endpoint, nbytes, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle TX transaction on non-ISO endpoint.
|
|
* The ep argument is a physical endpoint number for a non-ISO IN endpoint
|
|
* in the range 16 to 30.
|
|
*/
|
|
static void dw_udc_epn_tx(int ep)
|
|
{
|
|
struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
|
|
|
|
if (!endpoint)
|
|
return;
|
|
|
|
/*
|
|
* We need to transmit a terminating zero-length packet now if
|
|
* we have sent all of the data in this URB and the transfer
|
|
* size was an exact multiple of the packet size.
|
|
*/
|
|
if (endpoint->tx_urb &&
|
|
(endpoint->last == endpoint->tx_packetSize) &&
|
|
(endpoint->tx_urb->actual_length - endpoint->sent -
|
|
endpoint->last == 0)) {
|
|
/* handle zero length packet here */
|
|
writel(0x0, &inep_regs_p[ep].write_done);
|
|
|
|
}
|
|
|
|
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
|
|
/* retire the data that was just sent */
|
|
usbd_tx_complete(endpoint);
|
|
/*
|
|
* Check to see if we have more data ready to transmit
|
|
* now.
|
|
*/
|
|
if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
|
|
/* write data to FIFO */
|
|
dw_write_noniso_tx_fifo(endpoint);
|
|
writel(0x0, &inep_regs_p[ep].write_done);
|
|
|
|
} else if (endpoint->tx_urb
|
|
&& (endpoint->tx_urb->actual_length == 0)) {
|
|
/* udc_set_nak(ep); */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start of public functions.
|
|
*/
|
|
|
|
/* Called to start packet transmission. */
|
|
int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
|
|
{
|
|
udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
|
|
return 0;
|
|
}
|
|
|
|
/* Start to initialize h/w stuff */
|
|
int udc_init(void)
|
|
{
|
|
int i;
|
|
u32 plug_st;
|
|
|
|
udc_device = NULL;
|
|
|
|
UDCDBG("starting");
|
|
|
|
readl(&plug_regs_p->plug_pending);
|
|
|
|
for (i = 0; i < UDC_INIT_MDELAY; i++)
|
|
udelay(1000);
|
|
|
|
plug_st = readl(&plug_regs_p->plug_state);
|
|
writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
|
|
|
|
writel(~0x0, &udc_regs_p->endp_int);
|
|
writel(~0x0, &udc_regs_p->dev_int_mask);
|
|
writel(~0x0, &udc_regs_p->endp_int_mask);
|
|
|
|
#ifndef CONFIG_USBD_HS
|
|
writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
|
|
DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
|
|
#else
|
|
writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
|
|
DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
|
|
#endif
|
|
|
|
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
|
|
|
|
/* Clear all interrupts pending */
|
|
writel(DEV_INT_MSK, &udc_regs_p->dev_int);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int is_usbd_high_speed(void)
|
|
{
|
|
return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
* udc_setup_ep - setup endpoint
|
|
* Associate a physical endpoint with endpoint_instance
|
|
*/
|
|
void udc_setup_ep(struct usb_device_instance *device,
|
|
u32 ep, struct usb_endpoint_instance *endpoint)
|
|
{
|
|
UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
|
|
int ep_addr;
|
|
int ep_num, ep_type;
|
|
int packet_size;
|
|
int buffer_size;
|
|
int attributes;
|
|
char *tt;
|
|
u32 endp_intmask;
|
|
|
|
if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
|
|
return;
|
|
|
|
tt = getenv("usbtty");
|
|
if (!tt)
|
|
tt = "generic";
|
|
|
|
ep_addr = endpoint->endpoint_address;
|
|
ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
|
|
|
|
if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
|
|
/* IN endpoint */
|
|
packet_size = endpoint->tx_packetSize;
|
|
buffer_size = packet_size * 2;
|
|
attributes = endpoint->tx_attributes;
|
|
} else {
|
|
/* OUT endpoint */
|
|
packet_size = endpoint->rcv_packetSize;
|
|
buffer_size = packet_size * 2;
|
|
attributes = endpoint->rcv_attributes;
|
|
}
|
|
|
|
switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
ep_type = ENDP_EPTYPE_CNTL;
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
default:
|
|
ep_type = ENDP_EPTYPE_BULK;
|
|
break;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
ep_type = ENDP_EPTYPE_INT;
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
ep_type = ENDP_EPTYPE_ISO;
|
|
break;
|
|
}
|
|
|
|
struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
|
|
struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
|
|
|
|
if (!ep_addr) {
|
|
/* Setup endpoint 0 */
|
|
buffer_size = packet_size;
|
|
|
|
writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
|
|
&in_p->endp_cntl);
|
|
|
|
writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
|
|
&out_p->endp_cntl);
|
|
|
|
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
|
|
|
|
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
|
|
|
|
writel(packet_size, &in_p->endp_maxpacksize);
|
|
|
|
writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
|
|
|
|
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
|
|
&out_p->endp_maxpacksize);
|
|
|
|
} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
|
|
/* Setup the IN endpoint */
|
|
writel(0x0, &in_p->endp_status);
|
|
writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
|
|
writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
|
|
writel(packet_size, &in_p->endp_maxpacksize);
|
|
|
|
if (!strcmp(tt, "cdc_acm")) {
|
|
if (ep_type == ENDP_EPTYPE_INT) {
|
|
/* Conf no. 1 Interface no. 0 */
|
|
writel((packet_size << 19) |
|
|
ENDP_EPDIR_IN | (1 << 7) |
|
|
(0 << 11) | (ep_type << 5) | ep_num,
|
|
&udc_regs_p->udc_endp_reg[ep_num]);
|
|
} else {
|
|
/* Conf no. 1 Interface no. 1 */
|
|
writel((packet_size << 19) |
|
|
ENDP_EPDIR_IN | (1 << 7) |
|
|
(1 << 11) | (ep_type << 5) | ep_num,
|
|
&udc_regs_p->udc_endp_reg[ep_num]);
|
|
}
|
|
} else {
|
|
/* Conf no. 1 Interface no. 0 */
|
|
writel((packet_size << 19) |
|
|
ENDP_EPDIR_IN | (1 << 7) |
|
|
(0 << 11) | (ep_type << 5) | ep_num,
|
|
&udc_regs_p->udc_endp_reg[ep_num]);
|
|
}
|
|
|
|
} else {
|
|
/* Setup the OUT endpoint */
|
|
writel(0x0, &out_p->endp_status);
|
|
writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
|
|
writel(packet_size | ((buffer_size / sizeof(int)) << 16),
|
|
&out_p->endp_maxpacksize);
|
|
|
|
if (!strcmp(tt, "cdc_acm")) {
|
|
writel((packet_size << 19) |
|
|
ENDP_EPDIR_OUT | (1 << 7) |
|
|
(1 << 11) | (ep_type << 5) | ep_num,
|
|
&udc_regs_p->udc_endp_reg[ep_num]);
|
|
} else {
|
|
writel((packet_size << 19) |
|
|
ENDP_EPDIR_OUT | (1 << 7) |
|
|
(0 << 11) | (ep_type << 5) | ep_num,
|
|
&udc_regs_p->udc_endp_reg[ep_num]);
|
|
}
|
|
|
|
}
|
|
|
|
endp_intmask = readl(&udc_regs_p->endp_int_mask);
|
|
endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
|
|
writel(endp_intmask, &udc_regs_p->endp_int_mask);
|
|
}
|
|
|
|
/* Turn on the USB connection by enabling the pullup resistor */
|
|
void udc_connect(void)
|
|
{
|
|
u32 plug_st, dev_cntl;
|
|
|
|
dev_cntl = readl(&udc_regs_p->dev_cntl);
|
|
dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
|
|
writel(dev_cntl, &udc_regs_p->dev_cntl);
|
|
|
|
udelay(1000);
|
|
|
|
dev_cntl = readl(&udc_regs_p->dev_cntl);
|
|
dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
|
|
writel(dev_cntl, &udc_regs_p->dev_cntl);
|
|
|
|
plug_st = readl(&plug_regs_p->plug_state);
|
|
plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
|
|
writel(plug_st, &plug_regs_p->plug_state);
|
|
}
|
|
|
|
/* Turn off the USB connection by disabling the pullup resistor */
|
|
void udc_disconnect(void)
|
|
{
|
|
u32 plug_st;
|
|
|
|
writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
|
|
|
|
plug_st = readl(&plug_regs_p->plug_state);
|
|
plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
|
|
writel(plug_st, &plug_regs_p->plug_state);
|
|
}
|
|
|
|
/* Switch on the UDC */
|
|
void udc_enable(struct usb_device_instance *device)
|
|
{
|
|
UDCDBGA("enable device %p, status %d", device, device->status);
|
|
|
|
/* Save the device structure pointer */
|
|
udc_device = device;
|
|
|
|
/* Setup ep0 urb */
|
|
if (!ep0_urb) {
|
|
ep0_urb =
|
|
usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
|
|
} else {
|
|
serial_printf("udc_enable: ep0_urb already allocated %p\n",
|
|
ep0_urb);
|
|
}
|
|
|
|
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
|
|
}
|
|
|
|
/**
|
|
* udc_startup - allow udc code to do any additional startup
|
|
*/
|
|
void udc_startup_events(struct usb_device_instance *device)
|
|
{
|
|
/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
|
|
usbd_device_event_irq(device, DEVICE_INIT, 0);
|
|
|
|
/*
|
|
* The DEVICE_CREATE event puts the USB device in the state
|
|
* STATE_ATTACHED.
|
|
*/
|
|
usbd_device_event_irq(device, DEVICE_CREATE, 0);
|
|
|
|
/*
|
|
* Some USB controller driver implementations signal
|
|
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
|
|
* DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
|
|
* and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
|
|
* The DW USB client controller has the capability to detect when the
|
|
* USB cable is connected to a powered USB bus, so we will defer the
|
|
* DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
|
|
*/
|
|
|
|
udc_enable(device);
|
|
}
|
|
|
|
/*
|
|
* Plug detection interrupt handling
|
|
*/
|
|
static void dw_udc_plug_irq(void)
|
|
{
|
|
if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
|
|
/*
|
|
* USB cable attached
|
|
* Turn off PHY reset bit (PLUG detect).
|
|
* Switch PHY opmode to normal operation (PLUG detect).
|
|
*/
|
|
udc_connect();
|
|
writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
|
|
|
|
UDCDBG("device attached and powered");
|
|
udc_state_transition(udc_device->device_state, STATE_POWERED);
|
|
} else {
|
|
writel(~0x0, &udc_regs_p->dev_int_mask);
|
|
|
|
UDCDBG("device detached or unpowered");
|
|
udc_state_transition(udc_device->device_state, STATE_ATTACHED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Device interrupt handling
|
|
*/
|
|
static void dw_udc_dev_irq(void)
|
|
{
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
|
|
writel(~0x0, &udc_regs_p->endp_int_mask);
|
|
|
|
writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
|
|
&inep_regs_p[0].endp_cntl);
|
|
|
|
writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
|
|
|
|
/*
|
|
* This endpoint0 specific register can be programmed only
|
|
* after the phy clock is initialized
|
|
*/
|
|
writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
|
|
&udc_regs_p->udc_endp_reg[0]);
|
|
|
|
UDCDBG("device reset in progess");
|
|
udc_state_transition(udc_device->device_state, STATE_DEFAULT);
|
|
}
|
|
|
|
/* Device Enumeration completed */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
|
|
writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
|
|
|
|
/* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
|
|
writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
|
|
&udc_regs_p->endp_int_mask);
|
|
|
|
UDCDBG("default -> addressed");
|
|
udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
|
|
}
|
|
|
|
/* The USB will be in SUSPEND in 3 ms */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
|
|
writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
|
|
|
|
UDCDBG("entering inactive state");
|
|
/* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
|
|
}
|
|
|
|
/* SetConfiguration command received */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
|
|
writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
|
|
|
|
UDCDBG("entering configured state");
|
|
udc_state_transition(udc_device->device_state,
|
|
STATE_CONFIGURED);
|
|
}
|
|
|
|
/* SetInterface command received */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
|
|
writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
|
|
|
|
/* USB Suspend detected on cable */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
|
|
writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
|
|
|
|
UDCDBG("entering suspended state");
|
|
usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
|
|
}
|
|
|
|
/* USB Start-Of-Frame detected on cable */
|
|
if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
|
|
writel(DEV_INT_SOF, &udc_regs_p->dev_int);
|
|
}
|
|
|
|
/*
|
|
* Endpoint interrupt handling
|
|
*/
|
|
static void dw_udc_endpoint_irq(void)
|
|
{
|
|
while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
|
|
|
|
writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
|
|
|
|
if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
|
|
== ENDP_STATUS_OUT_SETUP) {
|
|
dw_udc_setup(udc_device->bus->endpoint_array + 0);
|
|
writel(ENDP_STATUS_OUT_SETUP,
|
|
&outep_regs_p[0].endp_status);
|
|
|
|
} else if ((readl(&outep_regs_p[0].endp_status) &
|
|
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
|
|
dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
|
|
writel(ENDP_STATUS_OUT_DATA,
|
|
&outep_regs_p[0].endp_status);
|
|
|
|
} else if ((readl(&outep_regs_p[0].endp_status) &
|
|
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
|
|
/* NONE received */
|
|
}
|
|
|
|
writel(0x0, &outep_regs_p[0].endp_status);
|
|
}
|
|
|
|
if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
|
|
dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
|
|
|
|
writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
|
|
writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
|
|
}
|
|
|
|
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
|
|
u32 epnum = 0;
|
|
u32 ep_int = readl(&udc_regs_p->endp_int) &
|
|
ENDP_INT_NONISOOUT_MSK;
|
|
|
|
ep_int >>= 16;
|
|
while (0x0 == (ep_int & 0x1)) {
|
|
ep_int >>= 1;
|
|
epnum++;
|
|
}
|
|
|
|
writel((1 << 16) << epnum, &udc_regs_p->endp_int);
|
|
|
|
if ((readl(&outep_regs_p[epnum].endp_status) &
|
|
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
|
|
|
|
dw_udc_epn_rx(epnum);
|
|
writel(ENDP_STATUS_OUT_DATA,
|
|
&outep_regs_p[epnum].endp_status);
|
|
} else if ((readl(&outep_regs_p[epnum].endp_status) &
|
|
ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
|
|
writel(0x0, &outep_regs_p[epnum].endp_status);
|
|
}
|
|
}
|
|
|
|
if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
|
|
u32 epnum = 0;
|
|
u32 ep_int = readl(&udc_regs_p->endp_int) &
|
|
ENDP_INT_NONISOIN_MSK;
|
|
|
|
while (0x0 == (ep_int & 0x1)) {
|
|
ep_int >>= 1;
|
|
epnum++;
|
|
}
|
|
|
|
if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
|
|
writel(ENDP_STATUS_IN,
|
|
&outep_regs_p[epnum].endp_status);
|
|
dw_udc_epn_tx(epnum);
|
|
|
|
writel(ENDP_STATUS_IN,
|
|
&outep_regs_p[epnum].endp_status);
|
|
}
|
|
|
|
writel((1 << epnum), &udc_regs_p->endp_int);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* UDC interrupts
|
|
*/
|
|
void udc_irq(void)
|
|
{
|
|
/*
|
|
* Loop while we have interrupts.
|
|
* If we don't do this, the input chain
|
|
* polling delay is likely to miss
|
|
* host requests.
|
|
*/
|
|
while (readl(&plug_regs_p->plug_pending))
|
|
dw_udc_plug_irq();
|
|
|
|
while (readl(&udc_regs_p->dev_int))
|
|
dw_udc_dev_irq();
|
|
|
|
if (readl(&udc_regs_p->endp_int))
|
|
dw_udc_endpoint_irq();
|
|
}
|
|
|
|
/* Flow control */
|
|
void udc_set_nak(int epid)
|
|
{
|
|
writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
|
|
&inep_regs_p[epid].endp_cntl);
|
|
|
|
writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
|
|
&outep_regs_p[epid].endp_cntl);
|
|
}
|
|
|
|
void udc_unset_nak(int epid)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(&inep_regs_p[epid].endp_cntl);
|
|
val &= ~ENDP_CNTL_SNAK;
|
|
val |= ENDP_CNTL_CNAK;
|
|
writel(val, &inep_regs_p[epid].endp_cntl);
|
|
|
|
val = readl(&outep_regs_p[epid].endp_cntl);
|
|
val &= ~ENDP_CNTL_SNAK;
|
|
val |= ENDP_CNTL_CNAK;
|
|
writel(val, &outep_regs_p[epid].endp_cntl);
|
|
}
|