91f6c1ca2e
Improve SquashFS tests architecture. Add 'Compression' class. LZO algorithm may crash if the file is fragmented, so the fragments are disabled when testing LZO. Signed-off-by: Joao Marcos Costa <joaomarcos.costa@bootlin.com> |
||
---|---|---|
.. | ||
tests | ||
.gitignore | ||
conftest.py | ||
multiplexed_log.css | ||
multiplexed_log.py | ||
pytest.ini | ||
README.md | ||
requirements.txt | ||
test.py | ||
u_boot_console_base.py | ||
u_boot_console_exec_attach.py | ||
u_boot_console_sandbox.py | ||
u_boot_spawn.py | ||
u_boot_utils.py |
U-Boot pytest suite
Introduction
This tool aims to test U-Boot by executing U-Boot shell commands using the console interface. A single top-level script exists to execute or attach to the U-Boot console, run the entire script of tests against it, and summarize the results. Advantages of this approach are:
- Testing is performed in the same way a user or script would interact with U-Boot; there can be no disconnect.
- There is no need to write or embed test-related code into U-Boot itself. It is asserted that writing test-related code in Python is simpler and more flexible than writing it all in C.
- It is reasonably simple to interact with U-Boot in this way.
Requirements
The test suite is implemented using pytest. Interaction with the U-Boot console involves executing some binary and interacting with its stdin/stdout. You will need to implement various "hook" scripts that are called by the test suite at the appropriate time.
In order to run the testsuite at a minimum we require that both python3 and
pip for python3 be installed. All of the required python modules are
described in the requirements.txt file in this directory and can be installed
with the command pip install -r requirements.txt
In order to execute certain tests on their supported platforms other tools will be required. The following is an incomplete list:
Package |
---|
gdisk |
dfu-util |
dtc |
openssl |
sudo OR guestmount |
e2fsprogs |
util-linux |
coreutils |
dosfstools |
efitools |
mount |
mtools |
sbsigntool |
udisks2 |
Please use the apporirate commands for your distribution to match these tools up with the package that provides them.
The test script supports either:
- Executing a sandbox port of U-Boot on the local machine as a sub-process, and interacting with it over stdin/stdout.
- Executing an external "hook" scripts to flash a U-Boot binary onto a physical board, attach to the board's console stream, and reset the board. Further details are described later.
Using virtualenv
to provide requirements
The recommended way to run the test suite, in order to ensure reproducibility
is to use virtualenv
to set up the necessary environment. This can be done
via the following commands:
$ cd /path/to/u-boot
$ sudo apt-get install python3 python3-virtualenv
$ virtualenv -p /usr/bin/python3 venv
$ . ./venv/bin/activate
$ pip install -r test/py/requirements.txt
Testing sandbox
To run the testsuite on the sandbox port (U-Boot built as a native user-space application), simply execute:
./test/py/test.py --bd sandbox --build
The --bd
option tells the test suite which board type is being tested. This
lets the test suite know which features the board has, and hence exactly what
can be tested.
The --build
option tells U-Boot to compile U-Boot. Alternatively, you may
omit this option and build U-Boot yourself, in whatever way you choose, before
running the test script.
The test script will attach to U-Boot, execute all valid tests for the board,
then print a summary of the test process. A complete log of the test session
will be written to ${build_dir}/test-log.html
. This is best viewed in a web
browser, but may be read directly as plain text, perhaps with the aid of the
html2text
utility.
Testing under a debugger
If you need to run sandbox under a debugger, you may pass the command-line
option --gdbserver COMM
. This causes two things to happens:
- Instead of running U-Boot directly, it will be run under gdbserver, with
debug communication via the channel
COMM
. You can attach a debugger to the sandbox process in order to debug it. Seeman gdbserver
and the example below for details of valid values forCOMM
. - All timeouts in tests are disabled, allowing U-Boot an arbitrary amount of time to execute commands. This is useful if U-Boot is stopped at a breakpoint during debugging.
A usage example is:
Window 1:
./test/py/test.py --bd sandbox --gdbserver localhost:1234
Window 2:
gdb ./build-sandbox/u-boot -ex 'target remote localhost:1234'
Alternatively, you could leave off the -ex
option and type the command
manually into gdb once it starts.
You can use any debugger you wish, so long as it speaks the gdb remote protocol, or any graphical wrapper around gdb.
Some tests deliberately cause the sandbox process to exit, e.g. to test the reset command, or sandbox's CTRL-C handling. When this happens, you will need to attach the debugger to the new sandbox instance. If these tests are not relevant to your debugging session, you can skip them using pytest's -k command-line option; see the next section.
Command-line options
--board-type
,--bd
,-B
set the type of the board to be tested. For example,sandbox
orseaboard
.--board-identity
,--id
set the identity of the board to be tested. This allows differentiation between multiple instances of the same type of physical board that are attached to the same host machine. This parameter is not interpreted by the test script in any way, but rather is simply passed to the hook scripts described below, and may be used in any site-specific way deemed necessary.--build
indicates that the test script should compile U-Boot itself before running the tests. If using this option, make sure that any environment variables required by the build process are already set, such as$CROSS_COMPILE
.--buildman
indicates that--build
should use buildman to build U-Boot. There is no need to set $CROSS_COMPILE` in this case since buildman handles it.--build-dir
sets the directory containing the compiled U-Boot binaries. If omitted, this is${source_dir}/build-${board_type}
.--result-dir
sets the directory to write results, such as log files, into. If omitted, the build directory is used.--persistent-data-dir
sets the directory used to store persistent test data. This is test data that may be re-used across test runs, such as file- system images.
pytest
also implements a number of its own command-line options. Commonly used
options are mentioned below. Please see pytest
documentation for complete
details. Execute py.test --version
for a brief summary. Note that U-Boot's
test.py script passes all command-line arguments directly to pytest
for
processing.
-k
selects which tests to run. The default is to run all known tests. This option takes a single argument which is used to filter test names. Simple logical operators are supported. For example:'ums'
runs only tests with "ums" in their name.'ut_dm'
runs only tests with "ut_dm" in their name. Note that in this case, "ut_dm" is a parameter to a test rather than the test name. The full test name is e.g. "test_ut[ut_dm_leak]".'not reset'
runs everything except tests with "reset" in their name.'ut or hush'
runs only tests with "ut" or "hush" in their name.'not (ut or hush)'
runs everything except tests with "ut" or "hush" in their name.
-s
prevents pytest from hiding a test's stdout. This allows you to see U-Boot's console log in real time on pytest's stdout.
Testing real hardware
The tools and techniques used to interact with real hardware will vary
radically between different host and target systems, and the whims of the user.
For this reason, the test suite does not attempt to directly interact with real
hardware in any way. Rather, it executes a standardized set of "hook" scripts
via $PATH
. These scripts implement certain actions on behalf of the test
suite. This keeps the test suite simple and isolated from system variances
unrelated to U-Boot features.
Hook scripts
Environment variables
The following environment variables are set when running hook scripts:
UBOOT_BOARD_TYPE
the board type being tested.UBOOT_BOARD_IDENTITY
the board identity being tested, orna
if none was specified.UBOOT_SOURCE_DIR
the U-Boot source directory.UBOOT_TEST_PY_DIR
the full path totest/py/
in the source directory.UBOOT_BUILD_DIR
the U-Boot build directory.UBOOT_RESULT_DIR
the test result directory.UBOOT_PERSISTENT_DATA_DIR
the test persistent data directory.
u-boot-test-console
This script provides access to the U-Boot console. The script's stdin/stdout should be connected to the board's console. This process should continue to run indefinitely, until killed. The test suite will run this script in parallel with all other hooks.
This script may be implemented e.g. by exec()ing cu
, kermit
, conmux
, etc.
If you are able to run U-Boot under a hardware simulator such as qemu, then
you would likely spawn that simulator from this script. However, note that
u-boot-test-reset
may be called multiple times per test script run, and must
cause U-Boot to start execution from scratch each time. Hopefully your
simulator includes a virtual reset button! If not, you can launch the
simulator from u-boot-test-reset
instead, while arranging for this console
process to always communicate with the current simulator instance.
u-boot-test-flash
Prior to running the test suite against a board, some arrangement must be made so that the board executes the particular U-Boot binary to be tested. Often, this involves writing the U-Boot binary to the board's flash ROM. The test suite calls this hook script for that purpose.
This script should perform the entire flashing process synchronously; the script should only exit once flashing is complete, and a board reset will cause the newly flashed U-Boot binary to be executed.
It is conceivable that this script will do nothing. This might be useful in the following cases:
- Some other process has already written the desired U-Boot binary into the board's flash prior to running the test suite.
- The board allows U-Boot to be downloaded directly into RAM, and executed
from there. Use of this feature will reduce wear on the board's flash, so
may be preferable if available, and if cold boot testing of U-Boot is not
required. If this feature is used, the
u-boot-test-reset
script should perform this download, since the board could conceivably be reset multiple times in a single test run.
It is up to the user to determine if those situations exist, and to code this hook script appropriately.
This script will typically be implemented by calling out to some SoC- or board-specific vendor flashing utility.
u-boot-test-reset
Whenever the test suite needs to reset the target board, this script is executed. This is guaranteed to happen at least once, prior to executing the first test function. If any test fails, the test infra-structure will execute this script again to restore U-Boot to an operational state before running the next test function.
This script will likely be implemented by communicating with some form of relay or electronic switch attached to the board's reset signal.
The semantics of this script require that when it is executed, U-Boot will
start running from scratch. If the U-Boot binary to be tested has been written
to flash, pulsing the board's reset signal is likely all this script need do.
However, in some scenarios, this script may perform other actions. For
example, it may call out to some SoC- or board-specific vendor utility in order
to download the U-Boot binary directly into RAM and execute it. This would
avoid the need for u-boot-test-flash
to actually write U-Boot to flash, thus
saving wear on the flash chip(s).
Examples
https://github.com/swarren/uboot-test-hooks contains some working example hook scripts, and may be useful as a reference when implementing hook scripts for your platform. These scripts are not considered part of U-Boot itself.
Board-type-specific configuration
Each board has a different configuration and behaviour. Many of these
differences can be automatically detected by parsing the .config
file in the
build directory. However, some differences can't yet be handled automatically.
For each board, an optional Python module u_boot_board_${board_type}
may exist
to provide board-specific information to the test script. Any global value
defined in these modules is available for use by any test function. The data
contained in these scripts must be purely derived from U-Boot source code.
Hence, these configuration files are part of the U-Boot source tree too.
Execution environment configuration
Each user's hardware setup may enable testing different subsets of the features implemented by a particular board's configuration of U-Boot. For example, a U-Boot configuration may support USB device mode and USB Mass Storage, but this can only be tested if a USB cable is connected between the board and the host machine running the test script.
For each board, optional Python modules u_boot_boardenv_${board_type}
and
u_boot_boardenv_${board_type}_${board_identity}
may exist to provide
board-specific and board-identity-specific information to the test script. Any
global value defined in these modules is available for use by any test
function. The data contained in these is specific to a particular user's
hardware configuration. Hence, these configuration files are not part of the
U-Boot source tree, and should be installed outside of the source tree. Users
should set $PYTHONPATH
prior to running the test script to allow these
modules to be loaded.
Board module parameter usage
The test scripts rely on the following variables being defined by the board module:
- None at present.
U-Boot .config
feature usage
The test scripts rely on various U-Boot .config
features, either directly in
order to test those features, or indirectly in order to query information from
the running U-Boot instance in order to test other features.
One example is that testing of the md
command requires knowledge of a RAM
address to use for the test. This data is parsed from the output of the
bdinfo
command, and hence relies on CONFIG_CMD_BDI being enabled.
For a complete list of dependencies, please search the test scripts for instances of:
buildconfig.get(...
@pytest.mark.buildconfigspec(...
@pytest.mark.notbuildconfigspec(...
Complete invocation example
Assuming that you have installed the hook scripts into $HOME/ubtest/bin, and any required environment configuration Python modules into $HOME/ubtest/py, then you would likely invoke the test script as follows:
If U-Boot has already been built:
PATH=$HOME/ubtest/bin:$PATH \
PYTHONPATH=${HOME}/ubtest/py/${HOSTNAME}:${PYTHONPATH} \
./test/py/test.py --bd seaboard
If you want the test script to compile U-Boot for you too, then you likely
need to set $CROSS_COMPILE
to allow this, and invoke the test script as
follows:
CROSS_COMPILE=arm-none-eabi- \
PATH=$HOME/ubtest/bin:$PATH \
PYTHONPATH=${HOME}/ubtest/py/${HOSTNAME}:${PYTHONPATH} \
./test/py/test.py --bd seaboard --build
or, using buildman to handle it:
PATH=$HOME/ubtest/bin:$PATH \
PYTHONPATH=${HOME}/ubtest/py/${HOSTNAME}:${PYTHONPATH} \
./test/py/test.py --bd seaboard --build --buildman
Writing tests
Please refer to the pytest documentation for details of writing pytest tests. Details specific to the U-Boot test suite are described below.
A test fixture named u_boot_console
should be used by each test function. This
provides the means to interact with the U-Boot console, and retrieve board and
environment configuration information.
The function u_boot_console.run_command()
executes a shell command on the
U-Boot console, and returns all output from that command. This allows
validation or interpretation of the command output. This function validates
that certain strings are not seen on the U-Boot console. These include shell
error messages and the U-Boot sign-on message (in order to detect unexpected
board resets). See the source of u_boot_console_base.py
for a complete list of
"bad" strings. Some test scenarios are expected to trigger these strings. Use
u_boot_console.disable_check()
to temporarily disable checking for specific
strings. See test_unknown_cmd.py
for an example.
Board- and board-environment configuration values may be accessed as sub-fields
of the u_boot_console.config
object, for example
u_boot_console.config.ram_base
.
Build configuration values (from .config
) may be accessed via the dictionary
u_boot_console.config.buildconfig
, with keys equal to the Kconfig variable
names.