u-boot/board/keymile/km83xx/km83xx.c
Simon Glass 91caa3bb89 event: Use an event to replace last_stage_init()
Add a new event which handles this function. Convert existing use of
the function to use the new event instead.

Make sure that EVENT is enabled by affected boards, by selecting it from
the LAST_STAGE_INIT option. For x86, enable it by default since all boards
need it.

For controlcenterdc, inline the get_tpm() function and make sure the event
is not built in SPL.

Signed-off-by: Simon Glass <sjg@chromium.org>
2023-08-31 13:16:55 -04:00

334 lines
8.9 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2006 Freescale Semiconductor, Inc.
* Dave Liu <daveliu@freescale.com>
*
* Copyright (C) 2007 Logic Product Development, Inc.
* Peter Barada <peterb@logicpd.com>
*
* Copyright (C) 2007 MontaVista Software, Inc.
* Anton Vorontsov <avorontsov@ru.mvista.com>
*
* (C) Copyright 2008 - 2010
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*/
#include <common.h>
#include <env.h>
#include <event.h>
#include <fdt_support.h>
#include <init.h>
#include <ioports.h>
#include <log.h>
#include <mpc83xx.h>
#include <i2c.h>
#include <miiphy.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <pci.h>
#include <linux/delay.h>
#include <linux/libfdt.h>
#include <post.h>
#include "../common/common.h"
DECLARE_GLOBAL_DATA_PTR;
#if CONFIG_IS_ENABLED(TARGET_KMCOGE5NE) || CONFIG_IS_ENABLED(TARGET_KMETER1)
#define CFG_SYS_DDR_MODE 0x47860452
#define CFG_SYS_DDR_INTERVAL (\
(0x080 << SDRAM_INTERVAL_BSTOPRE_SHIFT) | \
(0x203 << SDRAM_INTERVAL_REFINT_SHIFT))
#define CFG_SYS_DDR_TIMING_0 (\
(2 << TIMING_CFG0_MRS_CYC_SHIFT) | \
(8 << TIMING_CFG0_ODT_PD_EXIT_SHIFT) | \
(6 << TIMING_CFG0_PRE_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_ACT_PD_EXIT_SHIFT) | \
(0 << TIMING_CFG0_WWT_SHIFT) | \
(0 << TIMING_CFG0_RRT_SHIFT) | \
(0 << TIMING_CFG0_WRT_SHIFT) | \
(0 << TIMING_CFG0_RWT_SHIFT))
#define CFG_SYS_DDR_TIMING_1 ((TIMING_CFG1_CASLAT_50) | \
(2 << TIMING_CFG1_WRTORD_SHIFT) | \
(2 << TIMING_CFG1_ACTTOACT_SHIFT) | \
(3 << TIMING_CFG1_WRREC_SHIFT) | \
(7 << TIMING_CFG1_REFREC_SHIFT) | \
(3 << TIMING_CFG1_ACTTORW_SHIFT) | \
(8 << TIMING_CFG1_ACTTOPRE_SHIFT) | \
(3 << TIMING_CFG1_PRETOACT_SHIFT))
#define CFG_SYS_DDR_TIMING_2 (\
(0xa << TIMING_CFG2_FOUR_ACT_SHIFT) | \
(3 << TIMING_CFG2_CKE_PLS_SHIFT) | \
(2 << TIMING_CFG2_WR_DATA_DELAY_SHIFT) | \
(2 << TIMING_CFG2_RD_TO_PRE_SHIFT) | \
(4 << TIMING_CFG2_WR_LAT_DELAY_SHIFT) | \
(5 << TIMING_CFG2_CPO_SHIFT) | \
(0 << TIMING_CFG2_ADD_LAT_SHIFT))
#define CFG_SYS_DDR_TIMING_3 0x00000000
#else
#define CFG_SYS_DDR_MODE 0x47860242
#define CFG_SYS_DDR_INTERVAL ((0x064 << SDRAM_INTERVAL_BSTOPRE_SHIFT) | \
(0x200 << SDRAM_INTERVAL_REFINT_SHIFT))
#define CFG_SYS_DDR_TIMING_0 ((2 << TIMING_CFG0_MRS_CYC_SHIFT) | \
(8 << TIMING_CFG0_ODT_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_PRE_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_ACT_PD_EXIT_SHIFT) | \
(0 << TIMING_CFG0_WWT_SHIFT) | \
(0 << TIMING_CFG0_RRT_SHIFT) | \
(0 << TIMING_CFG0_WRT_SHIFT) | \
(0 << TIMING_CFG0_RWT_SHIFT))
#define CFG_SYS_DDR_TIMING_1 ((TIMING_CFG1_CASLAT_40) | \
(2 << TIMING_CFG1_WRTORD_SHIFT) | \
(2 << TIMING_CFG1_ACTTOACT_SHIFT) | \
(3 << TIMING_CFG1_WRREC_SHIFT) | \
(7 << TIMING_CFG1_REFREC_SHIFT) | \
(3 << TIMING_CFG1_ACTTORW_SHIFT) | \
(7 << TIMING_CFG1_ACTTOPRE_SHIFT) | \
(3 << TIMING_CFG1_PRETOACT_SHIFT))
#define CFG_SYS_DDR_TIMING_2 ((8 << TIMING_CFG2_FOUR_ACT_SHIFT) | \
(3 << TIMING_CFG2_CKE_PLS_SHIFT) | \
(2 << TIMING_CFG2_WR_DATA_DELAY_SHIFT) | \
(2 << TIMING_CFG2_RD_TO_PRE_SHIFT) | \
(3 << TIMING_CFG2_WR_LAT_DELAY_SHIFT) | \
(0 << TIMING_CFG2_ADD_LAT_SHIFT) | \
(5 << TIMING_CFG2_CPO_SHIFT))
#define CFG_SYS_DDR_TIMING_3 0x00000000
#define CFG_SYS_DDR_CS0_CONFIG (CSCONFIG_EN | CSCONFIG_AP | \
CSCONFIG_ODT_WR_CFG | \
CSCONFIG_ROW_BIT_13 | \
CSCONFIG_COL_BIT_10)
#endif
#define CFG_SYS_DDR_SDRAM_CFG (SDRAM_CFG_SDRAM_TYPE_DDR2 | \
SDRAM_CFG_32_BE | \
SDRAM_CFG_SREN | \
SDRAM_CFG_HSE)
#define CFG_SYS_DDR_CLK_CNTL (DDR_SDRAM_CLK_CNTL_CLK_ADJUST_05)
#define CFG_SYS_DDR_SDRAM_CFG2 0x00401000
#define CFG_SYS_DDR_CS0_BNDS 0x0000007f
#define CFG_SYS_DDR_MODE2 0x8080c000
#define CFG_SYS_SDRAM_SIZE 0x80000000 /* 2048 MiB */
static uchar ivm_content[CONFIG_SYS_IVM_EEPROM_MAX_LEN];
static int piggy_present(void)
{
struct km_bec_fpga __iomem *base =
(struct km_bec_fpga __iomem *)CFG_SYS_KMBEC_FPGA_BASE;
return in_8(&base->bprth) & PIGGY_PRESENT;
}
int ethernet_present(void)
{
return piggy_present();
}
int board_early_init_r(void)
{
struct km_bec_fpga *base =
(struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE;
#if defined(CONFIG_ARCH_MPC8360)
unsigned short svid;
/*
* Because of errata in the UCCs, we have to write to the reserved
* registers to slow the clocks down.
*/
svid = SVR_REV(mfspr(SVR));
switch (svid) {
case 0x0020:
/*
* MPC8360ECE.pdf QE_ENET10 table 4:
* IMMR + 0x14A8[4:5] = 11 (clk delay for UCC 2)
* IMMR + 0x14A8[18:19] = 11 (clk delay for UCC 1)
*/
setbits_be32((void *)(CONFIG_SYS_IMMR + 0x14a8), 0x0c003000);
break;
case 0x0021:
/*
* MPC8360ECE.pdf QE_ENET10 table 4:
* IMMR + 0x14AC[24:27] = 1010
*/
clrsetbits_be32((void *)(CONFIG_SYS_IMMR + 0x14ac),
0x00000050, 0x000000a0);
break;
}
#endif
/* enable the PHY on the PIGGY */
setbits_8(&base->pgy_eth, 0x01);
/* enable the Unit LED (green) */
setbits_8(&base->oprth, WRL_BOOT);
/* enable Application Buffer */
setbits_8(&base->oprtl, OPRTL_XBUFENA);
return 0;
}
int misc_init_r(void)
{
ivm_read_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN,
CONFIG_PIGGY_MAC_ADDRESS_OFFSET);
return 0;
}
static int last_stage_init(void)
{
#if defined(CONFIG_TARGET_KMCOGE5NE)
/*
* BFTIC3 on the local bus CS4
*/
struct bfticu_iomap *base = (struct bfticu_iomap *)0xB0000000;
u8 dip_switch = in_8((u8 *)&(base->mswitch)) & BFTICU_DIPSWITCH_MASK;
if (dip_switch != 0) {
/* start bootloader */
puts("DIP: Enabled\n");
env_set("actual_bank", "0");
}
#endif
set_km_env();
return 0;
}
EVENT_SPY_SIMPLE(EVT_LAST_STAGE_INIT, last_stage_init);
static int fixed_sdram(void)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = 0;
u32 ddr_size;
u32 ddr_size_log2;
out_be32(&im->sysconf.ddrlaw[0].ar, (LAWAR_EN | 0x1e));
out_be32(&im->ddr.csbnds[0].csbnds, (CFG_SYS_DDR_CS0_BNDS) | 0x7f);
out_be32(&im->ddr.cs_config[0], CFG_SYS_DDR_CS0_CONFIG);
out_be32(&im->ddr.timing_cfg_0, CFG_SYS_DDR_TIMING_0);
out_be32(&im->ddr.timing_cfg_1, CFG_SYS_DDR_TIMING_1);
out_be32(&im->ddr.timing_cfg_2, CFG_SYS_DDR_TIMING_2);
out_be32(&im->ddr.timing_cfg_3, CFG_SYS_DDR_TIMING_3);
out_be32(&im->ddr.sdram_cfg, CFG_SYS_DDR_SDRAM_CFG);
out_be32(&im->ddr.sdram_cfg2, CFG_SYS_DDR_SDRAM_CFG2);
out_be32(&im->ddr.sdram_mode, CFG_SYS_DDR_MODE);
out_be32(&im->ddr.sdram_mode2, CFG_SYS_DDR_MODE2);
out_be32(&im->ddr.sdram_interval, CFG_SYS_DDR_INTERVAL);
out_be32(&im->ddr.sdram_clk_cntl, CFG_SYS_DDR_CLK_CNTL);
udelay(200);
setbits_be32(&im->ddr.sdram_cfg, SDRAM_CFG_MEM_EN);
disable_addr_trans();
msize = get_ram_size(CFG_SYS_SDRAM_BASE, CFG_SYS_SDRAM_SIZE);
enable_addr_trans();
msize /= (1024 * 1024);
if (CFG_SYS_SDRAM_SIZE >> 20 != msize) {
for (ddr_size = msize << 20, ddr_size_log2 = 0;
(ddr_size > 1);
ddr_size = ddr_size >> 1, ddr_size_log2++)
if (ddr_size & 1)
return -1;
out_be32(&im->sysconf.ddrlaw[0].ar,
(LAWAR_EN | ((ddr_size_log2 - 1) & LAWAR_SIZE)));
out_be32(&im->ddr.csbnds[0].csbnds,
(((msize / 16) - 1) & 0xff));
}
return msize;
}
int dram_init(void)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = 0;
if ((in_be32(&im->sysconf.immrbar) & IMMRBAR_BASE_ADDR) != (u32)im)
return -ENXIO;
out_be32(&im->sysconf.ddrlaw[0].bar,
CFG_SYS_SDRAM_BASE & LAWBAR_BAR);
msize = fixed_sdram();
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/*
* Initialize DDR ECC byte
*/
ddr_enable_ecc(msize * 1024 * 1024);
#endif
/* return total bus SDRAM size(bytes) -- DDR */
gd->ram_size = msize * 1024 * 1024;
return 0;
}
int checkboard(void)
{
puts("Board: Hitachi " CONFIG_SYS_CONFIG_NAME);
if (piggy_present())
puts(" with PIGGY.");
puts("\n");
return 0;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
ft_cpu_setup(blob, bd);
return 0;
}
#if defined(CONFIG_HUSH_INIT_VAR)
int hush_init_var(void)
{
ivm_analyze_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN);
return 0;
}
#endif
#if defined(CONFIG_POST)
int post_hotkeys_pressed(void)
{
int testpin = 0;
struct km_bec_fpga *base =
(struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE;
int testpin_reg = in_8(&base->CFG_TESTPIN_REG);
testpin = (testpin_reg & CFG_TESTPIN_MASK) != 0;
debug("post_hotkeys_pressed: %d\n", !testpin);
return testpin;
}
ulong post_word_load(void)
{
void* addr = (ulong *) (CPM_POST_WORD_ADDR);
debug("post_word_load 0x%08lX: 0x%08X\n", (ulong)addr, in_le32(addr));
return in_le32(addr);
}
void post_word_store(ulong value)
{
void* addr = (ulong *) (CPM_POST_WORD_ADDR);
debug("post_word_store 0x%08lX: 0x%08lX\n", (ulong)addr, value);
out_le32(addr, value);
}
int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
*vstart = CONFIG_SYS_MEMTEST_START;
*size = CONFIG_SYS_MEMTEST_END - CONFIG_SYS_MEMTEST_START;
debug("arch_memory_test_prepare 0x%08X 0x%08X\n", *vstart, *size);
return 0;
}
#endif