u-boot/lib/tpm_api.c
Simon Glass a557d258c6 tpm: Require a digest source when extending the PCR
This feature is used for measured boot, so we can add a log entry to the
TCPA with some information about where the digest comes from. It is not
currently supported in the TPM drivers, but add it to the API so that
code which expects it can signal its request.

Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Signed-off-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
2022-09-03 16:53:58 +03:00

277 lines
5.7 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2019 Google LLC
*/
#include <common.h>
#include <dm.h>
#include <log.h>
#include <tpm_api.h>
#include <tpm-v1.h>
#include <tpm-v2.h>
#include <tpm_api.h>
u32 tpm_startup(struct udevice *dev, enum tpm_startup_type mode)
{
if (tpm_is_v1(dev)) {
return tpm1_startup(dev, mode);
} else if (tpm_is_v2(dev)) {
enum tpm2_startup_types type;
switch (mode) {
case TPM_ST_CLEAR:
type = TPM2_SU_CLEAR;
break;
case TPM_ST_STATE:
type = TPM2_SU_STATE;
break;
default:
case TPM_ST_DEACTIVATED:
return -EINVAL;
}
return tpm2_startup(dev, type);
} else {
return -ENOSYS;
}
}
u32 tpm_resume(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_startup(dev, TPM_ST_STATE);
else if (tpm_is_v2(dev))
return tpm2_startup(dev, TPM2_SU_STATE);
else
return -ENOSYS;
}
u32 tpm_self_test_full(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_self_test_full(dev);
else if (tpm_is_v2(dev))
return tpm2_self_test(dev, TPMI_YES);
else
return -ENOSYS;
}
u32 tpm_continue_self_test(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_continue_self_test(dev);
else if (tpm_is_v2(dev))
return tpm2_self_test(dev, TPMI_NO);
else
return -ENOSYS;
}
u32 tpm_clear_and_reenable(struct udevice *dev)
{
u32 ret;
log_info("TPM: Clear and re-enable\n");
ret = tpm_force_clear(dev);
if (ret != TPM_SUCCESS) {
log_err("Can't initiate a force clear\n");
return ret;
}
if (tpm_is_v1(dev)) {
ret = tpm1_physical_enable(dev);
if (ret != TPM_SUCCESS) {
log_err("TPM: Can't set enabled state\n");
return ret;
}
ret = tpm1_physical_set_deactivated(dev, 0);
if (ret != TPM_SUCCESS) {
log_err("TPM: Can't set deactivated state\n");
return ret;
}
}
return TPM_SUCCESS;
}
u32 tpm_nv_enable_locking(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_nv_define_space(dev, TPM_NV_INDEX_LOCK, 0, 0);
else if (tpm_is_v2(dev))
return -ENOSYS;
else
return -ENOSYS;
}
u32 tpm_nv_read_value(struct udevice *dev, u32 index, void *data, u32 count)
{
if (tpm_is_v1(dev))
return tpm1_nv_read_value(dev, index, data, count);
else if (tpm_is_v2(dev))
return tpm2_nv_read_value(dev, index, data, count);
else
return -ENOSYS;
}
u32 tpm_nv_write_value(struct udevice *dev, u32 index, const void *data,
u32 count)
{
if (tpm_is_v1(dev))
return tpm1_nv_write_value(dev, index, data, count);
else if (tpm_is_v2(dev))
return tpm2_nv_write_value(dev, index, data, count);
else
return -ENOSYS;
}
u32 tpm_set_global_lock(struct udevice *dev)
{
return tpm_nv_write_value(dev, TPM_NV_INDEX_0, NULL, 0);
}
u32 tpm_write_lock(struct udevice *dev, u32 index)
{
if (tpm_is_v1(dev))
return -ENOSYS;
else if (tpm_is_v2(dev))
return tpm2_write_lock(dev, index);
else
return -ENOSYS;
}
u32 tpm_pcr_extend(struct udevice *dev, u32 index, const void *in_digest,
uint size, void *out_digest, const char *name)
{
if (tpm_is_v1(dev)) {
return tpm1_extend(dev, index, in_digest, out_digest);
} else if (tpm_is_v2(dev)) {
return tpm2_pcr_extend(dev, index, TPM2_ALG_SHA256, in_digest,
TPM2_DIGEST_LEN);
/* @name is ignored as we do not support the TPM log here */
} else {
return -ENOSYS;
}
}
u32 tpm_pcr_read(struct udevice *dev, u32 index, void *data, size_t count)
{
if (tpm_is_v1(dev))
return tpm1_pcr_read(dev, index, data, count);
else if (tpm_is_v2(dev))
return -ENOSYS;
else
return -ENOSYS;
}
u32 tpm_tsc_physical_presence(struct udevice *dev, u16 presence)
{
if (tpm_is_v1(dev))
return tpm1_tsc_physical_presence(dev, presence);
/*
* Nothing to do on TPM2 for this; use platform hierarchy availability
* instead.
*/
else if (tpm_is_v2(dev))
return 0;
else
return -ENOSYS;
}
u32 tpm_finalise_physical_presence(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_finalise_physical_presence(dev);
/* Nothing needs to be done with tpm2 */
else if (tpm_is_v2(dev))
return 0;
else
return -ENOSYS;
}
u32 tpm_read_pubek(struct udevice *dev, void *data, size_t count)
{
if (tpm_is_v1(dev))
return tpm1_read_pubek(dev, data, count);
else if (tpm_is_v2(dev))
return -ENOSYS; /* not implemented yet */
else
return -ENOSYS;
}
u32 tpm_force_clear(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_force_clear(dev);
else if (tpm_is_v2(dev))
return tpm2_clear(dev, TPM2_RH_PLATFORM, NULL, 0);
else
return -ENOSYS;
}
u32 tpm_physical_enable(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_physical_enable(dev);
/* Nothing needs to be done with tpm2 */
else if (tpm_is_v2(dev))
return 0;
else
return -ENOSYS;
}
u32 tpm_physical_disable(struct udevice *dev)
{
if (tpm_is_v1(dev))
return tpm1_physical_disable(dev);
/* Nothing needs to be done with tpm2 */
else if (tpm_is_v2(dev))
return 0;
else
return -ENOSYS;
}
u32 tpm_physical_set_deactivated(struct udevice *dev, u8 state)
{
if (tpm_is_v1(dev))
return tpm1_physical_set_deactivated(dev, state);
/* Nothing needs to be done with tpm2 */
else if (tpm_is_v2(dev))
return 0;
else
return -ENOSYS;
}
u32 tpm_get_capability(struct udevice *dev, u32 cap_area, u32 sub_cap,
void *cap, size_t count)
{
if (tpm_is_v1(dev))
return tpm1_get_capability(dev, cap_area, sub_cap, cap, count);
else if (tpm_is_v2(dev))
return tpm2_get_capability(dev, cap_area, sub_cap, cap, count);
else
return -ENOSYS;
}
u32 tpm_get_permissions(struct udevice *dev, u32 index, u32 *perm)
{
if (tpm_is_v1(dev))
return tpm1_get_permissions(dev, index, perm);
else if (tpm_is_v2(dev))
return -ENOSYS; /* not implemented yet */
else
return -ENOSYS;
}
u32 tpm_get_random(struct udevice *dev, void *data, u32 count)
{
if (tpm_is_v1(dev))
return tpm1_get_random(dev, data, count);
else if (tpm_is_v2(dev))
return tpm2_get_random(dev, data, count);
return -ENOSYS;
}