u-boot/drivers/mmc/s5p_mmc.c
Anton Staaf 9070872bb3 mmc: S5P: Support DMA restarts at buffer boundaries
Currently if a DMA buffer straddles a buffer alignment boundary
(512KiB) then the DMA engine will pause and generate a DMA
interrupt.  Since the DMA interrupt is not enabled it will hang
the MMC driver.

This patch adds support for restarting the DMA transfer.  The
SYSTEM_ADDRESS register contains the next address that would have
been read/written when a boundary is hit.  So we can read that
and write it back.  The write triggers the resumption of the
transfer.

Signed-off-by: Anton Staaf <robotboy@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Tested-by : Jaehoon Chung <jh80.chung@samsung.com>
Cc: Albert ARIBAUD <albert.u.boot@aribaud.net>
2011-09-03 22:40:47 +02:00

489 lines
11 KiB
C

/*
* (C) Copyright 2009 SAMSUNG Electronics
* Minkyu Kang <mk7.kang@samsung.com>
* Jaehoon Chung <jh80.chung@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <common.h>
#include <mmc.h>
#include <asm/io.h>
#include <asm/arch/mmc.h>
#include <asm/arch/clk.h>
/* support 4 mmc hosts */
struct mmc mmc_dev[4];
struct mmc_host mmc_host[4];
static inline struct s5p_mmc *s5p_get_base_mmc(int dev_index)
{
unsigned long offset = dev_index * sizeof(struct s5p_mmc);
return (struct s5p_mmc *)(samsung_get_base_mmc() + offset);
}
static void mmc_prepare_data(struct mmc_host *host, struct mmc_data *data)
{
unsigned char ctrl;
debug("data->dest: %08x\n", (u32)data->dest);
writel((u32)data->dest, &host->reg->sysad);
/*
* DMASEL[4:3]
* 00 = Selects SDMA
* 01 = Reserved
* 10 = Selects 32-bit Address ADMA2
* 11 = Selects 64-bit Address ADMA2
*/
ctrl = readb(&host->reg->hostctl);
ctrl &= ~(3 << 3);
writeb(ctrl, &host->reg->hostctl);
/* We do not handle DMA boundaries, so set it to max (512 KiB) */
writew((7 << 12) | (data->blocksize & 0xFFF), &host->reg->blksize);
writew(data->blocks, &host->reg->blkcnt);
}
static void mmc_set_transfer_mode(struct mmc_host *host, struct mmc_data *data)
{
unsigned short mode;
/*
* TRNMOD
* MUL1SIN0[5] : Multi/Single Block Select
* RD1WT0[4] : Data Transfer Direction Select
* 1 = read
* 0 = write
* ENACMD12[2] : Auto CMD12 Enable
* ENBLKCNT[1] : Block Count Enable
* ENDMA[0] : DMA Enable
*/
mode = (1 << 1) | (1 << 0);
if (data->blocks > 1)
mode |= (1 << 5);
if (data->flags & MMC_DATA_READ)
mode |= (1 << 4);
writew(mode, &host->reg->trnmod);
}
static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct mmc_host *host = (struct mmc_host *)mmc->priv;
int flags, i;
unsigned int timeout;
unsigned int mask;
unsigned int retry = 0x100000;
/* Wait max 10 ms */
timeout = 10;
/*
* PRNSTS
* CMDINHDAT[1] : Command Inhibit (DAT)
* CMDINHCMD[0] : Command Inhibit (CMD)
*/
mask = (1 << 0);
if ((data != NULL) || (cmd->resp_type & MMC_RSP_BUSY))
mask |= (1 << 1);
/*
* We shouldn't wait for data inihibit for stop commands, even
* though they might use busy signaling
*/
if (data)
mask &= ~(1 << 1);
while (readl(&host->reg->prnsts) & mask) {
if (timeout == 0) {
printf("%s: timeout error\n", __func__);
return -1;
}
timeout--;
udelay(1000);
}
if (data)
mmc_prepare_data(host, data);
debug("cmd->arg: %08x\n", cmd->cmdarg);
writel(cmd->cmdarg, &host->reg->argument);
if (data)
mmc_set_transfer_mode(host, data);
if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY))
return -1;
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = 0;
else if (cmd->resp_type & MMC_RSP_136)
flags = (1 << 0);
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = (3 << 0);
else
flags = (2 << 0);
if (cmd->resp_type & MMC_RSP_CRC)
flags |= (1 << 3);
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= (1 << 4);
if (data)
flags |= (1 << 5);
debug("cmd: %d\n", cmd->cmdidx);
writew((cmd->cmdidx << 8) | flags, &host->reg->cmdreg);
for (i = 0; i < retry; i++) {
mask = readl(&host->reg->norintsts);
/* Command Complete */
if (mask & (1 << 0)) {
if (!data)
writel(mask, &host->reg->norintsts);
break;
}
}
if (i == retry) {
printf("%s: waiting for status update\n", __func__);
return TIMEOUT;
}
if (mask & (1 << 16)) {
/* Timeout Error */
debug("timeout: %08x cmd %d\n", mask, cmd->cmdidx);
return TIMEOUT;
} else if (mask & (1 << 15)) {
/* Error Interrupt */
debug("error: %08x cmd %d\n", mask, cmd->cmdidx);
return -1;
}
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0; i < 4; i++) {
unsigned int offset =
(unsigned int)(&host->reg->rspreg3 - i);
cmd->response[i] = readl(offset) << 8;
if (i != 3) {
cmd->response[i] |=
readb(offset - 1);
}
debug("cmd->resp[%d]: %08x\n",
i, cmd->response[i]);
}
} else if (cmd->resp_type & MMC_RSP_BUSY) {
for (i = 0; i < retry; i++) {
/* PRNTDATA[23:20] : DAT[3:0] Line Signal */
if (readl(&host->reg->prnsts)
& (1 << 20)) /* DAT[0] */
break;
}
if (i == retry) {
printf("%s: card is still busy\n", __func__);
return TIMEOUT;
}
cmd->response[0] = readl(&host->reg->rspreg0);
debug("cmd->resp[0]: %08x\n", cmd->response[0]);
} else {
cmd->response[0] = readl(&host->reg->rspreg0);
debug("cmd->resp[0]: %08x\n", cmd->response[0]);
}
}
if (data) {
while (1) {
mask = readl(&host->reg->norintsts);
if (mask & (1 << 15)) {
/* Error Interrupt */
writel(mask, &host->reg->norintsts);
printf("%s: error during transfer: 0x%08x\n",
__func__, mask);
return -1;
} else if (mask & (1 << 3)) {
/*
* DMA Interrupt, restart the transfer where
* it was interrupted.
*/
unsigned int address = readl(&host->reg->sysad);
debug("DMA end\n");
writel((1 << 3), &host->reg->norintsts);
writel(address, &host->reg->sysad);
} else if (mask & (1 << 1)) {
/* Transfer Complete */
debug("r/w is done\n");
break;
}
}
writel(mask, &host->reg->norintsts);
}
udelay(1000);
return 0;
}
static void mmc_change_clock(struct mmc_host *host, uint clock)
{
int div;
unsigned short clk;
unsigned long timeout;
unsigned long ctrl2;
/*
* SELBASECLK[5:4]
* 00/01 = HCLK
* 10 = EPLL
* 11 = XTI or XEXTCLK
*/
ctrl2 = readl(&host->reg->control2);
ctrl2 &= ~(3 << 4);
ctrl2 |= (2 << 4);
writel(ctrl2, &host->reg->control2);
writew(0, &host->reg->clkcon);
/* XXX: we assume that clock is between 40MHz and 50MHz */
if (clock == 0)
goto out;
else if (clock <= 400000)
div = 0x100;
else if (clock <= 20000000)
div = 4;
else if (clock <= 26000000)
div = 2;
else
div = 1;
debug("div: %d\n", div);
div >>= 1;
/*
* CLKCON
* SELFREQ[15:8] : base clock divied by value
* ENSDCLK[2] : SD Clock Enable
* STBLINTCLK[1] : Internal Clock Stable
* ENINTCLK[0] : Internal Clock Enable
*/
clk = (div << 8) | (1 << 0);
writew(clk, &host->reg->clkcon);
set_mmc_clk(host->dev_index, div);
/* Wait max 10 ms */
timeout = 10;
while (!(readw(&host->reg->clkcon) & (1 << 1))) {
if (timeout == 0) {
printf("%s: timeout error\n", __func__);
return;
}
timeout--;
udelay(1000);
}
clk |= (1 << 2);
writew(clk, &host->reg->clkcon);
out:
host->clock = clock;
}
static void mmc_set_ios(struct mmc *mmc)
{
struct mmc_host *host = mmc->priv;
unsigned char ctrl;
unsigned long val;
debug("bus_width: %x, clock: %d\n", mmc->bus_width, mmc->clock);
/*
* SELCLKPADDS[17:16]
* 00 = 2mA
* 01 = 4mA
* 10 = 7mA
* 11 = 9mA
*/
writel(0x3 << 16, &host->reg->control4);
val = readl(&host->reg->control2);
val &= (0x3 << 4);
val |= (1 << 31) | /* write status clear async mode enable */
(1 << 30) | /* command conflict mask enable */
(1 << 14) | /* Feedback Clock Enable for Rx Clock */
(1 << 8); /* SDCLK hold enable */
writel(val, &host->reg->control2);
/*
* FCSEL1[15] FCSEL0[7]
* FCSel[1:0] : Rx Feedback Clock Delay Control
* Inverter delay means10ns delay if SDCLK 50MHz setting
* 01 = Delay1 (basic delay)
* 11 = Delay2 (basic delay + 2ns)
* 00 = Delay3 (inverter delay)
* 10 = Delay4 (inverter delay + 2ns)
*/
writel(0x8080, &host->reg->control3);
mmc_change_clock(host, mmc->clock);
ctrl = readb(&host->reg->hostctl);
/*
* WIDE8[5]
* 0 = Depend on WIDE4
* 1 = 8-bit mode
* WIDE4[1]
* 1 = 4-bit mode
* 0 = 1-bit mode
*/
if (mmc->bus_width == 8)
ctrl |= (1 << 5);
else if (mmc->bus_width == 4)
ctrl |= (1 << 1);
else
ctrl &= ~(1 << 1);
/*
* OUTEDGEINV[2]
* 1 = Riging edge output
* 0 = Falling edge output
*/
ctrl &= ~(1 << 2);
writeb(ctrl, &host->reg->hostctl);
}
static void mmc_reset(struct mmc_host *host)
{
unsigned int timeout;
/*
* RSTALL[0] : Software reset for all
* 1 = reset
* 0 = work
*/
writeb((1 << 0), &host->reg->swrst);
host->clock = 0;
/* Wait max 100 ms */
timeout = 100;
/* hw clears the bit when it's done */
while (readb(&host->reg->swrst) & (1 << 0)) {
if (timeout == 0) {
printf("%s: timeout error\n", __func__);
return;
}
timeout--;
udelay(1000);
}
}
static int mmc_core_init(struct mmc *mmc)
{
struct mmc_host *host = (struct mmc_host *)mmc->priv;
unsigned int mask;
mmc_reset(host);
host->version = readw(&host->reg->hcver);
/* mask all */
writel(0xffffffff, &host->reg->norintstsen);
writel(0xffffffff, &host->reg->norintsigen);
writeb(0xe, &host->reg->timeoutcon); /* TMCLK * 2^27 */
/*
* NORMAL Interrupt Status Enable Register init
* [5] ENSTABUFRDRDY : Buffer Read Ready Status Enable
* [4] ENSTABUFWTRDY : Buffer write Ready Status Enable
* [3] ENSTADMAINT : DMA Interrupt Status Enable
* [1] ENSTASTANSCMPLT : Transfre Complete Status Enable
* [0] ENSTACMDCMPLT : Command Complete Status Enable
*/
mask = readl(&host->reg->norintstsen);
mask &= ~(0xffff);
mask |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1) | (1 << 0);
writel(mask, &host->reg->norintstsen);
/*
* NORMAL Interrupt Signal Enable Register init
* [1] ENSTACMDCMPLT : Transfer Complete Signal Enable
*/
mask = readl(&host->reg->norintsigen);
mask &= ~(0xffff);
mask |= (1 << 1);
writel(mask, &host->reg->norintsigen);
return 0;
}
static int s5p_mmc_initialize(int dev_index, int bus_width)
{
struct mmc *mmc;
mmc = &mmc_dev[dev_index];
sprintf(mmc->name, "SAMSUNG SD/MMC");
mmc->priv = &mmc_host[dev_index];
mmc->send_cmd = mmc_send_cmd;
mmc->set_ios = mmc_set_ios;
mmc->init = mmc_core_init;
mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
if (bus_width == 8)
mmc->host_caps = MMC_MODE_8BIT;
else
mmc->host_caps = MMC_MODE_4BIT;
mmc->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_HC;
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc_host[dev_index].dev_index = dev_index;
mmc_host[dev_index].clock = 0;
mmc_host[dev_index].reg = s5p_get_base_mmc(dev_index);
mmc->b_max = 0;
mmc_register(mmc);
return 0;
}
int s5p_mmc_init(int dev_index, int bus_width)
{
return s5p_mmc_initialize(dev_index, bus_width);
}