2
0
Fork 0
mirror of https://github.com/AsahiLinux/u-boot synced 2025-01-03 16:58:54 +00:00
u-boot/drivers/spi/mtk_snfi_spi.c
Pratyush Yadav d15de62301 spi: spi-mem: allow specifying a command's extension
In xSPI mode, flashes expect 2-byte opcodes. The second byte is called
the "command extension". There can be 3 types of extensions in xSPI:
repeat, invert, and hex. When the extension type is "repeat", the same
opcode is sent twice. When it is "invert", the second byte is the
inverse of the opcode. When it is "hex" an additional opcode byte based
is sent with the command whose value can be anything.

So, make opcode a 16-bit value and add a 'nbytes', similar to how
multiple address widths are handled.

All usages of sizeof(op->cmd.opcode) also need to be changed to be
op->cmd.nbytes because that is the actual indicator of opcode size.

Signed-off-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
2021-06-28 11:55:11 +05:30

317 lines
7 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2019 MediaTek Inc. All Rights Reserved.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <spi.h>
#include <spi-mem.h>
#include <stdbool.h>
#include <watchdog.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#define SNFI_MAC_CTL 0x500
#define MAC_XIO_SEL BIT(4)
#define SF_MAC_EN BIT(3)
#define SF_TRIG BIT(2)
#define WIP_READY BIT(1)
#define WIP BIT(0)
#define SNFI_MAC_OUTL 0x504
#define SNFI_MAC_INL 0x508
#define SNFI_MISC_CTL 0x538
#define SW_RST BIT(28)
#define FIFO_RD_LTC_SHIFT 25
#define FIFO_RD_LTC GENMASK(26, 25)
#define LATCH_LAT_SHIFT 8
#define LATCH_LAT GENMASK(9, 8)
#define CS_DESELECT_CYC_SHIFT 0
#define CS_DESELECT_CYC GENMASK(4, 0)
#define SNF_STA_CTL1 0x550
#define SPI_STATE GENMASK(3, 0)
#define SNFI_GPRAM_OFFSET 0x800
#define SNFI_GPRAM_SIZE 0x80
#define SNFI_POLL_INTERVAL 500000
#define SNFI_RST_POLL_INTERVAL 1000000
struct mtk_snfi_priv {
void __iomem *base;
struct clk nfi_clk;
struct clk pad_clk;
};
static int mtk_snfi_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
u32 nbytes;
/*
* When there is input data, it will be appended after the output
* data in the GPRAM. So the total size of either pure output data
* or the output+input data must not exceed the GPRAM size.
*/
nbytes = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
if (nbytes + op->data.nbytes <= SNFI_GPRAM_SIZE)
return 0;
if (nbytes >= SNFI_GPRAM_SIZE)
return -ENOTSUPP;
op->data.nbytes = SNFI_GPRAM_SIZE - nbytes;
return 0;
}
static bool mtk_snfi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 ||
op->dummy.buswidth > 1 || op->data.buswidth > 1)
return false;
return true;
}
static int mtk_snfi_mac_trigger(struct mtk_snfi_priv *priv,
struct udevice *bus, u32 outlen, u32 inlen)
{
int ret;
u32 val;
#ifdef CONFIG_PINCTRL
pinctrl_select_state(bus, "snfi");
#endif
writel(SF_MAC_EN, priv->base + SNFI_MAC_CTL);
writel(outlen, priv->base + SNFI_MAC_OUTL);
writel(inlen, priv->base + SNFI_MAC_INL);
writel(SF_MAC_EN | SF_TRIG, priv->base + SNFI_MAC_CTL);
ret = readl_poll_timeout(priv->base + SNFI_MAC_CTL, val,
val & WIP_READY, SNFI_POLL_INTERVAL);
if (ret) {
printf("%s: timed out waiting for WIP_READY\n", __func__);
goto cleanup;
}
ret = readl_poll_timeout(priv->base + SNFI_MAC_CTL, val,
!(val & WIP), SNFI_POLL_INTERVAL);
if (ret)
printf("%s: timed out waiting for WIP cleared\n", __func__);
writel(0, priv->base + SNFI_MAC_CTL);
cleanup:
#ifdef CONFIG_PINCTRL
pinctrl_select_state(bus, "default");
#endif
return ret;
}
static int mtk_snfi_mac_reset(struct mtk_snfi_priv *priv)
{
int ret;
u32 val;
setbits_32(priv->base + SNFI_MISC_CTL, SW_RST);
ret = readl_poll_timeout(priv->base + SNF_STA_CTL1, val,
!(val & SPI_STATE), SNFI_POLL_INTERVAL);
if (ret)
printf("%s: failed to reset snfi mac\n", __func__);
writel((2 << FIFO_RD_LTC_SHIFT) |
(10 << CS_DESELECT_CYC_SHIFT),
priv->base + SNFI_MISC_CTL);
return ret;
}
static void mtk_snfi_copy_to_gpram(struct mtk_snfi_priv *priv,
const void *data, size_t len)
{
void __iomem *gpram = priv->base + SNFI_GPRAM_OFFSET;
size_t i, n = (len + sizeof(u32) - 1) / sizeof(u32);
const u32 *buff = data;
/*
* The output data will always be copied to the beginning of
* the GPRAM. Uses word write for better performace.
*
* Trailing bytes in the last word are not cared.
*/
for (i = 0; i < n; i++)
writel(buff[i], gpram + i * sizeof(u32));
}
static void mtk_snfi_copy_from_gpram(struct mtk_snfi_priv *priv, u8 *cache,
void *data, size_t pos, size_t len)
{
void __iomem *gpram = priv->base + SNFI_GPRAM_OFFSET;
u32 *buff = (u32 *)cache;
size_t i, off, end;
/* Start position in the buffer */
off = pos & (sizeof(u32) - 1);
/* End position for copy */
end = (len + pos + sizeof(u32) - 1) & (~(sizeof(u32) - 1));
/* Start position for copy */
pos &= ~(sizeof(u32) - 1);
/*
* Read aligned data from GPRAM to buffer first.
* Uses word read for better performace.
*/
i = 0;
while (pos < end) {
buff[i++] = readl(gpram + pos);
pos += sizeof(u32);
}
/* Copy rx data */
memcpy(data, cache + off, len);
}
static int mtk_snfi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *bus = dev_get_parent(slave->dev);
struct mtk_snfi_priv *priv = dev_get_priv(bus);
u8 gpram_cache[SNFI_GPRAM_SIZE];
u32 i, len = 0, inlen = 0;
int addr_sh;
int ret;
WATCHDOG_RESET();
ret = mtk_snfi_mac_reset(priv);
if (ret)
return ret;
/* Put opcode */
gpram_cache[len++] = op->cmd.opcode;
/* Put address */
addr_sh = (op->addr.nbytes - 1) * 8;
while (addr_sh >= 0) {
gpram_cache[len++] = (op->addr.val >> addr_sh) & 0xff;
addr_sh -= 8;
}
/* Put dummy bytes */
for (i = 0; i < op->dummy.nbytes; i++)
gpram_cache[len++] = 0;
/* Put output data */
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) {
memcpy(gpram_cache + len, op->data.buf.out, op->data.nbytes);
len += op->data.nbytes;
}
/* Copy final output data to GPRAM */
mtk_snfi_copy_to_gpram(priv, gpram_cache, len);
/* Start one SPI transaction */
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
inlen = op->data.nbytes;
ret = mtk_snfi_mac_trigger(priv, bus, len, inlen);
if (ret)
return ret;
/* Copy input data from GPRAM */
if (inlen)
mtk_snfi_copy_from_gpram(priv, gpram_cache, op->data.buf.in,
len, inlen);
return 0;
}
static int mtk_snfi_spi_probe(struct udevice *bus)
{
struct mtk_snfi_priv *priv = dev_get_priv(bus);
int ret;
priv->base = dev_read_addr_ptr(bus);
if (!priv->base)
return -EINVAL;
ret = clk_get_by_name(bus, "nfi_clk", &priv->nfi_clk);
if (ret < 0)
return ret;
ret = clk_get_by_name(bus, "pad_clk", &priv->pad_clk);
if (ret < 0)
return ret;
clk_enable(&priv->nfi_clk);
clk_enable(&priv->pad_clk);
return 0;
}
static int mtk_snfi_set_speed(struct udevice *bus, uint speed)
{
/*
* The SNFI does not have a bus clock divider.
* The bus clock is set in dts (pad_clk, UNIVPLL2_D8 = 50MHz).
*/
return 0;
}
static int mtk_snfi_set_mode(struct udevice *bus, uint mode)
{
/* The SNFI supports only mode 0 */
if (mode)
return -EINVAL;
return 0;
}
static const struct spi_controller_mem_ops mtk_snfi_mem_ops = {
.adjust_op_size = mtk_snfi_adjust_op_size,
.supports_op = mtk_snfi_supports_op,
.exec_op = mtk_snfi_exec_op,
};
static const struct dm_spi_ops mtk_snfi_spi_ops = {
.mem_ops = &mtk_snfi_mem_ops,
.set_speed = mtk_snfi_set_speed,
.set_mode = mtk_snfi_set_mode,
};
static const struct udevice_id mtk_snfi_spi_ids[] = {
{ .compatible = "mediatek,mtk-snfi-spi" },
{ }
};
U_BOOT_DRIVER(mtk_snfi_spi) = {
.name = "mtk_snfi_spi",
.id = UCLASS_SPI,
.of_match = mtk_snfi_spi_ids,
.ops = &mtk_snfi_spi_ops,
.priv_auto = sizeof(struct mtk_snfi_priv),
.probe = mtk_snfi_spi_probe,
};