mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-12 05:08:57 +00:00
a430fa06a4
NAND flavors, like serial and parallel, have a lot in common and would benefit to share code. Let's move raw (parallel) NAND specific code in a raw/ subdirectory, to ease the addition of a core file in nand/ and the introduction of a spi/ subdirectory specific to SPI NANDs. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
548 lines
14 KiB
C
548 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com>
|
|
* Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com>
|
|
*/
|
|
|
|
#include <asm/arch/clock.h>
|
|
#include <asm/io.h>
|
|
#include <common.h>
|
|
#include <config.h>
|
|
#include <nand.h>
|
|
#include <linux/ctype.h>
|
|
|
|
/* registers */
|
|
#define NFC_CTL 0x00000000
|
|
#define NFC_ST 0x00000004
|
|
#define NFC_INT 0x00000008
|
|
#define NFC_TIMING_CTL 0x0000000C
|
|
#define NFC_TIMING_CFG 0x00000010
|
|
#define NFC_ADDR_LOW 0x00000014
|
|
#define NFC_ADDR_HIGH 0x00000018
|
|
#define NFC_SECTOR_NUM 0x0000001C
|
|
#define NFC_CNT 0x00000020
|
|
#define NFC_CMD 0x00000024
|
|
#define NFC_RCMD_SET 0x00000028
|
|
#define NFC_WCMD_SET 0x0000002C
|
|
#define NFC_IO_DATA 0x00000030
|
|
#define NFC_ECC_CTL 0x00000034
|
|
#define NFC_ECC_ST 0x00000038
|
|
#define NFC_DEBUG 0x0000003C
|
|
#define NFC_ECC_CNT0 0x00000040
|
|
#define NFC_ECC_CNT1 0x00000044
|
|
#define NFC_ECC_CNT2 0x00000048
|
|
#define NFC_ECC_CNT3 0x0000004C
|
|
#define NFC_USER_DATA_BASE 0x00000050
|
|
#define NFC_EFNAND_STATUS 0x00000090
|
|
#define NFC_SPARE_AREA 0x000000A0
|
|
#define NFC_PATTERN_ID 0x000000A4
|
|
#define NFC_RAM0_BASE 0x00000400
|
|
#define NFC_RAM1_BASE 0x00000800
|
|
|
|
#define NFC_CTL_EN (1 << 0)
|
|
#define NFC_CTL_RESET (1 << 1)
|
|
#define NFC_CTL_RAM_METHOD (1 << 14)
|
|
#define NFC_CTL_PAGE_SIZE_MASK (0xf << 8)
|
|
#define NFC_CTL_PAGE_SIZE(a) ((fls(a) - 11) << 8)
|
|
|
|
|
|
#define NFC_ECC_EN (1 << 0)
|
|
#define NFC_ECC_PIPELINE (1 << 3)
|
|
#define NFC_ECC_EXCEPTION (1 << 4)
|
|
#define NFC_ECC_BLOCK_SIZE (1 << 5)
|
|
#define NFC_ECC_RANDOM_EN (1 << 9)
|
|
#define NFC_ECC_RANDOM_DIRECTION (1 << 10)
|
|
|
|
|
|
#define NFC_ADDR_NUM_OFFSET 16
|
|
#define NFC_SEND_ADDR (1 << 19)
|
|
#define NFC_ACCESS_DIR (1 << 20)
|
|
#define NFC_DATA_TRANS (1 << 21)
|
|
#define NFC_SEND_CMD1 (1 << 22)
|
|
#define NFC_WAIT_FLAG (1 << 23)
|
|
#define NFC_SEND_CMD2 (1 << 24)
|
|
#define NFC_SEQ (1 << 25)
|
|
#define NFC_DATA_SWAP_METHOD (1 << 26)
|
|
#define NFC_ROW_AUTO_INC (1 << 27)
|
|
#define NFC_SEND_CMD3 (1 << 28)
|
|
#define NFC_SEND_CMD4 (1 << 29)
|
|
#define NFC_RAW_CMD (0 << 30)
|
|
#define NFC_ECC_CMD (1 << 30)
|
|
#define NFC_PAGE_CMD (2 << 30)
|
|
|
|
#define NFC_ST_CMD_INT_FLAG (1 << 1)
|
|
#define NFC_ST_DMA_INT_FLAG (1 << 2)
|
|
#define NFC_ST_CMD_FIFO_STAT (1 << 3)
|
|
|
|
#define NFC_READ_CMD_OFFSET 0
|
|
#define NFC_RANDOM_READ_CMD0_OFFSET 8
|
|
#define NFC_RANDOM_READ_CMD1_OFFSET 16
|
|
|
|
#define NFC_CMD_RNDOUTSTART 0xE0
|
|
#define NFC_CMD_RNDOUT 0x05
|
|
#define NFC_CMD_READSTART 0x30
|
|
|
|
struct nfc_config {
|
|
int page_size;
|
|
int ecc_strength;
|
|
int ecc_size;
|
|
int addr_cycles;
|
|
int nseeds;
|
|
bool randomize;
|
|
bool valid;
|
|
};
|
|
|
|
/* minimal "boot0" style NAND support for Allwinner A20 */
|
|
|
|
/* random seed used by linux */
|
|
const uint16_t random_seed[128] = {
|
|
0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
|
|
0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
|
|
0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
|
|
0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
|
|
0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
|
|
0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
|
|
0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
|
|
0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
|
|
0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
|
|
0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
|
|
0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
|
|
0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
|
|
0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
|
|
0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
|
|
0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
|
|
0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
|
|
};
|
|
|
|
#define DEFAULT_TIMEOUT_US 100000
|
|
|
|
static int check_value_inner(int offset, int expected_bits,
|
|
int timeout_us, int negation)
|
|
{
|
|
do {
|
|
int val = readl(offset) & expected_bits;
|
|
if (negation ? !val : val)
|
|
return 1;
|
|
udelay(1);
|
|
} while (--timeout_us);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int check_value(int offset, int expected_bits,
|
|
int timeout_us)
|
|
{
|
|
return check_value_inner(offset, expected_bits, timeout_us, 0);
|
|
}
|
|
|
|
static inline int check_value_negated(int offset, int unexpected_bits,
|
|
int timeout_us)
|
|
{
|
|
return check_value_inner(offset, unexpected_bits, timeout_us, 1);
|
|
}
|
|
|
|
static int nand_wait_cmd_fifo_empty(void)
|
|
{
|
|
if (!check_value_negated(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_FIFO_STAT,
|
|
DEFAULT_TIMEOUT_US)) {
|
|
printf("nand: timeout waiting for empty cmd FIFO\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_wait_int(void)
|
|
{
|
|
if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
|
|
DEFAULT_TIMEOUT_US)) {
|
|
printf("nand: timeout waiting for interruption\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_exec_cmd(u32 cmd)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_wait_cmd_fifo_empty();
|
|
if (ret)
|
|
return ret;
|
|
|
|
writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
|
|
writel(cmd, SUNXI_NFC_BASE + NFC_CMD);
|
|
|
|
return nand_wait_int();
|
|
}
|
|
|
|
void nand_init(void)
|
|
{
|
|
uint32_t val;
|
|
|
|
board_nand_init();
|
|
|
|
val = readl(SUNXI_NFC_BASE + NFC_CTL);
|
|
/* enable and reset CTL */
|
|
writel(val | NFC_CTL_EN | NFC_CTL_RESET,
|
|
SUNXI_NFC_BASE + NFC_CTL);
|
|
|
|
if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
|
|
NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) {
|
|
printf("Couldn't initialize nand\n");
|
|
}
|
|
|
|
/* reset NAND */
|
|
nand_exec_cmd(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET);
|
|
}
|
|
|
|
static void nand_apply_config(const struct nfc_config *conf)
|
|
{
|
|
u32 val;
|
|
|
|
nand_wait_cmd_fifo_empty();
|
|
|
|
val = readl(SUNXI_NFC_BASE + NFC_CTL);
|
|
val &= ~NFC_CTL_PAGE_SIZE_MASK;
|
|
writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size),
|
|
SUNXI_NFC_BASE + NFC_CTL);
|
|
writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
|
|
writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA);
|
|
}
|
|
|
|
static int nand_load_page(const struct nfc_config *conf, u32 offs)
|
|
{
|
|
int page = offs / conf->page_size;
|
|
|
|
writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
|
|
(NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
|
|
(NFC_CMD_READSTART << NFC_READ_CMD_OFFSET),
|
|
SUNXI_NFC_BASE + NFC_RCMD_SET);
|
|
writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW);
|
|
writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
|
|
|
|
return nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
|
|
NFC_SEND_ADDR | NFC_WAIT_FLAG |
|
|
((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET));
|
|
}
|
|
|
|
static int nand_change_column(u16 column)
|
|
{
|
|
int ret;
|
|
|
|
writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
|
|
(NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
|
|
(NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET),
|
|
SUNXI_NFC_BASE + NFC_RCMD_SET);
|
|
writel(column, SUNXI_NFC_BASE + NFC_ADDR_LOW);
|
|
|
|
ret = nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
|
|
(1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADDR |
|
|
NFC_CMD_RNDOUT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure tCCS has passed before reading data */
|
|
udelay(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const int ecc_bytes[] = {32, 46, 54, 60, 74, 88, 102, 110, 116};
|
|
|
|
static int nand_read_page(const struct nfc_config *conf, u32 offs,
|
|
void *dest, int len)
|
|
{
|
|
int nsectors = len / conf->ecc_size;
|
|
u16 rand_seed = 0;
|
|
int oob_chunk_sz = ecc_bytes[conf->ecc_strength];
|
|
int page = offs / conf->page_size;
|
|
u32 ecc_st;
|
|
int i;
|
|
|
|
if (offs % conf->page_size || len % conf->ecc_size ||
|
|
len > conf->page_size || len < 0)
|
|
return -EINVAL;
|
|
|
|
/* Choose correct seed if randomized */
|
|
if (conf->randomize)
|
|
rand_seed = random_seed[page % conf->nseeds];
|
|
|
|
/* Retrieve data from SRAM (PIO) */
|
|
for (i = 0; i < nsectors; i++) {
|
|
int data_off = i * conf->ecc_size;
|
|
int oob_off = conf->page_size + (i * oob_chunk_sz);
|
|
u8 *data = dest + data_off;
|
|
|
|
/* Clear ECC status and restart ECC engine */
|
|
writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
|
|
writel((rand_seed << 16) | (conf->ecc_strength << 12) |
|
|
(conf->randomize ? NFC_ECC_RANDOM_EN : 0) |
|
|
(conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) |
|
|
NFC_ECC_EN | NFC_ECC_EXCEPTION,
|
|
SUNXI_NFC_BASE + NFC_ECC_CTL);
|
|
|
|
/* Move the data in SRAM */
|
|
nand_change_column(data_off);
|
|
writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
|
|
nand_exec_cmd(NFC_DATA_TRANS);
|
|
|
|
/*
|
|
* Let the ECC engine consume the ECC bytes and possibly correct
|
|
* the data.
|
|
*/
|
|
nand_change_column(oob_off);
|
|
nand_exec_cmd(NFC_DATA_TRANS | NFC_ECC_CMD);
|
|
|
|
/* Get the ECC status */
|
|
ecc_st = readl(SUNXI_NFC_BASE + NFC_ECC_ST);
|
|
|
|
/* ECC error detected. */
|
|
if (ecc_st & 0xffff)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Return 1 if the first chunk is empty (needed for
|
|
* configuration detection).
|
|
*/
|
|
if (!i && (ecc_st & 0x10000))
|
|
return 1;
|
|
|
|
/* Retrieve the data from SRAM */
|
|
memcpy_fromio(data, SUNXI_NFC_BASE + NFC_RAM0_BASE,
|
|
conf->ecc_size);
|
|
|
|
/* Stop the ECC engine */
|
|
writel(readl(SUNXI_NFC_BASE + NFC_ECC_CTL) & ~NFC_ECC_EN,
|
|
SUNXI_NFC_BASE + NFC_ECC_CTL);
|
|
|
|
if (data_off + conf->ecc_size >= len)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_max_ecc_strength(struct nfc_config *conf)
|
|
{
|
|
int max_oobsize, max_ecc_bytes;
|
|
int nsectors = conf->page_size / conf->ecc_size;
|
|
int i;
|
|
|
|
/*
|
|
* ECC strength is limited by the size of the OOB area which is
|
|
* correlated with the page size.
|
|
*/
|
|
switch (conf->page_size) {
|
|
case 2048:
|
|
max_oobsize = 64;
|
|
break;
|
|
case 4096:
|
|
max_oobsize = 256;
|
|
break;
|
|
case 8192:
|
|
max_oobsize = 640;
|
|
break;
|
|
case 16384:
|
|
max_oobsize = 1664;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
max_ecc_bytes = max_oobsize / nsectors;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) {
|
|
if (ecc_bytes[i] > max_ecc_bytes)
|
|
break;
|
|
}
|
|
|
|
if (!i)
|
|
return -EINVAL;
|
|
|
|
return i - 1;
|
|
}
|
|
|
|
static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs,
|
|
void *dest)
|
|
{
|
|
/* NAND with pages > 4k will likely require 1k sector size. */
|
|
int min_ecc_size = conf->page_size > 4096 ? 1024 : 512;
|
|
int page = offs / conf->page_size;
|
|
int ret;
|
|
|
|
/*
|
|
* In most cases, 1k sectors are preferred over 512b ones, start
|
|
* testing this config first.
|
|
*/
|
|
for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size;
|
|
conf->ecc_size >>= 1) {
|
|
int max_ecc_strength = nand_max_ecc_strength(conf);
|
|
|
|
nand_apply_config(conf);
|
|
|
|
/*
|
|
* We are starting from the maximum ECC strength because
|
|
* most of the time NAND vendors provide an OOB area that
|
|
* barely meets the ECC requirements.
|
|
*/
|
|
for (conf->ecc_strength = max_ecc_strength;
|
|
conf->ecc_strength >= 0;
|
|
conf->ecc_strength--) {
|
|
conf->randomize = false;
|
|
if (nand_change_column(0))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Only read the first sector to speedup detection.
|
|
*/
|
|
ret = nand_read_page(conf, offs, dest, conf->ecc_size);
|
|
if (!ret) {
|
|
return 0;
|
|
} else if (ret > 0) {
|
|
/*
|
|
* If page is empty we can't deduce anything
|
|
* about the ECC config => stop the detection.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
conf->randomize = true;
|
|
conf->nseeds = ARRAY_SIZE(random_seed);
|
|
do {
|
|
if (nand_change_column(0))
|
|
return -EIO;
|
|
|
|
if (!nand_read_page(conf, offs, dest,
|
|
conf->ecc_size))
|
|
return 0;
|
|
|
|
/*
|
|
* Find the next ->nseeds value that would
|
|
* change the randomizer seed for the page
|
|
* we're trying to read.
|
|
*/
|
|
while (conf->nseeds >= 16) {
|
|
int seed = page % conf->nseeds;
|
|
|
|
conf->nseeds >>= 1;
|
|
if (seed != page % conf->nseeds)
|
|
break;
|
|
}
|
|
} while (conf->nseeds >= 16);
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest)
|
|
{
|
|
if (conf->valid)
|
|
return 0;
|
|
|
|
/*
|
|
* Modern NANDs are more likely than legacy ones, so we start testing
|
|
* with 5 address cycles.
|
|
*/
|
|
for (conf->addr_cycles = 5;
|
|
conf->addr_cycles >= 4;
|
|
conf->addr_cycles--) {
|
|
int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384;
|
|
|
|
/*
|
|
* Ignoring 1k pages cause I'm not even sure this case exist
|
|
* in the real world.
|
|
*/
|
|
for (conf->page_size = 2048; conf->page_size <= max_page_size;
|
|
conf->page_size <<= 1) {
|
|
if (nand_load_page(conf, offs))
|
|
return -1;
|
|
|
|
if (!nand_detect_ecc_config(conf, offs, dest)) {
|
|
conf->valid = true;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int nand_read_buffer(struct nfc_config *conf, uint32_t offs,
|
|
unsigned int size, void *dest)
|
|
{
|
|
int first_seed = 0, page, ret;
|
|
|
|
size = ALIGN(size, conf->page_size);
|
|
page = offs / conf->page_size;
|
|
if (conf->randomize)
|
|
first_seed = page % conf->nseeds;
|
|
|
|
for (; size; size -= conf->page_size) {
|
|
if (nand_load_page(conf, offs))
|
|
return -1;
|
|
|
|
ret = nand_read_page(conf, offs, dest, conf->page_size);
|
|
/*
|
|
* The ->nseeds value should be equal to the number of pages
|
|
* in an eraseblock. Since we don't know this information in
|
|
* advance we might have picked a wrong value.
|
|
*/
|
|
if (ret < 0 && conf->randomize) {
|
|
int cur_seed = page % conf->nseeds;
|
|
|
|
/*
|
|
* We already tried all the seed values => we are
|
|
* facing a real corruption.
|
|
*/
|
|
if (cur_seed < first_seed)
|
|
return -EIO;
|
|
|
|
/* Try to adjust ->nseeds and read the page again... */
|
|
conf->nseeds = cur_seed;
|
|
|
|
if (nand_change_column(0))
|
|
return -EIO;
|
|
|
|
/* ... it still fails => it's a real corruption. */
|
|
if (nand_read_page(conf, offs, dest, conf->page_size))
|
|
return -EIO;
|
|
} else if (ret && conf->randomize) {
|
|
memset(dest, 0xff, conf->page_size);
|
|
}
|
|
|
|
page++;
|
|
offs += conf->page_size;
|
|
dest += conf->page_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
|
|
{
|
|
static struct nfc_config conf = { };
|
|
int ret;
|
|
|
|
ret = nand_detect_config(&conf, offs, dest);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_read_buffer(&conf, offs, size, dest);
|
|
}
|
|
|
|
void nand_deselect(void)
|
|
{
|
|
struct sunxi_ccm_reg *const ccm =
|
|
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
|
|
|
|
clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0));
|
|
#ifdef CONFIG_MACH_SUN9I
|
|
clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
|
|
#else
|
|
clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
|
|
#endif
|
|
clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
|
|
}
|