mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-30 00:21:06 +00:00
2598090b7e
Currently just validates variable types as decimal, hexidecimal, boolean, ip address, and mac address. If the entry is not found in the env ".flags", then look in the static one. This allows the env to override the static definitions, but prevents the need to have every definition in the environment distracting you. Signed-off-by: Joe Hershberger <joe.hershberger@ni.com>
938 lines
24 KiB
C
938 lines
24 KiB
C
/*
|
|
* This implementation is based on code from uClibc-0.9.30.3 but was
|
|
* modified and extended for use within U-Boot.
|
|
*
|
|
* Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
|
|
*
|
|
* Original license header:
|
|
*
|
|
* Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
|
|
* This file is part of the GNU C Library.
|
|
* Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
|
|
*
|
|
* The GNU C Library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* The GNU C Library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with the GNU C Library; if not, write to the Free
|
|
* Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
* 02111-1307 USA.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
|
|
#ifdef USE_HOSTCC /* HOST build */
|
|
# include <string.h>
|
|
# include <assert.h>
|
|
# include <ctype.h>
|
|
|
|
# ifndef debug
|
|
# ifdef DEBUG
|
|
# define debug(fmt,args...) printf(fmt ,##args)
|
|
# else
|
|
# define debug(fmt,args...)
|
|
# endif
|
|
# endif
|
|
#else /* U-Boot build */
|
|
# include <common.h>
|
|
# include <linux/string.h>
|
|
# include <linux/ctype.h>
|
|
#endif
|
|
|
|
#ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
|
|
#define CONFIG_ENV_MIN_ENTRIES 64
|
|
#endif
|
|
#ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
|
|
#define CONFIG_ENV_MAX_ENTRIES 512
|
|
#endif
|
|
|
|
#include <env_callback.h>
|
|
#include <env_flags.h>
|
|
#include <search.h>
|
|
|
|
/*
|
|
* [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
|
|
* [Knuth] The Art of Computer Programming, part 3 (6.4)
|
|
*/
|
|
|
|
/*
|
|
* The reentrant version has no static variables to maintain the state.
|
|
* Instead the interface of all functions is extended to take an argument
|
|
* which describes the current status.
|
|
*/
|
|
|
|
typedef struct _ENTRY {
|
|
int used;
|
|
ENTRY entry;
|
|
} _ENTRY;
|
|
|
|
|
|
static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
|
|
int idx);
|
|
|
|
/*
|
|
* hcreate()
|
|
*/
|
|
|
|
/*
|
|
* For the used double hash method the table size has to be a prime. To
|
|
* correct the user given table size we need a prime test. This trivial
|
|
* algorithm is adequate because
|
|
* a) the code is (most probably) called a few times per program run and
|
|
* b) the number is small because the table must fit in the core
|
|
* */
|
|
static int isprime(unsigned int number)
|
|
{
|
|
/* no even number will be passed */
|
|
unsigned int div = 3;
|
|
|
|
while (div * div < number && number % div != 0)
|
|
div += 2;
|
|
|
|
return number % div != 0;
|
|
}
|
|
|
|
/*
|
|
* Before using the hash table we must allocate memory for it.
|
|
* Test for an existing table are done. We allocate one element
|
|
* more as the found prime number says. This is done for more effective
|
|
* indexing as explained in the comment for the hsearch function.
|
|
* The contents of the table is zeroed, especially the field used
|
|
* becomes zero.
|
|
*/
|
|
|
|
int hcreate_r(size_t nel, struct hsearch_data *htab)
|
|
{
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return 0;
|
|
}
|
|
|
|
/* There is still another table active. Return with error. */
|
|
if (htab->table != NULL)
|
|
return 0;
|
|
|
|
/* Change nel to the first prime number not smaller as nel. */
|
|
nel |= 1; /* make odd */
|
|
while (!isprime(nel))
|
|
nel += 2;
|
|
|
|
htab->size = nel;
|
|
htab->filled = 0;
|
|
|
|
/* allocate memory and zero out */
|
|
htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
|
|
if (htab->table == NULL)
|
|
return 0;
|
|
|
|
/* everything went alright */
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* hdestroy()
|
|
*/
|
|
|
|
/*
|
|
* After using the hash table it has to be destroyed. The used memory can
|
|
* be freed and the local static variable can be marked as not used.
|
|
*/
|
|
|
|
void hdestroy_r(struct hsearch_data *htab)
|
|
{
|
|
int i;
|
|
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return;
|
|
}
|
|
|
|
/* free used memory */
|
|
for (i = 1; i <= htab->size; ++i) {
|
|
if (htab->table[i].used > 0) {
|
|
ENTRY *ep = &htab->table[i].entry;
|
|
|
|
free((void *)ep->key);
|
|
free(ep->data);
|
|
}
|
|
}
|
|
free(htab->table);
|
|
|
|
/* the sign for an existing table is an value != NULL in htable */
|
|
htab->table = NULL;
|
|
}
|
|
|
|
/*
|
|
* hsearch()
|
|
*/
|
|
|
|
/*
|
|
* This is the search function. It uses double hashing with open addressing.
|
|
* The argument item.key has to be a pointer to an zero terminated, most
|
|
* probably strings of chars. The function for generating a number of the
|
|
* strings is simple but fast. It can be replaced by a more complex function
|
|
* like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
|
|
*
|
|
* We use an trick to speed up the lookup. The table is created by hcreate
|
|
* with one more element available. This enables us to use the index zero
|
|
* special. This index will never be used because we store the first hash
|
|
* index in the field used where zero means not used. Every other value
|
|
* means used. The used field can be used as a first fast comparison for
|
|
* equality of the stored and the parameter value. This helps to prevent
|
|
* unnecessary expensive calls of strcmp.
|
|
*
|
|
* This implementation differs from the standard library version of
|
|
* this function in a number of ways:
|
|
*
|
|
* - While the standard version does not make any assumptions about
|
|
* the type of the stored data objects at all, this implementation
|
|
* works with NUL terminated strings only.
|
|
* - Instead of storing just pointers to the original objects, we
|
|
* create local copies so the caller does not need to care about the
|
|
* data any more.
|
|
* - The standard implementation does not provide a way to update an
|
|
* existing entry. This version will create a new entry or update an
|
|
* existing one when both "action == ENTER" and "item.data != NULL".
|
|
* - Instead of returning 1 on success, we return the index into the
|
|
* internal hash table, which is also guaranteed to be positive.
|
|
* This allows us direct access to the found hash table slot for
|
|
* example for functions like hdelete().
|
|
*/
|
|
|
|
/*
|
|
* hstrstr_r - return index to entry whose key and/or data contains match
|
|
*/
|
|
int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
|
|
struct hsearch_data *htab)
|
|
{
|
|
unsigned int idx;
|
|
|
|
for (idx = last_idx + 1; idx < htab->size; ++idx) {
|
|
if (htab->table[idx].used <= 0)
|
|
continue;
|
|
if (strstr(htab->table[idx].entry.key, match) ||
|
|
strstr(htab->table[idx].entry.data, match)) {
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
|
|
struct hsearch_data *htab)
|
|
{
|
|
unsigned int idx;
|
|
size_t key_len = strlen(match);
|
|
|
|
for (idx = last_idx + 1; idx < htab->size; ++idx) {
|
|
if (htab->table[idx].used <= 0)
|
|
continue;
|
|
if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compare an existing entry with the desired key, and overwrite if the action
|
|
* is ENTER. This is simply a helper function for hsearch_r().
|
|
*/
|
|
static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
|
|
ENTRY **retval, struct hsearch_data *htab, int flag,
|
|
unsigned int hval, unsigned int idx)
|
|
{
|
|
if (htab->table[idx].used == hval
|
|
&& strcmp(item.key, htab->table[idx].entry.key) == 0) {
|
|
/* Overwrite existing value? */
|
|
if ((action == ENTER) && (item.data != NULL)) {
|
|
/* check for permission */
|
|
if (htab->change_ok != NULL && htab->change_ok(
|
|
&htab->table[idx].entry, item.data,
|
|
env_op_overwrite, flag)) {
|
|
debug("change_ok() rejected setting variable "
|
|
"%s, skipping it!\n", item.key);
|
|
__set_errno(EPERM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* If there is a callback, call it */
|
|
if (htab->table[idx].entry.callback &&
|
|
htab->table[idx].entry.callback(item.key,
|
|
item.data, env_op_overwrite, flag)) {
|
|
debug("callback() rejected setting variable "
|
|
"%s, skipping it!\n", item.key);
|
|
__set_errno(EINVAL);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
free(htab->table[idx].entry.data);
|
|
htab->table[idx].entry.data = strdup(item.data);
|
|
if (!htab->table[idx].entry.data) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
}
|
|
/* return found entry */
|
|
*retval = &htab->table[idx].entry;
|
|
return idx;
|
|
}
|
|
/* keep searching */
|
|
return -1;
|
|
}
|
|
|
|
int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
|
|
struct hsearch_data *htab, int flag)
|
|
{
|
|
unsigned int hval;
|
|
unsigned int count;
|
|
unsigned int len = strlen(item.key);
|
|
unsigned int idx;
|
|
unsigned int first_deleted = 0;
|
|
int ret;
|
|
|
|
/* Compute an value for the given string. Perhaps use a better method. */
|
|
hval = len;
|
|
count = len;
|
|
while (count-- > 0) {
|
|
hval <<= 4;
|
|
hval += item.key[count];
|
|
}
|
|
|
|
/*
|
|
* First hash function:
|
|
* simply take the modul but prevent zero.
|
|
*/
|
|
hval %= htab->size;
|
|
if (hval == 0)
|
|
++hval;
|
|
|
|
/* The first index tried. */
|
|
idx = hval;
|
|
|
|
if (htab->table[idx].used) {
|
|
/*
|
|
* Further action might be required according to the
|
|
* action value.
|
|
*/
|
|
unsigned hval2;
|
|
|
|
if (htab->table[idx].used == -1
|
|
&& !first_deleted)
|
|
first_deleted = idx;
|
|
|
|
ret = _compare_and_overwrite_entry(item, action, retval, htab,
|
|
flag, hval, idx);
|
|
if (ret != -1)
|
|
return ret;
|
|
|
|
/*
|
|
* Second hash function:
|
|
* as suggested in [Knuth]
|
|
*/
|
|
hval2 = 1 + hval % (htab->size - 2);
|
|
|
|
do {
|
|
/*
|
|
* Because SIZE is prime this guarantees to
|
|
* step through all available indices.
|
|
*/
|
|
if (idx <= hval2)
|
|
idx = htab->size + idx - hval2;
|
|
else
|
|
idx -= hval2;
|
|
|
|
/*
|
|
* If we visited all entries leave the loop
|
|
* unsuccessfully.
|
|
*/
|
|
if (idx == hval)
|
|
break;
|
|
|
|
/* If entry is found use it. */
|
|
ret = _compare_and_overwrite_entry(item, action, retval,
|
|
htab, flag, hval, idx);
|
|
if (ret != -1)
|
|
return ret;
|
|
}
|
|
while (htab->table[idx].used);
|
|
}
|
|
|
|
/* An empty bucket has been found. */
|
|
if (action == ENTER) {
|
|
/*
|
|
* If table is full and another entry should be
|
|
* entered return with error.
|
|
*/
|
|
if (htab->filled == htab->size) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create new entry;
|
|
* create copies of item.key and item.data
|
|
*/
|
|
if (first_deleted)
|
|
idx = first_deleted;
|
|
|
|
htab->table[idx].used = hval;
|
|
htab->table[idx].entry.key = strdup(item.key);
|
|
htab->table[idx].entry.data = strdup(item.data);
|
|
if (!htab->table[idx].entry.key ||
|
|
!htab->table[idx].entry.data) {
|
|
__set_errno(ENOMEM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
++htab->filled;
|
|
|
|
/* This is a new entry, so look up a possible callback */
|
|
env_callback_init(&htab->table[idx].entry);
|
|
/* Also look for flags */
|
|
env_flags_init(&htab->table[idx].entry);
|
|
|
|
/* check for permission */
|
|
if (htab->change_ok != NULL && htab->change_ok(
|
|
&htab->table[idx].entry, item.data, env_op_create, flag)) {
|
|
debug("change_ok() rejected setting variable "
|
|
"%s, skipping it!\n", item.key);
|
|
_hdelete(item.key, htab, &htab->table[idx].entry, idx);
|
|
__set_errno(EPERM);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* If there is a callback, call it */
|
|
if (htab->table[idx].entry.callback &&
|
|
htab->table[idx].entry.callback(item.key, item.data,
|
|
env_op_create, flag)) {
|
|
debug("callback() rejected setting variable "
|
|
"%s, skipping it!\n", item.key);
|
|
_hdelete(item.key, htab, &htab->table[idx].entry, idx);
|
|
__set_errno(EINVAL);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* return new entry */
|
|
*retval = &htab->table[idx].entry;
|
|
return 1;
|
|
}
|
|
|
|
__set_errno(ESRCH);
|
|
*retval = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* hdelete()
|
|
*/
|
|
|
|
/*
|
|
* The standard implementation of hsearch(3) does not provide any way
|
|
* to delete any entries from the hash table. We extend the code to
|
|
* do that.
|
|
*/
|
|
|
|
static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
|
|
int idx)
|
|
{
|
|
/* free used ENTRY */
|
|
debug("hdelete: DELETING key \"%s\"\n", key);
|
|
free((void *)ep->key);
|
|
free(ep->data);
|
|
ep->callback = NULL;
|
|
ep->flags = 0;
|
|
htab->table[idx].used = -1;
|
|
|
|
--htab->filled;
|
|
}
|
|
|
|
int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
|
|
{
|
|
ENTRY e, *ep;
|
|
int idx;
|
|
|
|
debug("hdelete: DELETE key \"%s\"\n", key);
|
|
|
|
e.key = (char *)key;
|
|
|
|
idx = hsearch_r(e, FIND, &ep, htab, 0);
|
|
if (idx == 0) {
|
|
__set_errno(ESRCH);
|
|
return 0; /* not found */
|
|
}
|
|
|
|
/* Check for permission */
|
|
if (htab->change_ok != NULL &&
|
|
htab->change_ok(ep, NULL, env_op_delete, flag)) {
|
|
debug("change_ok() rejected deleting variable "
|
|
"%s, skipping it!\n", key);
|
|
__set_errno(EPERM);
|
|
return 0;
|
|
}
|
|
|
|
/* If there is a callback, call it */
|
|
if (htab->table[idx].entry.callback &&
|
|
htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
|
|
debug("callback() rejected deleting variable "
|
|
"%s, skipping it!\n", key);
|
|
__set_errno(EINVAL);
|
|
return 0;
|
|
}
|
|
|
|
_hdelete(key, htab, ep, idx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* hexport()
|
|
*/
|
|
|
|
#ifndef CONFIG_SPL_BUILD
|
|
/*
|
|
* Export the data stored in the hash table in linearized form.
|
|
*
|
|
* Entries are exported as "name=value" strings, separated by an
|
|
* arbitrary (non-NUL, of course) separator character. This allows to
|
|
* use this function both when formatting the U-Boot environment for
|
|
* external storage (using '\0' as separator), but also when using it
|
|
* for the "printenv" command to print all variables, simply by using
|
|
* as '\n" as separator. This can also be used for new features like
|
|
* exporting the environment data as text file, including the option
|
|
* for later re-import.
|
|
*
|
|
* The entries in the result list will be sorted by ascending key
|
|
* values.
|
|
*
|
|
* If the separator character is different from NUL, then any
|
|
* separator characters and backslash characters in the values will
|
|
* be escaped by a preceeding backslash in output. This is needed for
|
|
* example to enable multi-line values, especially when the output
|
|
* shall later be parsed (for example, for re-import).
|
|
*
|
|
* There are several options how the result buffer is handled:
|
|
*
|
|
* *resp size
|
|
* -----------
|
|
* NULL 0 A string of sufficient length will be allocated.
|
|
* NULL >0 A string of the size given will be
|
|
* allocated. An error will be returned if the size is
|
|
* not sufficient. Any unused bytes in the string will
|
|
* be '\0'-padded.
|
|
* !NULL 0 The user-supplied buffer will be used. No length
|
|
* checking will be performed, i. e. it is assumed that
|
|
* the buffer size will always be big enough. DANGEROUS.
|
|
* !NULL >0 The user-supplied buffer will be used. An error will
|
|
* be returned if the size is not sufficient. Any unused
|
|
* bytes in the string will be '\0'-padded.
|
|
*/
|
|
|
|
static int cmpkey(const void *p1, const void *p2)
|
|
{
|
|
ENTRY *e1 = *(ENTRY **) p1;
|
|
ENTRY *e2 = *(ENTRY **) p2;
|
|
|
|
return (strcmp(e1->key, e2->key));
|
|
}
|
|
|
|
ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
|
|
char **resp, size_t size,
|
|
int argc, char * const argv[])
|
|
{
|
|
ENTRY *list[htab->size];
|
|
char *res, *p;
|
|
size_t totlen;
|
|
int i, n;
|
|
|
|
/* Test for correct arguments. */
|
|
if ((resp == NULL) || (htab == NULL)) {
|
|
__set_errno(EINVAL);
|
|
return (-1);
|
|
}
|
|
|
|
debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, "
|
|
"size = %zu\n", htab, htab->size, htab->filled, size);
|
|
/*
|
|
* Pass 1:
|
|
* search used entries,
|
|
* save addresses and compute total length
|
|
*/
|
|
for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
|
|
|
|
if (htab->table[i].used > 0) {
|
|
ENTRY *ep = &htab->table[i].entry;
|
|
int arg, found = 0;
|
|
|
|
for (arg = 0; arg < argc; ++arg) {
|
|
if (strcmp(argv[arg], ep->key) == 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((argc > 0) && (found == 0))
|
|
continue;
|
|
|
|
if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
|
|
continue;
|
|
|
|
list[n++] = ep;
|
|
|
|
totlen += strlen(ep->key) + 2;
|
|
|
|
if (sep == '\0') {
|
|
totlen += strlen(ep->data);
|
|
} else { /* check if escapes are needed */
|
|
char *s = ep->data;
|
|
|
|
while (*s) {
|
|
++totlen;
|
|
/* add room for needed escape chars */
|
|
if ((*s == sep) || (*s == '\\'))
|
|
++totlen;
|
|
++s;
|
|
}
|
|
}
|
|
totlen += 2; /* for '=' and 'sep' char */
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* Pass 1a: print unsorted list */
|
|
printf("Unsorted: n=%d\n", n);
|
|
for (i = 0; i < n; ++i) {
|
|
printf("\t%3d: %p ==> %-10s => %s\n",
|
|
i, list[i], list[i]->key, list[i]->data);
|
|
}
|
|
#endif
|
|
|
|
/* Sort list by keys */
|
|
qsort(list, n, sizeof(ENTRY *), cmpkey);
|
|
|
|
/* Check if the user supplied buffer size is sufficient */
|
|
if (size) {
|
|
if (size < totlen + 1) { /* provided buffer too small */
|
|
printf("Env export buffer too small: %zu, "
|
|
"but need %zu\n", size, totlen + 1);
|
|
__set_errno(ENOMEM);
|
|
return (-1);
|
|
}
|
|
} else {
|
|
size = totlen + 1;
|
|
}
|
|
|
|
/* Check if the user provided a buffer */
|
|
if (*resp) {
|
|
/* yes; clear it */
|
|
res = *resp;
|
|
memset(res, '\0', size);
|
|
} else {
|
|
/* no, allocate and clear one */
|
|
*resp = res = calloc(1, size);
|
|
if (res == NULL) {
|
|
__set_errno(ENOMEM);
|
|
return (-1);
|
|
}
|
|
}
|
|
/*
|
|
* Pass 2:
|
|
* export sorted list of result data
|
|
*/
|
|
for (i = 0, p = res; i < n; ++i) {
|
|
const char *s;
|
|
|
|
s = list[i]->key;
|
|
while (*s)
|
|
*p++ = *s++;
|
|
*p++ = '=';
|
|
|
|
s = list[i]->data;
|
|
|
|
while (*s) {
|
|
if ((*s == sep) || (*s == '\\'))
|
|
*p++ = '\\'; /* escape */
|
|
*p++ = *s++;
|
|
}
|
|
*p++ = sep;
|
|
}
|
|
*p = '\0'; /* terminate result */
|
|
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* himport()
|
|
*/
|
|
|
|
/*
|
|
* Check whether variable 'name' is amongst vars[],
|
|
* and remove all instances by setting the pointer to NULL
|
|
*/
|
|
static int drop_var_from_set(const char *name, int nvars, char * vars[])
|
|
{
|
|
int i = 0;
|
|
int res = 0;
|
|
|
|
/* No variables specified means process all of them */
|
|
if (nvars == 0)
|
|
return 1;
|
|
|
|
for (i = 0; i < nvars; i++) {
|
|
if (vars[i] == NULL)
|
|
continue;
|
|
/* If we found it, delete all of them */
|
|
if (!strcmp(name, vars[i])) {
|
|
vars[i] = NULL;
|
|
res = 1;
|
|
}
|
|
}
|
|
if (!res)
|
|
debug("Skipping non-listed variable %s\n", name);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Import linearized data into hash table.
|
|
*
|
|
* This is the inverse function to hexport(): it takes a linear list
|
|
* of "name=value" pairs and creates hash table entries from it.
|
|
*
|
|
* Entries without "value", i. e. consisting of only "name" or
|
|
* "name=", will cause this entry to be deleted from the hash table.
|
|
*
|
|
* The "flag" argument can be used to control the behaviour: when the
|
|
* H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
|
|
* new data will be added to an existing hash table; otherwise, old
|
|
* data will be discarded and a new hash table will be created.
|
|
*
|
|
* The separator character for the "name=value" pairs can be selected,
|
|
* so we both support importing from externally stored environment
|
|
* data (separated by NUL characters) and from plain text files
|
|
* (entries separated by newline characters).
|
|
*
|
|
* To allow for nicely formatted text input, leading white space
|
|
* (sequences of SPACE and TAB chars) is ignored, and entries starting
|
|
* (after removal of any leading white space) with a '#' character are
|
|
* considered comments and ignored.
|
|
*
|
|
* [NOTE: this means that a variable name cannot start with a '#'
|
|
* character.]
|
|
*
|
|
* When using a non-NUL separator character, backslash is used as
|
|
* escape character in the value part, allowing for example for
|
|
* multi-line values.
|
|
*
|
|
* In theory, arbitrary separator characters can be used, but only
|
|
* '\0' and '\n' have really been tested.
|
|
*/
|
|
|
|
int himport_r(struct hsearch_data *htab,
|
|
const char *env, size_t size, const char sep, int flag,
|
|
int nvars, char * const vars[])
|
|
{
|
|
char *data, *sp, *dp, *name, *value;
|
|
char *localvars[nvars];
|
|
int i;
|
|
|
|
/* Test for correct arguments. */
|
|
if (htab == NULL) {
|
|
__set_errno(EINVAL);
|
|
return 0;
|
|
}
|
|
|
|
/* we allocate new space to make sure we can write to the array */
|
|
if ((data = malloc(size)) == NULL) {
|
|
debug("himport_r: can't malloc %zu bytes\n", size);
|
|
__set_errno(ENOMEM);
|
|
return 0;
|
|
}
|
|
memcpy(data, env, size);
|
|
dp = data;
|
|
|
|
/* make a local copy of the list of variables */
|
|
if (nvars)
|
|
memcpy(localvars, vars, sizeof(vars[0]) * nvars);
|
|
|
|
if ((flag & H_NOCLEAR) == 0) {
|
|
/* Destroy old hash table if one exists */
|
|
debug("Destroy Hash Table: %p table = %p\n", htab,
|
|
htab->table);
|
|
if (htab->table)
|
|
hdestroy_r(htab);
|
|
}
|
|
|
|
/*
|
|
* Create new hash table (if needed). The computation of the hash
|
|
* table size is based on heuristics: in a sample of some 70+
|
|
* existing systems we found an average size of 39+ bytes per entry
|
|
* in the environment (for the whole key=value pair). Assuming a
|
|
* size of 8 per entry (= safety factor of ~5) should provide enough
|
|
* safety margin for any existing environment definitions and still
|
|
* allow for more than enough dynamic additions. Note that the
|
|
* "size" argument is supposed to give the maximum enviroment size
|
|
* (CONFIG_ENV_SIZE). This heuristics will result in
|
|
* unreasonably large numbers (and thus memory footprint) for
|
|
* big flash environments (>8,000 entries for 64 KB
|
|
* envrionment size), so we clip it to a reasonable value.
|
|
* On the other hand we need to add some more entries for free
|
|
* space when importing very small buffers. Both boundaries can
|
|
* be overwritten in the board config file if needed.
|
|
*/
|
|
|
|
if (!htab->table) {
|
|
int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
|
|
|
|
if (nent > CONFIG_ENV_MAX_ENTRIES)
|
|
nent = CONFIG_ENV_MAX_ENTRIES;
|
|
|
|
debug("Create Hash Table: N=%d\n", nent);
|
|
|
|
if (hcreate_r(nent, htab) == 0) {
|
|
free(data);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Parse environment; allow for '\0' and 'sep' as separators */
|
|
do {
|
|
ENTRY e, *rv;
|
|
|
|
/* skip leading white space */
|
|
while (isblank(*dp))
|
|
++dp;
|
|
|
|
/* skip comment lines */
|
|
if (*dp == '#') {
|
|
while (*dp && (*dp != sep))
|
|
++dp;
|
|
++dp;
|
|
continue;
|
|
}
|
|
|
|
/* parse name */
|
|
for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
|
|
;
|
|
|
|
/* deal with "name" and "name=" entries (delete var) */
|
|
if (*dp == '\0' || *(dp + 1) == '\0' ||
|
|
*dp == sep || *(dp + 1) == sep) {
|
|
if (*dp == '=')
|
|
*dp++ = '\0';
|
|
*dp++ = '\0'; /* terminate name */
|
|
|
|
debug("DELETE CANDIDATE: \"%s\"\n", name);
|
|
if (!drop_var_from_set(name, nvars, localvars))
|
|
continue;
|
|
|
|
if (hdelete_r(name, htab, flag) == 0)
|
|
debug("DELETE ERROR ##############################\n");
|
|
|
|
continue;
|
|
}
|
|
*dp++ = '\0'; /* terminate name */
|
|
|
|
/* parse value; deal with escapes */
|
|
for (value = sp = dp; *dp && (*dp != sep); ++dp) {
|
|
if ((*dp == '\\') && *(dp + 1))
|
|
++dp;
|
|
*sp++ = *dp;
|
|
}
|
|
*sp++ = '\0'; /* terminate value */
|
|
++dp;
|
|
|
|
/* Skip variables which are not supposed to be processed */
|
|
if (!drop_var_from_set(name, nvars, localvars))
|
|
continue;
|
|
|
|
/* enter into hash table */
|
|
e.key = name;
|
|
e.data = value;
|
|
|
|
hsearch_r(e, ENTER, &rv, htab, flag);
|
|
if (rv == NULL)
|
|
printf("himport_r: can't insert \"%s=%s\" into hash table\n",
|
|
name, value);
|
|
|
|
debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
|
|
htab, htab->filled, htab->size,
|
|
rv, name, value);
|
|
} while ((dp < data + size) && *dp); /* size check needed for text */
|
|
/* without '\0' termination */
|
|
debug("INSERT: free(data = %p)\n", data);
|
|
free(data);
|
|
|
|
/* process variables which were not considered */
|
|
for (i = 0; i < nvars; i++) {
|
|
if (localvars[i] == NULL)
|
|
continue;
|
|
/*
|
|
* All variables which were not deleted from the variable list
|
|
* were not present in the imported env
|
|
* This could mean two things:
|
|
* a) if the variable was present in current env, we delete it
|
|
* b) if the variable was not present in current env, we notify
|
|
* it might be a typo
|
|
*/
|
|
if (hdelete_r(localvars[i], htab, flag) == 0)
|
|
printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
|
|
else
|
|
printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
|
|
}
|
|
|
|
debug("INSERT: done\n");
|
|
return 1; /* everything OK */
|
|
}
|
|
|
|
/*
|
|
* hwalk_r()
|
|
*/
|
|
|
|
/*
|
|
* Walk all of the entries in the hash, calling the callback for each one.
|
|
* this allows some generic operation to be performed on each element.
|
|
*/
|
|
int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
|
|
{
|
|
int i;
|
|
int retval;
|
|
|
|
for (i = 1; i <= htab->size; ++i) {
|
|
if (htab->table[i].used > 0) {
|
|
retval = callback(&htab->table[i].entry);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|