mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-11 23:47:24 +00:00
83d290c56f
When U-Boot started using SPDX tags we were among the early adopters and there weren't a lot of other examples to borrow from. So we picked the area of the file that usually had a full license text and replaced it with an appropriate SPDX-License-Identifier: entry. Since then, the Linux Kernel has adopted SPDX tags and they place it as the very first line in a file (except where shebangs are used, then it's second line) and with slightly different comment styles than us. In part due to community overlap, in part due to better tag visibility and in part for other minor reasons, switch over to that style. This commit changes all instances where we have a single declared license in the tag as both the before and after are identical in tag contents. There's also a few places where I found we did not have a tag and have introduced one. Signed-off-by: Tom Rini <trini@konsulko.com>
872 lines
23 KiB
C
872 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Tests for the core driver model code
|
|
*
|
|
* Copyright (c) 2013 Google, Inc
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <dm.h>
|
|
#include <fdtdec.h>
|
|
#include <malloc.h>
|
|
#include <dm/device-internal.h>
|
|
#include <dm/root.h>
|
|
#include <dm/util.h>
|
|
#include <dm/test.h>
|
|
#include <dm/uclass-internal.h>
|
|
#include <test/ut.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
enum {
|
|
TEST_INTVAL1 = 0,
|
|
TEST_INTVAL2 = 3,
|
|
TEST_INTVAL3 = 6,
|
|
TEST_INTVAL_MANUAL = 101112,
|
|
TEST_INTVAL_PRE_RELOC = 7,
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata[] = {
|
|
{ .ping_add = TEST_INTVAL1, },
|
|
{ .ping_add = TEST_INTVAL2, },
|
|
{ .ping_add = TEST_INTVAL3, },
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata_manual = {
|
|
.ping_add = TEST_INTVAL_MANUAL,
|
|
};
|
|
|
|
static const struct dm_test_pdata test_pdata_pre_reloc = {
|
|
.ping_add = TEST_INTVAL_PRE_RELOC,
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info1) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[0],
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info2) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[1],
|
|
};
|
|
|
|
U_BOOT_DEVICE(dm_test_info3) = {
|
|
.name = "test_drv",
|
|
.platdata = &test_pdata[2],
|
|
};
|
|
|
|
static struct driver_info driver_info_manual = {
|
|
.name = "test_manual_drv",
|
|
.platdata = &test_pdata_manual,
|
|
};
|
|
|
|
static struct driver_info driver_info_pre_reloc = {
|
|
.name = "test_pre_reloc_drv",
|
|
.platdata = &test_pdata_pre_reloc,
|
|
};
|
|
|
|
static struct driver_info driver_info_act_dma = {
|
|
.name = "test_act_dma_drv",
|
|
};
|
|
|
|
void dm_leak_check_start(struct unit_test_state *uts)
|
|
{
|
|
uts->start = mallinfo();
|
|
if (!uts->start.uordblks)
|
|
puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
|
|
}
|
|
|
|
int dm_leak_check_end(struct unit_test_state *uts)
|
|
{
|
|
struct mallinfo end;
|
|
int id, diff;
|
|
|
|
/* Don't delete the root class, since we started with that */
|
|
for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
|
|
struct uclass *uc;
|
|
|
|
uc = uclass_find(id);
|
|
if (!uc)
|
|
continue;
|
|
ut_assertok(uclass_destroy(uc));
|
|
}
|
|
|
|
end = mallinfo();
|
|
diff = end.uordblks - uts->start.uordblks;
|
|
if (diff > 0)
|
|
printf("Leak: lost %#xd bytes\n", diff);
|
|
else if (diff < 0)
|
|
printf("Leak: gained %#xd bytes\n", -diff);
|
|
ut_asserteq(uts->start.uordblks, end.uordblks);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test that binding with platdata occurs correctly */
|
|
static int dm_test_autobind(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev;
|
|
|
|
/*
|
|
* We should have a single class (UCLASS_ROOT) and a single root
|
|
* device with no children.
|
|
*/
|
|
ut_assert(dms->root);
|
|
ut_asserteq(1, list_count_items(&gd->uclass_root));
|
|
ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
|
|
|
|
ut_assertok(dm_scan_platdata(false));
|
|
|
|
/* We should have our test class now at least, plus more children */
|
|
ut_assert(1 < list_count_items(&gd->uclass_root));
|
|
ut_assert(0 < list_count_items(&gd->dm_root->child_head));
|
|
|
|
/* Our 3 dm_test_infox children should be bound to the test uclass */
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
|
|
|
|
/* No devices should be probed */
|
|
list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
|
|
ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
|
|
|
|
/* Our test driver should have been bound 3 times */
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind, 0);
|
|
|
|
/* Test that binding with uclass platdata allocation occurs correctly */
|
|
static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_perdev_uc_pdata *uc_pdata;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_assert(uc);
|
|
|
|
/**
|
|
* Test if test uclass driver requires allocation for the uclass
|
|
* platform data and then check the dev->uclass_platdata pointer.
|
|
*/
|
|
ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
|
|
|
|
for (uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
uclass_find_next_device(&dev)) {
|
|
ut_assert(dev);
|
|
|
|
uc_pdata = dev_get_uclass_platdata(dev);
|
|
ut_assert(uc_pdata);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that binding with uclass platdata setting occurs correctly */
|
|
static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_perdev_uc_pdata *uc_pdata;
|
|
struct udevice *dev;
|
|
|
|
/**
|
|
* In the test_postbind() method of test uclass driver, the uclass
|
|
* platform data should be set to three test int values - test it.
|
|
*/
|
|
for (uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
uclass_find_next_device(&dev)) {
|
|
ut_assert(dev);
|
|
|
|
uc_pdata = dev_get_uclass_platdata(dev);
|
|
ut_assert(uc_pdata);
|
|
ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
|
|
ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
|
|
ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that autoprobe finds all the expected devices */
|
|
static int dm_test_autoprobe(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
int expected_base_add;
|
|
struct udevice *dev;
|
|
struct uclass *uc;
|
|
int i;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_assert(uc);
|
|
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
|
|
|
|
/* The root device should not be activated until needed */
|
|
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
|
|
|
|
/*
|
|
* We should be able to find the three test devices, and they should
|
|
* all be activated as they are used (lazy activation, required by
|
|
* U-Boot)
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
|
|
"Driver %d/%s already activated", i, dev->name);
|
|
|
|
/* This should activate it */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assert(dev->flags & DM_FLAG_ACTIVATED);
|
|
|
|
/* Activating a device should activate the root device */
|
|
if (!i)
|
|
ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
|
|
}
|
|
|
|
/*
|
|
* Our 3 dm_test_info children should be passed to pre_probe and
|
|
* post_probe
|
|
*/
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
|
|
|
|
/* Also we can check the per-device data */
|
|
expected_base_add = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
struct dm_test_uclass_perdev_priv *priv;
|
|
struct dm_test_pdata *pdata;
|
|
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
|
|
priv = dev_get_uclass_priv(dev);
|
|
ut_assert(priv);
|
|
ut_asserteq(expected_base_add, priv->base_add);
|
|
|
|
pdata = dev->platdata;
|
|
expected_base_add += pdata->ping_add;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Check that we see the correct platdata in each device */
|
|
static int dm_test_platdata(struct unit_test_state *uts)
|
|
{
|
|
const struct dm_test_pdata *pdata;
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
pdata = dev->platdata;
|
|
ut_assert(pdata->ping_add == test_pdata[i].ping_add);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Test that we can bind, probe, remove, unbind a driver */
|
|
static int dm_test_lifecycle(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
int op_count[DM_TEST_OP_COUNT];
|
|
struct udevice *dev, *test_dev;
|
|
int pingret;
|
|
int ret;
|
|
|
|
memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
|
|
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
|
|
== op_count[DM_TEST_OP_BIND] + 1);
|
|
ut_assert(!dev->priv);
|
|
|
|
/* Probe the device - it should fail allocating private data */
|
|
dms->force_fail_alloc = 1;
|
|
ret = device_probe(dev);
|
|
ut_assert(ret == -ENOMEM);
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
|
|
== op_count[DM_TEST_OP_PROBE] + 1);
|
|
ut_assert(!dev->priv);
|
|
|
|
/* Try again without the alloc failure */
|
|
dms->force_fail_alloc = 0;
|
|
ut_assertok(device_probe(dev));
|
|
ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
|
|
== op_count[DM_TEST_OP_PROBE] + 2);
|
|
ut_assert(dev->priv);
|
|
|
|
/* This should be device 3 in the uclass */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev == test_dev);
|
|
|
|
/* Try ping */
|
|
ut_assertok(test_ping(dev, 100, &pingret));
|
|
ut_assert(pingret == 102);
|
|
|
|
/* Now remove device 3 */
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
|
|
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
|
|
ut_assertok(device_unbind(dev));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
|
|
|
|
/* Test that we can bind/unbind and the lists update correctly */
|
|
static int dm_test_ordering(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
|
|
int pingret;
|
|
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Bind two new devices (numbers 4 and 5) */
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev_penultimate));
|
|
ut_assert(dev_penultimate);
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev_last));
|
|
ut_assert(dev_last);
|
|
|
|
/* Now remove device 3 */
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
ut_assertok(device_unbind(dev));
|
|
|
|
/* The device numbering should have shifted down one */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev_penultimate == test_dev);
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
|
|
ut_assert(dev_last == test_dev);
|
|
|
|
/* Add back the original device 3, now in position 5 */
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Try ping */
|
|
ut_assertok(test_ping(dev, 100, &pingret));
|
|
ut_assert(pingret == 102);
|
|
|
|
/* Remove 3 and 4 */
|
|
ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
|
|
ut_assertok(device_unbind(dev_penultimate));
|
|
ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
|
|
ut_assertok(device_unbind(dev_last));
|
|
|
|
/* Our device should now be in position 3 */
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
|
|
ut_assert(dev == test_dev);
|
|
|
|
/* Now remove device 3 */
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
ut_assertok(device_unbind(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Check that we can perform operations on a device (do a ping) */
|
|
int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
|
|
uint32_t base, struct dm_test_priv *priv)
|
|
{
|
|
int expected;
|
|
int pingret;
|
|
|
|
/* Getting the child device should allocate platdata / priv */
|
|
ut_assertok(testfdt_ping(dev, 10, &pingret));
|
|
ut_assert(dev->priv);
|
|
ut_assert(dev->platdata);
|
|
|
|
expected = 10 + base;
|
|
ut_asserteq(expected, pingret);
|
|
|
|
/* Do another ping */
|
|
ut_assertok(testfdt_ping(dev, 20, &pingret));
|
|
expected = 20 + base;
|
|
ut_asserteq(expected, pingret);
|
|
|
|
/* Now check the ping_total */
|
|
priv = dev->priv;
|
|
ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
|
|
priv->ping_total);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check that we can perform operations on devices */
|
|
static int dm_test_operations(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
/*
|
|
* Now check that the ping adds are what we expect. This is using the
|
|
* ping-add property in each node.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
|
|
uint32_t base;
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
|
|
|
|
/*
|
|
* Get the 'reg' property, which tells us what the ping add
|
|
* should be. We don't use the platdata because we want
|
|
* to test the code that sets that up (testfdt_drv_probe()).
|
|
*/
|
|
base = test_pdata[i].ping_add;
|
|
debug("dev=%d, base=%d\n", i, base);
|
|
|
|
ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
|
|
|
|
/* Remove all drivers and check that things work */
|
|
static int dm_test_remove(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
|
|
ut_assert(dev);
|
|
ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
|
|
"Driver %d/%s not activated", i, dev->name);
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
|
|
"Driver %d/%s should have deactivated", i,
|
|
dev->name);
|
|
ut_assert(!dev->priv);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
|
|
|
|
/* Remove and recreate everything, check for memory leaks */
|
|
static int dm_test_leak(struct unit_test_state *uts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct udevice *dev;
|
|
int ret;
|
|
int id;
|
|
|
|
dm_leak_check_start(uts);
|
|
|
|
ut_assertok(dm_scan_platdata(false));
|
|
ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
|
|
|
|
/* Scanning the uclass is enough to probe all the devices */
|
|
for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev))
|
|
;
|
|
ut_assertok(ret);
|
|
}
|
|
|
|
ut_assertok(dm_leak_check_end(uts));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_leak, 0);
|
|
|
|
/* Test uclass init/destroy methods */
|
|
static int dm_test_uclass(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
|
|
ut_assert(uc->priv);
|
|
|
|
ut_assertok(uclass_destroy(uc));
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
|
|
ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass, 0);
|
|
|
|
/**
|
|
* create_children() - Create children of a parent node
|
|
*
|
|
* @dms: Test system state
|
|
* @parent: Parent device
|
|
* @count: Number of children to create
|
|
* @key: Key value to put in first child. Subsequence children
|
|
* receive an incrementing value
|
|
* @child: If not NULL, then the child device pointers are written into
|
|
* this array.
|
|
* @return 0 if OK, -ve on error
|
|
*/
|
|
static int create_children(struct unit_test_state *uts, struct udevice *parent,
|
|
int count, int key, struct udevice *child[])
|
|
{
|
|
struct udevice *dev;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct dm_test_pdata *pdata;
|
|
|
|
ut_assertok(device_bind_by_name(parent, false,
|
|
&driver_info_manual, &dev));
|
|
pdata = calloc(1, sizeof(*pdata));
|
|
pdata->ping_add = key + i;
|
|
dev->platdata = pdata;
|
|
if (child)
|
|
child[i] = dev;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NODE_COUNT 10
|
|
|
|
static int dm_test_children(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *top[NODE_COUNT];
|
|
struct udevice *child[NODE_COUNT];
|
|
struct udevice *grandchild[NODE_COUNT];
|
|
struct udevice *dev;
|
|
int total;
|
|
int ret;
|
|
int i;
|
|
|
|
/* We don't care about the numbering for this test */
|
|
dms->skip_post_probe = 1;
|
|
|
|
ut_assert(NODE_COUNT > 5);
|
|
|
|
/* First create 10 top-level children */
|
|
ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
|
|
|
|
/* Now a few have their own children */
|
|
ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
|
|
ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
|
|
|
|
/* And grandchildren */
|
|
for (i = 0; i < NODE_COUNT; i++)
|
|
ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
|
|
i == 2 ? grandchild : NULL));
|
|
|
|
/* Check total number of devices */
|
|
total = NODE_COUNT * (3 + NODE_COUNT);
|
|
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
|
|
|
|
/* Try probing one of the grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST,
|
|
NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
|
|
ut_asserteq_ptr(grandchild[0], dev);
|
|
|
|
/*
|
|
* This should have probed the child and top node also, for a total
|
|
* of 3 nodes.
|
|
*/
|
|
ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Probe the other grandchildren */
|
|
for (i = 1; i < NODE_COUNT; i++)
|
|
ut_assertok(device_probe(grandchild[i]));
|
|
|
|
ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Probe everything */
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev))
|
|
;
|
|
ut_assertok(ret);
|
|
|
|
ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
|
|
|
|
/* Remove a top-level child and check that the children are removed */
|
|
ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
|
|
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
|
|
dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
|
|
|
|
/* Try one with grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
|
|
ut_asserteq_ptr(dev, top[5]);
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
|
|
dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
|
|
|
|
/* Try the same with unbind */
|
|
ut_assertok(device_unbind(top[2]));
|
|
ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
|
|
|
|
/* Try one with grandchildren */
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
|
|
ut_asserteq_ptr(dev, top[6]);
|
|
ut_assertok(device_unbind(top[5]));
|
|
ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
|
|
dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_children, 0);
|
|
|
|
/* Test that pre-relocation devices work as expected */
|
|
static int dm_test_pre_reloc(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev;
|
|
|
|
/* The normal driver should refuse to bind before relocation */
|
|
ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
|
|
&driver_info_manual, &dev));
|
|
|
|
/* But this one is marked pre-reloc */
|
|
ut_assertok(device_bind_by_name(dms->root, true,
|
|
&driver_info_pre_reloc, &dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_pre_reloc, 0);
|
|
|
|
/*
|
|
* Test that removal of devices, either via the "normal" device_remove()
|
|
* API or via the device driver selective flag works as expected
|
|
*/
|
|
static int dm_test_remove_active_dma(struct unit_test_state *uts)
|
|
{
|
|
struct dm_test_state *dms = uts->priv;
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_act_dma,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Probe the device */
|
|
ut_assertok(device_probe(dev));
|
|
|
|
/* Test if device is active right now */
|
|
ut_asserteq(true, device_active(dev));
|
|
|
|
/* Remove the device via selective remove flag */
|
|
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
|
|
|
|
/* Test if device is inactive right now */
|
|
ut_asserteq(false, device_active(dev));
|
|
|
|
/* Probe the device again */
|
|
ut_assertok(device_probe(dev));
|
|
|
|
/* Test if device is active right now */
|
|
ut_asserteq(true, device_active(dev));
|
|
|
|
/* Remove the device via "normal" remove API */
|
|
ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
|
|
|
|
/* Test if device is inactive right now */
|
|
ut_asserteq(false, device_active(dev));
|
|
|
|
/*
|
|
* Test if a device without the active DMA flags is not removed upon
|
|
* the active DMA remove call
|
|
*/
|
|
ut_assertok(device_unbind(dev));
|
|
ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
|
|
&dev));
|
|
ut_assert(dev);
|
|
|
|
/* Probe the device */
|
|
ut_assertok(device_probe(dev));
|
|
|
|
/* Test if device is active right now */
|
|
ut_asserteq(true, device_active(dev));
|
|
|
|
/* Remove the device via selective remove flag */
|
|
dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
|
|
|
|
/* Test if device is still active right now */
|
|
ut_asserteq(true, device_active(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_remove_active_dma, 0);
|
|
|
|
static int dm_test_uclass_before_ready(struct unit_test_state *uts)
|
|
{
|
|
struct uclass *uc;
|
|
|
|
ut_assertok(uclass_get(UCLASS_TEST, &uc));
|
|
|
|
gd->dm_root = NULL;
|
|
gd->dm_root_f = NULL;
|
|
memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
|
|
|
|
ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_before_ready, 0);
|
|
|
|
static int dm_test_uclass_devices_find(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_find_next_device(&dev)) {
|
|
ut_assert(!ret);
|
|
ut_assert(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
|
|
|
|
static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *finddev;
|
|
struct udevice *testdev;
|
|
int findret, ret;
|
|
|
|
/*
|
|
* For each test device found in fdt like: "a-test", "b-test", etc.,
|
|
* use its name and try to find it by uclass_find_device_by_name().
|
|
* Then, on success check if:
|
|
* - current 'testdev' name is equal to the returned 'finddev' name
|
|
* - current 'testdev' pointer is equal to the returned 'finddev'
|
|
*
|
|
* We assume that, each uclass's device name is unique, so if not, then
|
|
* this will fail on checking condition: testdev == finddev, since the
|
|
* uclass_find_device_by_name(), returns the first device by given name.
|
|
*/
|
|
for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
|
|
testdev;
|
|
ret = uclass_find_next_device(&testdev)) {
|
|
ut_assertok(ret);
|
|
ut_assert(testdev);
|
|
|
|
findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
|
|
testdev->name,
|
|
&finddev);
|
|
|
|
ut_assertok(findret);
|
|
ut_assert(testdev);
|
|
ut_asserteq_str(testdev->name, finddev->name);
|
|
ut_asserteq_ptr(testdev, finddev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_uclass_devices_get(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
for (ret = uclass_first_device(UCLASS_TEST, &dev);
|
|
dev;
|
|
ret = uclass_next_device(&dev)) {
|
|
ut_assert(!ret);
|
|
ut_assert(dev);
|
|
ut_assert(device_active(dev));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
|
|
|
|
static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *finddev;
|
|
struct udevice *testdev;
|
|
int ret, findret;
|
|
|
|
/*
|
|
* For each test device found in fdt like: "a-test", "b-test", etc.,
|
|
* use its name and try to get it by uclass_get_device_by_name().
|
|
* On success check if:
|
|
* - returned finddev' is active
|
|
* - current 'testdev' name is equal to the returned 'finddev' name
|
|
* - current 'testdev' pointer is equal to the returned 'finddev'
|
|
*
|
|
* We asserts that the 'testdev' is active on each loop entry, so we
|
|
* could be sure that the 'finddev' is activated too, but for sure
|
|
* we check it again.
|
|
*
|
|
* We assume that, each uclass's device name is unique, so if not, then
|
|
* this will fail on checking condition: testdev == finddev, since the
|
|
* uclass_get_device_by_name(), returns the first device by given name.
|
|
*/
|
|
for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
|
|
testdev;
|
|
ret = uclass_next_device(&testdev)) {
|
|
ut_assertok(ret);
|
|
ut_assert(testdev);
|
|
ut_assert(device_active(testdev));
|
|
|
|
findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
|
|
testdev->name,
|
|
&finddev);
|
|
|
|
ut_assertok(findret);
|
|
ut_assert(finddev);
|
|
ut_assert(device_active(finddev));
|
|
ut_asserteq_str(testdev->name, finddev->name);
|
|
ut_asserteq_ptr(testdev, finddev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
|
|
|
|
static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
|
|
{
|
|
struct udevice *dev;
|
|
|
|
ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
|
|
ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);
|
|
|
|
static int dm_test_uclass_names(struct unit_test_state *uts)
|
|
{
|
|
ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
|
|
ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
|
|
|
|
return 0;
|
|
}
|
|
DM_TEST(dm_test_uclass_names, DM_TESTF_SCAN_PDATA);
|