mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-21 01:24:18 +00:00
1a027a90aa
This patch try to avoids eviction of dirty lines during DMA transfer. The code right now execute the following step: - allocate the buffer - start a dma operation using the non-coherent dma buffer - invalidate cache lines associated with the buffer - read the buffer This can lead to reading back not valid information, because the cache controller could evict dirty cache lines belonging to the buffer *after* the DMA operation has started to fill the DRAM. In order to avoid this, a new invalidation is required *before* starting the DMA operation. The patch just adds an invalidation before submitting the DMA command. Example below shows the nvme disk scan result without the following patch => nvme scan nvme_get_info_from_identify: nn = 544502629, vwc = 100, sn = dev_0T, mn = `�\�, fr = t_part, mdts = 105 So, invalidating the cache before submitting the admin command, fix the cpu read. Cc: André Przywara <andre.przywara@arm.com> Reported-by: Suniel Mahesh <sunil@amarulasolutions.com> Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com> Signed-off-by: Jagan Teki <jagan@amarulasolutions.com> Tested-by: Suniel Mahesh <sunil@amarulasolutions.com> Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
880 lines
20 KiB
C
880 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2017 NXP Semiconductors
|
|
* Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <blk.h>
|
|
#include <cpu_func.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <pci.h>
|
|
#include <time.h>
|
|
#include <dm/device-internal.h>
|
|
#include <linux/compat.h>
|
|
#include "nvme.h"
|
|
|
|
#define NVME_Q_DEPTH 2
|
|
#define NVME_AQ_DEPTH 2
|
|
#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
|
|
#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
|
|
#define ADMIN_TIMEOUT 60
|
|
#define IO_TIMEOUT 30
|
|
#define MAX_PRP_POOL 512
|
|
|
|
enum nvme_queue_id {
|
|
NVME_ADMIN_Q,
|
|
NVME_IO_Q,
|
|
NVME_Q_NUM,
|
|
};
|
|
|
|
/*
|
|
* An NVM Express queue. Each device has at least two (one for admin
|
|
* commands and one for I/O commands).
|
|
*/
|
|
struct nvme_queue {
|
|
struct nvme_dev *dev;
|
|
struct nvme_command *sq_cmds;
|
|
struct nvme_completion *cqes;
|
|
wait_queue_head_t sq_full;
|
|
u32 __iomem *q_db;
|
|
u16 q_depth;
|
|
s16 cq_vector;
|
|
u16 sq_head;
|
|
u16 sq_tail;
|
|
u16 cq_head;
|
|
u16 qid;
|
|
u8 cq_phase;
|
|
u8 cqe_seen;
|
|
unsigned long cmdid_data[];
|
|
};
|
|
|
|
static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
|
|
{
|
|
u32 bit = enabled ? NVME_CSTS_RDY : 0;
|
|
int timeout;
|
|
ulong start;
|
|
|
|
/* Timeout field in the CAP register is in 500 millisecond units */
|
|
timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
|
|
|
|
start = get_timer(0);
|
|
while (get_timer(start) < timeout) {
|
|
if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIME;
|
|
}
|
|
|
|
static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
|
|
int total_len, u64 dma_addr)
|
|
{
|
|
u32 page_size = dev->page_size;
|
|
int offset = dma_addr & (page_size - 1);
|
|
u64 *prp_pool;
|
|
int length = total_len;
|
|
int i, nprps;
|
|
u32 prps_per_page = (page_size >> 3) - 1;
|
|
u32 num_pages;
|
|
|
|
length -= (page_size - offset);
|
|
|
|
if (length <= 0) {
|
|
*prp2 = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (length)
|
|
dma_addr += (page_size - offset);
|
|
|
|
if (length <= page_size) {
|
|
*prp2 = dma_addr;
|
|
return 0;
|
|
}
|
|
|
|
nprps = DIV_ROUND_UP(length, page_size);
|
|
num_pages = DIV_ROUND_UP(nprps, prps_per_page);
|
|
|
|
if (nprps > dev->prp_entry_num) {
|
|
free(dev->prp_pool);
|
|
/*
|
|
* Always increase in increments of pages. It doesn't waste
|
|
* much memory and reduces the number of allocations.
|
|
*/
|
|
dev->prp_pool = memalign(page_size, num_pages * page_size);
|
|
if (!dev->prp_pool) {
|
|
printf("Error: malloc prp_pool fail\n");
|
|
return -ENOMEM;
|
|
}
|
|
dev->prp_entry_num = prps_per_page * num_pages;
|
|
}
|
|
|
|
prp_pool = dev->prp_pool;
|
|
i = 0;
|
|
while (nprps) {
|
|
if (i == ((page_size >> 3) - 1)) {
|
|
*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
|
|
page_size);
|
|
i = 0;
|
|
prp_pool += page_size;
|
|
}
|
|
*(prp_pool + i++) = cpu_to_le64(dma_addr);
|
|
dma_addr += page_size;
|
|
nprps--;
|
|
}
|
|
*prp2 = (ulong)dev->prp_pool;
|
|
|
|
flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
|
|
dev->prp_entry_num * sizeof(u64));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __le16 nvme_get_cmd_id(void)
|
|
{
|
|
static unsigned short cmdid;
|
|
|
|
return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
|
|
}
|
|
|
|
static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
|
|
{
|
|
u64 start = (ulong)&nvmeq->cqes[index];
|
|
u64 stop = start + sizeof(struct nvme_completion);
|
|
|
|
invalidate_dcache_range(start, stop);
|
|
|
|
return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
|
|
}
|
|
|
|
/**
|
|
* nvme_submit_cmd() - copy a command into a queue and ring the doorbell
|
|
*
|
|
* @nvmeq: The queue to use
|
|
* @cmd: The command to send
|
|
*/
|
|
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
|
|
{
|
|
u16 tail = nvmeq->sq_tail;
|
|
|
|
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
|
|
flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
|
|
(ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
|
|
|
|
if (++tail == nvmeq->q_depth)
|
|
tail = 0;
|
|
writel(tail, nvmeq->q_db);
|
|
nvmeq->sq_tail = tail;
|
|
}
|
|
|
|
static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
|
|
struct nvme_command *cmd,
|
|
u32 *result, unsigned timeout)
|
|
{
|
|
u16 head = nvmeq->cq_head;
|
|
u16 phase = nvmeq->cq_phase;
|
|
u16 status;
|
|
ulong start_time;
|
|
ulong timeout_us = timeout * 100000;
|
|
|
|
cmd->common.command_id = nvme_get_cmd_id();
|
|
nvme_submit_cmd(nvmeq, cmd);
|
|
|
|
start_time = timer_get_us();
|
|
|
|
for (;;) {
|
|
status = nvme_read_completion_status(nvmeq, head);
|
|
if ((status & 0x01) == phase)
|
|
break;
|
|
if (timeout_us > 0 && (timer_get_us() - start_time)
|
|
>= timeout_us)
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
status >>= 1;
|
|
if (status) {
|
|
printf("ERROR: status = %x, phase = %d, head = %d\n",
|
|
status, phase, head);
|
|
status = 0;
|
|
if (++head == nvmeq->q_depth) {
|
|
head = 0;
|
|
phase = !phase;
|
|
}
|
|
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
|
nvmeq->cq_head = head;
|
|
nvmeq->cq_phase = phase;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
if (result)
|
|
*result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
|
|
|
|
if (++head == nvmeq->q_depth) {
|
|
head = 0;
|
|
phase = !phase;
|
|
}
|
|
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
|
|
nvmeq->cq_head = head;
|
|
nvmeq->cq_phase = phase;
|
|
|
|
return status;
|
|
}
|
|
|
|
static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
|
|
u32 *result)
|
|
{
|
|
return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
|
|
result, ADMIN_TIMEOUT);
|
|
}
|
|
|
|
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
|
|
int qid, int depth)
|
|
{
|
|
struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
|
|
if (!nvmeq)
|
|
return NULL;
|
|
memset(nvmeq, 0, sizeof(*nvmeq));
|
|
|
|
nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
|
|
if (!nvmeq->cqes)
|
|
goto free_nvmeq;
|
|
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
|
|
|
|
nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
|
|
if (!nvmeq->sq_cmds)
|
|
goto free_queue;
|
|
memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
|
|
|
|
nvmeq->dev = dev;
|
|
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
nvmeq->q_depth = depth;
|
|
nvmeq->qid = qid;
|
|
dev->queue_count++;
|
|
dev->queues[qid] = nvmeq;
|
|
|
|
return nvmeq;
|
|
|
|
free_queue:
|
|
free((void *)nvmeq->cqes);
|
|
free_nvmeq:
|
|
free(nvmeq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.delete_queue.opcode = opcode;
|
|
c.delete_queue.qid = cpu_to_le16(id);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, NULL);
|
|
}
|
|
|
|
static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
|
|
{
|
|
return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
|
|
}
|
|
|
|
static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
|
|
{
|
|
return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
|
|
}
|
|
|
|
static int nvme_enable_ctrl(struct nvme_dev *dev)
|
|
{
|
|
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
dev->ctrl_config |= NVME_CC_ENABLE;
|
|
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
|
|
|
|
return nvme_wait_ready(dev, true);
|
|
}
|
|
|
|
static int nvme_disable_ctrl(struct nvme_dev *dev)
|
|
{
|
|
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
dev->ctrl_config &= ~NVME_CC_ENABLE;
|
|
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
|
|
|
|
return nvme_wait_ready(dev, false);
|
|
}
|
|
|
|
static void nvme_free_queue(struct nvme_queue *nvmeq)
|
|
{
|
|
free((void *)nvmeq->cqes);
|
|
free(nvmeq->sq_cmds);
|
|
free(nvmeq);
|
|
}
|
|
|
|
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
|
|
{
|
|
int i;
|
|
|
|
for (i = dev->queue_count - 1; i >= lowest; i--) {
|
|
struct nvme_queue *nvmeq = dev->queues[i];
|
|
dev->queue_count--;
|
|
dev->queues[i] = NULL;
|
|
nvme_free_queue(nvmeq);
|
|
}
|
|
}
|
|
|
|
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
|
|
nvmeq->sq_tail = 0;
|
|
nvmeq->cq_head = 0;
|
|
nvmeq->cq_phase = 1;
|
|
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
|
|
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
|
|
flush_dcache_range((ulong)nvmeq->cqes,
|
|
(ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
|
|
dev->online_queues++;
|
|
}
|
|
|
|
static int nvme_configure_admin_queue(struct nvme_dev *dev)
|
|
{
|
|
int result;
|
|
u32 aqa;
|
|
u64 cap = dev->cap;
|
|
struct nvme_queue *nvmeq;
|
|
/* most architectures use 4KB as the page size */
|
|
unsigned page_shift = 12;
|
|
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
|
|
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
|
|
|
|
if (page_shift < dev_page_min) {
|
|
debug("Device minimum page size (%u) too large for host (%u)\n",
|
|
1 << dev_page_min, 1 << page_shift);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (page_shift > dev_page_max) {
|
|
debug("Device maximum page size (%u) smaller than host (%u)\n",
|
|
1 << dev_page_max, 1 << page_shift);
|
|
page_shift = dev_page_max;
|
|
}
|
|
|
|
result = nvme_disable_ctrl(dev);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
nvmeq = dev->queues[NVME_ADMIN_Q];
|
|
if (!nvmeq) {
|
|
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
|
|
if (!nvmeq)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
aqa = nvmeq->q_depth - 1;
|
|
aqa |= aqa << 16;
|
|
aqa |= aqa << 16;
|
|
|
|
dev->page_size = 1 << page_shift;
|
|
|
|
dev->ctrl_config = NVME_CC_CSS_NVM;
|
|
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
|
|
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
|
|
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
|
|
|
writel(aqa, &dev->bar->aqa);
|
|
nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
|
|
nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
|
|
|
|
result = nvme_enable_ctrl(dev);
|
|
if (result)
|
|
goto free_nvmeq;
|
|
|
|
nvmeq->cq_vector = 0;
|
|
|
|
nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
|
|
|
|
return result;
|
|
|
|
free_nvmeq:
|
|
nvme_free_queues(dev, 0);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_cq.opcode = nvme_admin_create_cq;
|
|
c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
|
|
c.create_cq.cqid = cpu_to_le16(qid);
|
|
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_cq.cq_flags = cpu_to_le16(flags);
|
|
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, NULL);
|
|
}
|
|
|
|
static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
|
|
struct nvme_queue *nvmeq)
|
|
{
|
|
struct nvme_command c;
|
|
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.create_sq.opcode = nvme_admin_create_sq;
|
|
c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
|
|
c.create_sq.sqid = cpu_to_le16(qid);
|
|
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
|
|
c.create_sq.sq_flags = cpu_to_le16(flags);
|
|
c.create_sq.cqid = cpu_to_le16(qid);
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, NULL);
|
|
}
|
|
|
|
int nvme_identify(struct nvme_dev *dev, unsigned nsid,
|
|
unsigned cns, dma_addr_t dma_addr)
|
|
{
|
|
struct nvme_command c;
|
|
u32 page_size = dev->page_size;
|
|
int offset = dma_addr & (page_size - 1);
|
|
int length = sizeof(struct nvme_id_ctrl);
|
|
int ret;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.nsid = cpu_to_le32(nsid);
|
|
c.identify.prp1 = cpu_to_le64(dma_addr);
|
|
|
|
length -= (page_size - offset);
|
|
if (length <= 0) {
|
|
c.identify.prp2 = 0;
|
|
} else {
|
|
dma_addr += (page_size - offset);
|
|
c.identify.prp2 = cpu_to_le64(dma_addr);
|
|
}
|
|
|
|
c.identify.cns = cpu_to_le32(cns);
|
|
|
|
invalidate_dcache_range(dma_addr,
|
|
dma_addr + sizeof(struct nvme_id_ctrl));
|
|
|
|
ret = nvme_submit_admin_cmd(dev, &c, NULL);
|
|
if (!ret)
|
|
invalidate_dcache_range(dma_addr,
|
|
dma_addr + sizeof(struct nvme_id_ctrl));
|
|
|
|
return ret;
|
|
}
|
|
|
|
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_get_features;
|
|
c.features.nsid = cpu_to_le32(nsid);
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
|
|
/*
|
|
* TODO: add cache invalidate operation when the size of
|
|
* the DMA buffer is known
|
|
*/
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, result);
|
|
}
|
|
|
|
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
|
|
dma_addr_t dma_addr, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_set_features;
|
|
c.features.prp1 = cpu_to_le64(dma_addr);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
c.features.dword11 = cpu_to_le32(dword11);
|
|
|
|
/*
|
|
* TODO: add cache flush operation when the size of
|
|
* the DMA buffer is known
|
|
*/
|
|
|
|
return nvme_submit_admin_cmd(dev, &c, result);
|
|
}
|
|
|
|
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
|
|
{
|
|
struct nvme_dev *dev = nvmeq->dev;
|
|
int result;
|
|
|
|
nvmeq->cq_vector = qid - 1;
|
|
result = nvme_alloc_cq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
goto release_cq;
|
|
|
|
result = nvme_alloc_sq(dev, qid, nvmeq);
|
|
if (result < 0)
|
|
goto release_sq;
|
|
|
|
nvme_init_queue(nvmeq, qid);
|
|
|
|
return result;
|
|
|
|
release_sq:
|
|
nvme_delete_sq(dev, qid);
|
|
release_cq:
|
|
nvme_delete_cq(dev, qid);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int nvme_set_queue_count(struct nvme_dev *dev, int count)
|
|
{
|
|
int status;
|
|
u32 result;
|
|
u32 q_count = (count - 1) | ((count - 1) << 16);
|
|
|
|
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
|
|
q_count, 0, &result);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
if (status > 1)
|
|
return 0;
|
|
|
|
return min(result & 0xffff, result >> 16) + 1;
|
|
}
|
|
|
|
static void nvme_create_io_queues(struct nvme_dev *dev)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = dev->queue_count; i <= dev->max_qid; i++)
|
|
if (!nvme_alloc_queue(dev, i, dev->q_depth))
|
|
break;
|
|
|
|
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
|
|
if (nvme_create_queue(dev->queues[i], i))
|
|
break;
|
|
}
|
|
|
|
static int nvme_setup_io_queues(struct nvme_dev *dev)
|
|
{
|
|
int nr_io_queues;
|
|
int result;
|
|
|
|
nr_io_queues = 1;
|
|
result = nvme_set_queue_count(dev, nr_io_queues);
|
|
if (result <= 0)
|
|
return result;
|
|
|
|
dev->max_qid = nr_io_queues;
|
|
|
|
/* Free previously allocated queues */
|
|
nvme_free_queues(dev, nr_io_queues + 1);
|
|
nvme_create_io_queues(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_get_info_from_identify(struct nvme_dev *dev)
|
|
{
|
|
struct nvme_id_ctrl *ctrl;
|
|
int ret;
|
|
int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
|
|
|
|
ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
|
|
if (!ctrl)
|
|
return -ENOMEM;
|
|
|
|
ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
|
|
if (ret) {
|
|
free(ctrl);
|
|
return -EIO;
|
|
}
|
|
|
|
dev->nn = le32_to_cpu(ctrl->nn);
|
|
dev->vwc = ctrl->vwc;
|
|
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
|
|
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
|
|
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
|
|
if (ctrl->mdts)
|
|
dev->max_transfer_shift = (ctrl->mdts + shift);
|
|
else {
|
|
/*
|
|
* Maximum Data Transfer Size (MDTS) field indicates the maximum
|
|
* data transfer size between the host and the controller. The
|
|
* host should not submit a command that exceeds this transfer
|
|
* size. The value is in units of the minimum memory page size
|
|
* and is reported as a power of two (2^n).
|
|
*
|
|
* The spec also says: a value of 0h indicates no restrictions
|
|
* on transfer size. But in nvme_blk_read/write() below we have
|
|
* the following algorithm for maximum number of logic blocks
|
|
* per transfer:
|
|
*
|
|
* u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
|
|
*
|
|
* In order for lbas not to overflow, the maximum number is 15
|
|
* which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
|
|
* Let's use 20 which provides 1MB size.
|
|
*/
|
|
dev->max_transfer_shift = 20;
|
|
}
|
|
|
|
free(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
|
|
{
|
|
struct nvme_ns *ns = dev_get_priv(udev);
|
|
|
|
if (ns_id)
|
|
*ns_id = ns->ns_id;
|
|
if (eui64)
|
|
memcpy(eui64, ns->eui64, sizeof(ns->eui64));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvme_scan_namespace(void)
|
|
{
|
|
struct uclass *uc;
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
ret = uclass_get(UCLASS_NVME, &uc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uclass_foreach_dev(dev, uc) {
|
|
ret = device_probe(dev);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_blk_probe(struct udevice *udev)
|
|
{
|
|
struct nvme_dev *ndev = dev_get_priv(udev->parent);
|
|
struct blk_desc *desc = dev_get_uclass_platdata(udev);
|
|
struct nvme_ns *ns = dev_get_priv(udev);
|
|
u8 flbas;
|
|
struct pci_child_platdata *pplat;
|
|
struct nvme_id_ns *id;
|
|
|
|
id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
|
|
if (!id)
|
|
return -ENOMEM;
|
|
|
|
memset(ns, 0, sizeof(*ns));
|
|
ns->dev = ndev;
|
|
/* extract the namespace id from the block device name */
|
|
ns->ns_id = trailing_strtol(udev->name) + 1;
|
|
if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
|
|
free(id);
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
|
|
flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
|
|
ns->flbas = flbas;
|
|
ns->lba_shift = id->lbaf[flbas].ds;
|
|
ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
|
|
ns->mode_select_block_len = 1 << ns->lba_shift;
|
|
list_add(&ns->list, &ndev->namespaces);
|
|
|
|
desc->lba = ns->mode_select_num_blocks;
|
|
desc->log2blksz = ns->lba_shift;
|
|
desc->blksz = 1 << ns->lba_shift;
|
|
desc->bdev = udev;
|
|
pplat = dev_get_parent_platdata(udev->parent);
|
|
sprintf(desc->vendor, "0x%.4x", pplat->vendor);
|
|
memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
|
|
memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
|
|
|
|
free(id);
|
|
return 0;
|
|
}
|
|
|
|
static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
|
|
lbaint_t blkcnt, void *buffer, bool read)
|
|
{
|
|
struct nvme_ns *ns = dev_get_priv(udev);
|
|
struct nvme_dev *dev = ns->dev;
|
|
struct nvme_command c;
|
|
struct blk_desc *desc = dev_get_uclass_platdata(udev);
|
|
int status;
|
|
u64 prp2;
|
|
u64 total_len = blkcnt << desc->log2blksz;
|
|
u64 temp_len = total_len;
|
|
|
|
u64 slba = blknr;
|
|
u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
|
|
u64 total_lbas = blkcnt;
|
|
|
|
flush_dcache_range((unsigned long)buffer,
|
|
(unsigned long)buffer + total_len);
|
|
|
|
c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
|
|
c.rw.flags = 0;
|
|
c.rw.nsid = cpu_to_le32(ns->ns_id);
|
|
c.rw.control = 0;
|
|
c.rw.dsmgmt = 0;
|
|
c.rw.reftag = 0;
|
|
c.rw.apptag = 0;
|
|
c.rw.appmask = 0;
|
|
c.rw.metadata = 0;
|
|
|
|
while (total_lbas) {
|
|
if (total_lbas < lbas) {
|
|
lbas = (u16)total_lbas;
|
|
total_lbas = 0;
|
|
} else {
|
|
total_lbas -= lbas;
|
|
}
|
|
|
|
if (nvme_setup_prps(dev, &prp2,
|
|
lbas << ns->lba_shift, (ulong)buffer))
|
|
return -EIO;
|
|
c.rw.slba = cpu_to_le64(slba);
|
|
slba += lbas;
|
|
c.rw.length = cpu_to_le16(lbas - 1);
|
|
c.rw.prp1 = cpu_to_le64((ulong)buffer);
|
|
c.rw.prp2 = cpu_to_le64(prp2);
|
|
status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
|
|
&c, NULL, IO_TIMEOUT);
|
|
if (status)
|
|
break;
|
|
temp_len -= (u32)lbas << ns->lba_shift;
|
|
buffer += lbas << ns->lba_shift;
|
|
}
|
|
|
|
if (read)
|
|
invalidate_dcache_range((unsigned long)buffer,
|
|
(unsigned long)buffer + total_len);
|
|
|
|
return (total_len - temp_len) >> desc->log2blksz;
|
|
}
|
|
|
|
static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
|
|
lbaint_t blkcnt, void *buffer)
|
|
{
|
|
return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
|
|
}
|
|
|
|
static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
|
|
lbaint_t blkcnt, const void *buffer)
|
|
{
|
|
return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
|
|
}
|
|
|
|
static const struct blk_ops nvme_blk_ops = {
|
|
.read = nvme_blk_read,
|
|
.write = nvme_blk_write,
|
|
};
|
|
|
|
U_BOOT_DRIVER(nvme_blk) = {
|
|
.name = "nvme-blk",
|
|
.id = UCLASS_BLK,
|
|
.probe = nvme_blk_probe,
|
|
.ops = &nvme_blk_ops,
|
|
.priv_auto_alloc_size = sizeof(struct nvme_ns),
|
|
};
|
|
|
|
static int nvme_bind(struct udevice *udev)
|
|
{
|
|
static int ndev_num;
|
|
char name[20];
|
|
|
|
sprintf(name, "nvme#%d", ndev_num++);
|
|
|
|
return device_set_name(udev, name);
|
|
}
|
|
|
|
static int nvme_probe(struct udevice *udev)
|
|
{
|
|
int ret;
|
|
struct nvme_dev *ndev = dev_get_priv(udev);
|
|
|
|
ndev->instance = trailing_strtol(udev->name);
|
|
|
|
INIT_LIST_HEAD(&ndev->namespaces);
|
|
ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
|
|
PCI_REGION_MEM);
|
|
if (readl(&ndev->bar->csts) == -1) {
|
|
ret = -ENODEV;
|
|
printf("Error: %s: Out of memory!\n", udev->name);
|
|
goto free_nvme;
|
|
}
|
|
|
|
ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
|
|
if (!ndev->queues) {
|
|
ret = -ENOMEM;
|
|
printf("Error: %s: Out of memory!\n", udev->name);
|
|
goto free_nvme;
|
|
}
|
|
memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
|
|
|
|
ndev->cap = nvme_readq(&ndev->bar->cap);
|
|
ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
|
|
ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
|
|
ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
|
|
|
|
ret = nvme_configure_admin_queue(ndev);
|
|
if (ret)
|
|
goto free_queue;
|
|
|
|
/* Allocate after the page size is known */
|
|
ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
|
|
if (!ndev->prp_pool) {
|
|
ret = -ENOMEM;
|
|
printf("Error: %s: Out of memory!\n", udev->name);
|
|
goto free_nvme;
|
|
}
|
|
ndev->prp_entry_num = MAX_PRP_POOL >> 3;
|
|
|
|
ret = nvme_setup_io_queues(ndev);
|
|
if (ret)
|
|
goto free_queue;
|
|
|
|
nvme_get_info_from_identify(ndev);
|
|
|
|
return 0;
|
|
|
|
free_queue:
|
|
free((void *)ndev->queues);
|
|
free_nvme:
|
|
return ret;
|
|
}
|
|
|
|
U_BOOT_DRIVER(nvme) = {
|
|
.name = "nvme",
|
|
.id = UCLASS_NVME,
|
|
.bind = nvme_bind,
|
|
.probe = nvme_probe,
|
|
.priv_auto_alloc_size = sizeof(struct nvme_dev),
|
|
};
|
|
|
|
struct pci_device_id nvme_supported[] = {
|
|
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
|
|
{}
|
|
};
|
|
|
|
U_BOOT_PCI_DEVICE(nvme, nvme_supported);
|