mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 06:00:43 +00:00
4cbb2930bd
The device tree may contain a /reserved-memory node. The no-map property of the sub-nodes signals if the memory may be accessed by the UEFI payload or not. In the EBBR specification (https://github.com/arm-software/ebbr) the modeling of the reserved memory has been clarified. If a reserved memory node in the device tree has the no-map property map, create a EfiReservedMemoryType memory map entry else use EfiBootServicesData. Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
729 lines
19 KiB
C
729 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* EFI application loader
|
|
*
|
|
* Copyright (c) 2016 Alexander Graf
|
|
*/
|
|
|
|
#define LOG_CATEGORY LOGC_EFI
|
|
|
|
#include <common.h>
|
|
#include <charset.h>
|
|
#include <command.h>
|
|
#include <dm.h>
|
|
#include <efi_loader.h>
|
|
#include <efi_selftest.h>
|
|
#include <env.h>
|
|
#include <errno.h>
|
|
#include <image.h>
|
|
#include <log.h>
|
|
#include <malloc.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/libfdt_env.h>
|
|
#include <mapmem.h>
|
|
#include <memalign.h>
|
|
#include <asm-generic/sections.h>
|
|
#include <linux/linkage.h>
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
static struct efi_device_path *bootefi_image_path;
|
|
static struct efi_device_path *bootefi_device_path;
|
|
|
|
/**
|
|
* efi_env_set_load_options() - set load options from environment variable
|
|
*
|
|
* @handle: the image handle
|
|
* @env_var: name of the environment variable
|
|
* @load_options: pointer to load options (output)
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t efi_env_set_load_options(efi_handle_t handle,
|
|
const char *env_var,
|
|
u16 **load_options)
|
|
{
|
|
const char *env = env_get(env_var);
|
|
size_t size;
|
|
u16 *pos;
|
|
efi_status_t ret;
|
|
|
|
*load_options = NULL;
|
|
if (!env)
|
|
return EFI_SUCCESS;
|
|
size = sizeof(u16) * (utf8_utf16_strlen(env) + 1);
|
|
pos = calloc(size, 1);
|
|
if (!pos)
|
|
return EFI_OUT_OF_RESOURCES;
|
|
*load_options = pos;
|
|
utf8_utf16_strcpy(&pos, env);
|
|
ret = efi_set_load_options(handle, size, *load_options);
|
|
if (ret != EFI_SUCCESS) {
|
|
free(*load_options);
|
|
*load_options = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#if !CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
|
|
|
|
/**
|
|
* copy_fdt() - Copy the device tree to a new location available to EFI
|
|
*
|
|
* The FDT is copied to a suitable location within the EFI memory map.
|
|
* Additional 12 KiB are added to the space in case the device tree needs to be
|
|
* expanded later with fdt_open_into().
|
|
*
|
|
* @fdtp: On entry a pointer to the flattened device tree.
|
|
* On exit a pointer to the copy of the flattened device tree.
|
|
* FDT start
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t copy_fdt(void **fdtp)
|
|
{
|
|
unsigned long fdt_ram_start = -1L, fdt_pages;
|
|
efi_status_t ret = 0;
|
|
void *fdt, *new_fdt;
|
|
u64 new_fdt_addr;
|
|
uint fdt_size;
|
|
int i;
|
|
|
|
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
|
|
u64 ram_start = gd->bd->bi_dram[i].start;
|
|
u64 ram_size = gd->bd->bi_dram[i].size;
|
|
|
|
if (!ram_size)
|
|
continue;
|
|
|
|
if (ram_start < fdt_ram_start)
|
|
fdt_ram_start = ram_start;
|
|
}
|
|
|
|
/*
|
|
* Give us at least 12 KiB of breathing room in case the device tree
|
|
* needs to be expanded later.
|
|
*/
|
|
fdt = *fdtp;
|
|
fdt_pages = efi_size_in_pages(fdt_totalsize(fdt) + 0x3000);
|
|
fdt_size = fdt_pages << EFI_PAGE_SHIFT;
|
|
|
|
/*
|
|
* Safe fdt location is at 127 MiB.
|
|
* On the sandbox convert from the sandbox address space.
|
|
*/
|
|
new_fdt_addr = (uintptr_t)map_sysmem(fdt_ram_start + 0x7f00000 +
|
|
fdt_size, 0);
|
|
ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
|
|
EFI_ACPI_RECLAIM_MEMORY, fdt_pages,
|
|
&new_fdt_addr);
|
|
if (ret != EFI_SUCCESS) {
|
|
/* If we can't put it there, put it somewhere */
|
|
new_fdt_addr = (ulong)memalign(EFI_PAGE_SIZE, fdt_size);
|
|
ret = efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
|
|
EFI_ACPI_RECLAIM_MEMORY, fdt_pages,
|
|
&new_fdt_addr);
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("ERROR: Failed to reserve space for FDT\n");
|
|
goto done;
|
|
}
|
|
}
|
|
new_fdt = (void *)(uintptr_t)new_fdt_addr;
|
|
memcpy(new_fdt, fdt, fdt_totalsize(fdt));
|
|
fdt_set_totalsize(new_fdt, fdt_size);
|
|
|
|
*fdtp = (void *)(uintptr_t)new_fdt_addr;
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* efi_reserve_memory() - add reserved memory to memory map
|
|
*
|
|
* @addr: start address of the reserved memory range
|
|
* @size: size of the reserved memory range
|
|
* @nomap: indicates that the memory range shall not be accessed by the
|
|
* UEFI payload
|
|
*/
|
|
static void efi_reserve_memory(u64 addr, u64 size, bool nomap)
|
|
{
|
|
int type;
|
|
efi_uintn_t ret;
|
|
|
|
/* Convert from sandbox address space. */
|
|
addr = (uintptr_t)map_sysmem(addr, 0);
|
|
|
|
if (nomap)
|
|
type = EFI_RESERVED_MEMORY_TYPE;
|
|
else
|
|
type = EFI_BOOT_SERVICES_DATA;
|
|
|
|
ret = efi_add_memory_map(addr, size, type);
|
|
if (ret != EFI_SUCCESS)
|
|
log_err("Reserved memory mapping failed addr %llx size %llx\n",
|
|
addr, size);
|
|
}
|
|
|
|
/**
|
|
* efi_carve_out_dt_rsv() - Carve out DT reserved memory ranges
|
|
*
|
|
* The mem_rsv entries of the FDT are added to the memory map. Any failures are
|
|
* ignored because this is not critical and we would rather continue to try to
|
|
* boot.
|
|
*
|
|
* @fdt: Pointer to device tree
|
|
*/
|
|
static void efi_carve_out_dt_rsv(void *fdt)
|
|
{
|
|
int nr_rsv, i;
|
|
u64 addr, size;
|
|
int nodeoffset, subnode;
|
|
|
|
nr_rsv = fdt_num_mem_rsv(fdt);
|
|
|
|
/* Look for an existing entry and add it to the efi mem map. */
|
|
for (i = 0; i < nr_rsv; i++) {
|
|
if (fdt_get_mem_rsv(fdt, i, &addr, &size) != 0)
|
|
continue;
|
|
efi_reserve_memory(addr, size, false);
|
|
}
|
|
|
|
/* process reserved-memory */
|
|
nodeoffset = fdt_subnode_offset(fdt, 0, "reserved-memory");
|
|
if (nodeoffset >= 0) {
|
|
subnode = fdt_first_subnode(fdt, nodeoffset);
|
|
while (subnode >= 0) {
|
|
fdt_addr_t fdt_addr;
|
|
fdt_size_t fdt_size;
|
|
|
|
/* check if this subnode has a reg property */
|
|
fdt_addr = fdtdec_get_addr_size_auto_parent(
|
|
fdt, nodeoffset, subnode,
|
|
"reg", 0, &fdt_size, false);
|
|
/*
|
|
* The /reserved-memory node may have children with
|
|
* a size instead of a reg property.
|
|
*/
|
|
if (fdt_addr != FDT_ADDR_T_NONE &&
|
|
fdtdec_get_is_enabled(fdt, subnode)) {
|
|
bool nomap;
|
|
|
|
nomap = !!fdt_getprop(fdt, subnode, "no-map",
|
|
NULL);
|
|
efi_reserve_memory(fdt_addr, fdt_size, nomap);
|
|
}
|
|
subnode = fdt_next_subnode(fdt, subnode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* get_config_table() - get configuration table
|
|
*
|
|
* @guid: GUID of the configuration table
|
|
* Return: pointer to configuration table or NULL
|
|
*/
|
|
static void *get_config_table(const efi_guid_t *guid)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < systab.nr_tables; i++) {
|
|
if (!guidcmp(guid, &systab.tables[i].guid))
|
|
return systab.tables[i].table;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* !CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE) */
|
|
|
|
/**
|
|
* efi_install_fdt() - install device tree
|
|
*
|
|
* If fdt is not EFI_FDT_USE_INTERNAL, the device tree located at that memory
|
|
* address will will be installed as configuration table, otherwise the device
|
|
* tree located at the address indicated by environment variable fdt_addr or as
|
|
* fallback fdtcontroladdr will be used.
|
|
*
|
|
* On architectures using ACPI tables device trees shall not be installed as
|
|
* configuration table.
|
|
*
|
|
* @fdt: address of device tree or EFI_FDT_USE_INTERNAL to use the
|
|
* the hardware device tree as indicated by environment variable
|
|
* fdt_addr or as fallback the internal device tree as indicated by
|
|
* the environment variable fdtcontroladdr
|
|
* Return: status code
|
|
*/
|
|
efi_status_t efi_install_fdt(void *fdt)
|
|
{
|
|
/*
|
|
* The EBBR spec requires that we have either an FDT or an ACPI table
|
|
* but not both.
|
|
*/
|
|
#if CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
|
|
if (fdt) {
|
|
log_err("ERROR: can't have ACPI table and device tree.\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
#else
|
|
bootm_headers_t img = { 0 };
|
|
efi_status_t ret;
|
|
|
|
if (fdt == EFI_FDT_USE_INTERNAL) {
|
|
const char *fdt_opt;
|
|
uintptr_t fdt_addr;
|
|
|
|
/* Look for device tree that is already installed */
|
|
if (get_config_table(&efi_guid_fdt))
|
|
return EFI_SUCCESS;
|
|
/* Check if there is a hardware device tree */
|
|
fdt_opt = env_get("fdt_addr");
|
|
/* Use our own device tree as fallback */
|
|
if (!fdt_opt) {
|
|
fdt_opt = env_get("fdtcontroladdr");
|
|
if (!fdt_opt) {
|
|
log_err("ERROR: need device tree\n");
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
}
|
|
fdt_addr = simple_strtoul(fdt_opt, NULL, 16);
|
|
if (!fdt_addr) {
|
|
log_err("ERROR: invalid $fdt_addr or $fdtcontroladdr\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
fdt = map_sysmem(fdt_addr, 0);
|
|
}
|
|
|
|
/* Install device tree */
|
|
if (fdt_check_header(fdt)) {
|
|
log_err("ERROR: invalid device tree\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
/* Prepare device tree for payload */
|
|
ret = copy_fdt(&fdt);
|
|
if (ret) {
|
|
log_err("ERROR: out of memory\n");
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (image_setup_libfdt(&img, fdt, 0, NULL)) {
|
|
log_err("ERROR: failed to process device tree\n");
|
|
return EFI_LOAD_ERROR;
|
|
}
|
|
|
|
/* Create memory reservations as indicated by the device tree */
|
|
efi_carve_out_dt_rsv(fdt);
|
|
|
|
/* Install device tree as UEFI table */
|
|
ret = efi_install_configuration_table(&efi_guid_fdt, fdt);
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("ERROR: failed to install device tree\n");
|
|
return ret;
|
|
}
|
|
#endif /* GENERATE_ACPI_TABLE */
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* do_bootefi_exec() - execute EFI binary
|
|
*
|
|
* The image indicated by @handle is started. When it returns the allocated
|
|
* memory for the @load_options is freed.
|
|
*
|
|
* @handle: handle of loaded image
|
|
* @load_options: load options
|
|
* Return: status code
|
|
*
|
|
* Load the EFI binary into a newly assigned memory unwinding the relocation
|
|
* information, install the loaded image protocol, and call the binary.
|
|
*/
|
|
static efi_status_t do_bootefi_exec(efi_handle_t handle, void *load_options)
|
|
{
|
|
efi_status_t ret;
|
|
efi_uintn_t exit_data_size = 0;
|
|
u16 *exit_data = NULL;
|
|
|
|
/* Call our payload! */
|
|
ret = EFI_CALL(efi_start_image(handle, &exit_data_size, &exit_data));
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("## Application failed, r = %lu\n",
|
|
ret & ~EFI_ERROR_MASK);
|
|
if (exit_data) {
|
|
log_err("## %ls\n", exit_data);
|
|
efi_free_pool(exit_data);
|
|
}
|
|
}
|
|
|
|
efi_restore_gd();
|
|
|
|
free(load_options);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* do_efibootmgr() - execute EFI boot manager
|
|
*
|
|
* Return: status code
|
|
*/
|
|
static int do_efibootmgr(void)
|
|
{
|
|
efi_handle_t handle;
|
|
efi_status_t ret;
|
|
void *load_options;
|
|
|
|
ret = efi_bootmgr_load(&handle, &load_options);
|
|
if (ret != EFI_SUCCESS) {
|
|
log_notice("EFI boot manager: Cannot load any image\n");
|
|
return CMD_RET_FAILURE;
|
|
}
|
|
|
|
ret = do_bootefi_exec(handle, load_options);
|
|
|
|
if (ret != EFI_SUCCESS)
|
|
return CMD_RET_FAILURE;
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* do_bootefi_image() - execute EFI binary
|
|
*
|
|
* Set up memory image for the binary to be loaded, prepare device path, and
|
|
* then call do_bootefi_exec() to execute it.
|
|
*
|
|
* @image_opt: string of image start address
|
|
* Return: status code
|
|
*/
|
|
static int do_bootefi_image(const char *image_opt)
|
|
{
|
|
void *image_buf;
|
|
unsigned long addr, size;
|
|
const char *size_str;
|
|
efi_status_t ret;
|
|
|
|
#ifdef CONFIG_CMD_BOOTEFI_HELLO
|
|
if (!strcmp(image_opt, "hello")) {
|
|
char *saddr;
|
|
|
|
saddr = env_get("loadaddr");
|
|
size = __efi_helloworld_end - __efi_helloworld_begin;
|
|
|
|
if (saddr)
|
|
addr = simple_strtoul(saddr, NULL, 16);
|
|
else
|
|
addr = CONFIG_SYS_LOAD_ADDR;
|
|
|
|
image_buf = map_sysmem(addr, size);
|
|
memcpy(image_buf, __efi_helloworld_begin, size);
|
|
|
|
efi_free_pool(bootefi_device_path);
|
|
efi_free_pool(bootefi_image_path);
|
|
bootefi_device_path = NULL;
|
|
bootefi_image_path = NULL;
|
|
} else
|
|
#endif
|
|
{
|
|
size_str = env_get("filesize");
|
|
if (size_str)
|
|
size = simple_strtoul(size_str, NULL, 16);
|
|
else
|
|
size = 0;
|
|
|
|
addr = simple_strtoul(image_opt, NULL, 16);
|
|
/* Check that a numeric value was passed */
|
|
if (!addr && *image_opt != '0')
|
|
return CMD_RET_USAGE;
|
|
|
|
image_buf = map_sysmem(addr, size);
|
|
}
|
|
ret = efi_run_image(image_buf, size);
|
|
|
|
if (ret != EFI_SUCCESS)
|
|
return CMD_RET_FAILURE;
|
|
|
|
return CMD_RET_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* efi_run_image() - run loaded UEFI image
|
|
*
|
|
* @source_buffer: memory address of the UEFI image
|
|
* @source_size: size of the UEFI image
|
|
* Return: status code
|
|
*/
|
|
efi_status_t efi_run_image(void *source_buffer, efi_uintn_t source_size)
|
|
{
|
|
efi_handle_t mem_handle = NULL, handle;
|
|
struct efi_device_path *file_path = NULL;
|
|
struct efi_device_path *msg_path;
|
|
efi_status_t ret;
|
|
u16 *load_options;
|
|
|
|
if (!bootefi_device_path || !bootefi_image_path) {
|
|
/*
|
|
* Special case for efi payload not loaded from disk,
|
|
* such as 'bootefi hello' or for example payload
|
|
* loaded directly into memory via JTAG, etc:
|
|
*/
|
|
file_path = efi_dp_from_mem(EFI_RESERVED_MEMORY_TYPE,
|
|
(uintptr_t)source_buffer,
|
|
source_size);
|
|
/*
|
|
* Make sure that device for device_path exist
|
|
* in load_image(). Otherwise, shell and grub will fail.
|
|
*/
|
|
ret = efi_create_handle(&mem_handle);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
ret = efi_add_protocol(mem_handle, &efi_guid_device_path,
|
|
file_path);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
msg_path = file_path;
|
|
} else {
|
|
file_path = efi_dp_append(bootefi_device_path,
|
|
bootefi_image_path);
|
|
msg_path = bootefi_image_path;
|
|
}
|
|
|
|
log_info("Booting %pD\n", msg_path);
|
|
|
|
ret = EFI_CALL(efi_load_image(false, efi_root, file_path, source_buffer,
|
|
source_size, &handle));
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("Loading image failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Transfer environment variable as load options */
|
|
ret = efi_env_set_load_options(handle, "bootargs", &load_options);
|
|
if (ret != EFI_SUCCESS)
|
|
goto out;
|
|
|
|
ret = do_bootefi_exec(handle, load_options);
|
|
|
|
out:
|
|
efi_delete_handle(mem_handle);
|
|
efi_free_pool(file_path);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
|
|
static efi_status_t bootefi_run_prepare(const char *load_options_path,
|
|
struct efi_device_path *device_path,
|
|
struct efi_device_path *image_path,
|
|
struct efi_loaded_image_obj **image_objp,
|
|
struct efi_loaded_image **loaded_image_infop)
|
|
{
|
|
efi_status_t ret;
|
|
u16 *load_options;
|
|
|
|
ret = efi_setup_loaded_image(device_path, image_path, image_objp,
|
|
loaded_image_infop);
|
|
if (ret != EFI_SUCCESS)
|
|
return ret;
|
|
|
|
/* Transfer environment variable as load options */
|
|
return efi_env_set_load_options((efi_handle_t)*image_objp,
|
|
load_options_path,
|
|
&load_options);
|
|
}
|
|
|
|
/**
|
|
* bootefi_test_prepare() - prepare to run an EFI test
|
|
*
|
|
* Prepare to run a test as if it were provided by a loaded image.
|
|
*
|
|
* @image_objp: pointer to be set to the loaded image handle
|
|
* @loaded_image_infop: pointer to be set to the loaded image protocol
|
|
* @path: dummy file path used to construct the device path
|
|
* set in the loaded image protocol
|
|
* @load_options_path: name of a U-Boot environment variable. Its value is
|
|
* set as load options in the loaded image protocol.
|
|
* Return: status code
|
|
*/
|
|
static efi_status_t bootefi_test_prepare
|
|
(struct efi_loaded_image_obj **image_objp,
|
|
struct efi_loaded_image **loaded_image_infop, const char *path,
|
|
const char *load_options_path)
|
|
{
|
|
efi_status_t ret;
|
|
|
|
/* Construct a dummy device path */
|
|
bootefi_device_path = efi_dp_from_mem(EFI_RESERVED_MEMORY_TYPE, 0, 0);
|
|
if (!bootefi_device_path)
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
bootefi_image_path = efi_dp_from_file(NULL, 0, path);
|
|
if (!bootefi_image_path) {
|
|
ret = EFI_OUT_OF_RESOURCES;
|
|
goto failure;
|
|
}
|
|
|
|
ret = bootefi_run_prepare(load_options_path, bootefi_device_path,
|
|
bootefi_image_path, image_objp,
|
|
loaded_image_infop);
|
|
if (ret == EFI_SUCCESS)
|
|
return ret;
|
|
|
|
efi_free_pool(bootefi_image_path);
|
|
bootefi_image_path = NULL;
|
|
failure:
|
|
efi_free_pool(bootefi_device_path);
|
|
bootefi_device_path = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bootefi_run_finish() - finish up after running an EFI test
|
|
*
|
|
* @loaded_image_info: Pointer to a struct which holds the loaded image info
|
|
* @image_obj: Pointer to a struct which holds the loaded image object
|
|
*/
|
|
static void bootefi_run_finish(struct efi_loaded_image_obj *image_obj,
|
|
struct efi_loaded_image *loaded_image_info)
|
|
{
|
|
efi_restore_gd();
|
|
free(loaded_image_info->load_options);
|
|
efi_delete_handle(&image_obj->header);
|
|
}
|
|
|
|
/**
|
|
* do_efi_selftest() - execute EFI selftest
|
|
*
|
|
* Return: status code
|
|
*/
|
|
static int do_efi_selftest(void)
|
|
{
|
|
struct efi_loaded_image_obj *image_obj;
|
|
struct efi_loaded_image *loaded_image_info;
|
|
efi_status_t ret;
|
|
|
|
ret = bootefi_test_prepare(&image_obj, &loaded_image_info,
|
|
"\\selftest", "efi_selftest");
|
|
if (ret != EFI_SUCCESS)
|
|
return CMD_RET_FAILURE;
|
|
|
|
/* Execute the test */
|
|
ret = EFI_CALL(efi_selftest(&image_obj->header, &systab));
|
|
bootefi_run_finish(image_obj, loaded_image_info);
|
|
|
|
return ret != EFI_SUCCESS;
|
|
}
|
|
#endif /* CONFIG_CMD_BOOTEFI_SELFTEST */
|
|
|
|
/**
|
|
* do_bootefi() - execute `bootefi` command
|
|
*
|
|
* @cmdtp: table entry describing command
|
|
* @flag: bitmap indicating how the command was invoked
|
|
* @argc: number of arguments
|
|
* @argv: command line arguments
|
|
* Return: status code
|
|
*/
|
|
static int do_bootefi(struct cmd_tbl *cmdtp, int flag, int argc,
|
|
char *const argv[])
|
|
{
|
|
efi_status_t ret;
|
|
void *fdt;
|
|
|
|
if (argc < 2)
|
|
return CMD_RET_USAGE;
|
|
|
|
/* Initialize EFI drivers */
|
|
ret = efi_init_obj_list();
|
|
if (ret != EFI_SUCCESS) {
|
|
log_err("Error: Cannot initialize UEFI sub-system, r = %lu\n",
|
|
ret & ~EFI_ERROR_MASK);
|
|
return CMD_RET_FAILURE;
|
|
}
|
|
|
|
if (argc > 2) {
|
|
uintptr_t fdt_addr;
|
|
|
|
fdt_addr = simple_strtoul(argv[2], NULL, 16);
|
|
fdt = map_sysmem(fdt_addr, 0);
|
|
} else {
|
|
fdt = EFI_FDT_USE_INTERNAL;
|
|
}
|
|
ret = efi_install_fdt(fdt);
|
|
if (ret == EFI_INVALID_PARAMETER)
|
|
return CMD_RET_USAGE;
|
|
else if (ret != EFI_SUCCESS)
|
|
return CMD_RET_FAILURE;
|
|
|
|
if (!strcmp(argv[1], "bootmgr"))
|
|
return do_efibootmgr();
|
|
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
|
|
else if (!strcmp(argv[1], "selftest"))
|
|
return do_efi_selftest();
|
|
#endif
|
|
|
|
return do_bootefi_image(argv[1]);
|
|
}
|
|
|
|
#ifdef CONFIG_SYS_LONGHELP
|
|
static char bootefi_help_text[] =
|
|
"<image address> [fdt address]\n"
|
|
" - boot EFI payload stored at address <image address>.\n"
|
|
" If specified, the device tree located at <fdt address> gets\n"
|
|
" exposed as EFI configuration table.\n"
|
|
#ifdef CONFIG_CMD_BOOTEFI_HELLO
|
|
"bootefi hello\n"
|
|
" - boot a sample Hello World application stored within U-Boot\n"
|
|
#endif
|
|
#ifdef CONFIG_CMD_BOOTEFI_SELFTEST
|
|
"bootefi selftest [fdt address]\n"
|
|
" - boot an EFI selftest application stored within U-Boot\n"
|
|
" Use environment variable efi_selftest to select a single test.\n"
|
|
" Use 'setenv efi_selftest list' to enumerate all tests.\n"
|
|
#endif
|
|
"bootefi bootmgr [fdt address]\n"
|
|
" - load and boot EFI payload based on BootOrder/BootXXXX variables.\n"
|
|
"\n"
|
|
" If specified, the device tree located at <fdt address> gets\n"
|
|
" exposed as EFI configuration table.\n";
|
|
#endif
|
|
|
|
U_BOOT_CMD(
|
|
bootefi, 3, 0, do_bootefi,
|
|
"Boots an EFI payload from memory",
|
|
bootefi_help_text
|
|
);
|
|
|
|
/**
|
|
* efi_set_bootdev() - set boot device
|
|
*
|
|
* This function is called when a file is loaded, e.g. via the 'load' command.
|
|
* We use the path to this file to inform the UEFI binary about the boot device.
|
|
*
|
|
* @dev: device, e.g. "MMC"
|
|
* @devnr: number of the device, e.g. "1:2"
|
|
* @path: path to file loaded
|
|
*/
|
|
void efi_set_bootdev(const char *dev, const char *devnr, const char *path)
|
|
{
|
|
struct efi_device_path *device, *image;
|
|
efi_status_t ret;
|
|
|
|
/* efi_set_bootdev is typically called repeatedly, recover memory */
|
|
efi_free_pool(bootefi_device_path);
|
|
efi_free_pool(bootefi_image_path);
|
|
|
|
ret = efi_dp_from_name(dev, devnr, path, &device, &image);
|
|
if (ret == EFI_SUCCESS) {
|
|
bootefi_device_path = device;
|
|
if (image) {
|
|
/* FIXME: image should not contain device */
|
|
struct efi_device_path *image_tmp = image;
|
|
|
|
efi_dp_split_file_path(image, &device, &image);
|
|
efi_free_pool(image_tmp);
|
|
}
|
|
bootefi_image_path = image;
|
|
} else {
|
|
bootefi_device_path = NULL;
|
|
bootefi_image_path = NULL;
|
|
}
|
|
}
|