u-boot/cpu/mpc85xx/spd_sdram.c
wdenk 384cc68744 Patches by Josef Wagner, 29 Oct 2004:
- Add support for MicroSys CPU87 board
- Add support for MicroSys PM854 board
2005-04-03 22:35:21 +00:00

460 lines
11 KiB
C

/*
* Copyright 2004 Freescale Semiconductor.
* (C) Copyright 2003 Motorola Inc.
* Xianghua Xiao (X.Xiao@motorola.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#if defined(CONFIG_DDR_ECC)
extern void dma_init (void);
extern uint dma_check(void);
extern int dma_xfer (void *dest, uint count, void *src);
#endif
#ifdef CONFIG_SPD_EEPROM
#ifndef CFG_READ_SPD
#define CFG_READ_SPD i2c_read
#endif
/*
* Convert picoseconds into clock cycles (rounding up if needed).
*/
int
picos_to_clk(int picos)
{
int clks;
clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
clks++;
}
return clks;
}
unsigned int
banksize(unsigned char row_dens)
{
return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}
long int
spd_sdram(void)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr = &immap->im_ddr;
volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
spd_eeprom_t spd;
unsigned tmp, tmp1;
unsigned int memsize;
unsigned int tlb_size;
unsigned int law_size;
unsigned char caslat;
unsigned int ram_tlb_index;
unsigned int ram_tlb_address;
CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
if (spd.nrows > 2) {
puts("DDR:Only two chip selects are supported on ADS.\n");
return 0;
}
if (spd.nrow_addr < 12
|| spd.nrow_addr > 14
|| spd.ncol_addr < 8
|| spd.ncol_addr > 11) {
puts("DDR:Row or Col number unsupported.\n");
return 0;
}
ddr->cs0_bnds = (banksize(spd.row_dens) >> 24) - 1;
ddr->cs0_config = ( 1 << 31
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("\n");
debug("cs0_bnds = 0x%08x\n",ddr->cs0_bnds);
debug("cs0_config = 0x%08x\n",ddr->cs0_config);
if (spd.nrows == 2) {
ddr->cs1_bnds = ( (banksize(spd.row_dens) >> 8)
| ((banksize(spd.row_dens) >> 23) - 1) );
ddr->cs1_config = ( 1<<31
| (spd.nrow_addr-12) << 8
| (spd.ncol_addr-8) );
debug("cs1_bnds = 0x%08x\n",ddr->cs1_bnds);
debug("cs1_config = 0x%08x\n",ddr->cs1_config);
}
if (spd.mem_type != 0x07) {
puts("No DDR module found!\n");
return 0;
}
/*
* Figure out memory size in Megabytes.
*/
memsize = spd.nrows * banksize(spd.row_dens) / 0x100000;
/*
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
*/
law_size = 19 + __ilog2(memsize);
/*
* Determine size of each TLB1 entry.
*/
switch (memsize) {
case 16:
case 32:
tlb_size = BOOKE_PAGESZ_16M;
break;
case 64:
case 128:
tlb_size = BOOKE_PAGESZ_64M;
break;
case 256:
case 512:
case 1024:
case 2048:
tlb_size = BOOKE_PAGESZ_256M;
break;
default:
puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G DDR I are supported.\n");
return 0;
break;
}
/*
* Configure DDR TLB1 entries.
* Starting at TLB1 8, use no more than 8 TLB1 entries.
*/
ram_tlb_index = 8;
ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
while (ram_tlb_address < (memsize * 1024 * 1024)
&& ram_tlb_index < 16) {
mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
0, 0, 0, 0, 0, 0, 0, 0));
mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
asm volatile("isync;msync;tlbwe;isync");
debug("DDR:MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
debug("DDR:MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
debug("DDR:MAS2=0x%08x\n",
TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
0, 0, 0, 0, 0, 0, 0, 0));
debug("DDR:MAS3=0x%08x\n",
TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
ram_tlb_index++;
}
/*
* Set up LAWBAR for all of DDR.
*/
ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
ecm->lawar1 = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
debug("DDR:LAWBAR1=0x%08x\n", ecm->lawbar1);
debug("DDR:LARAR1=0x%08x\n", ecm->lawar1);
/*
* find the largest CAS
*/
if(spd.cas_lat & 0x40) {
caslat = 7;
} else if (spd.cas_lat & 0x20) {
caslat = 6;
} else if (spd.cas_lat & 0x10) {
caslat = 5;
} else if (spd.cas_lat & 0x08) {
caslat = 4;
} else if (spd.cas_lat & 0x04) {
caslat = 3;
} else if (spd.cas_lat & 0x02) {
caslat = 2;
} else if (spd.cas_lat & 0x01) {
caslat = 1;
} else {
puts("DDR:no valid CAS Latency information.\n");
return 0;
}
tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10
+ (spd.clk_cycle & 0x0f));
debug("DDR:Module maximum data rate is: %dMhz\n", tmp);
tmp1 = get_bus_freq(0) / 1000000;
if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) {
/* 90~230 range, treated as DDR 200 */
if (spd.clk_cycle3 == 0xa0)
caslat -= 2;
else if(spd.clk_cycle2 == 0xa0)
caslat--;
} else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) {
/* 230-280 range, treated as DDR 266 */
if (spd.clk_cycle3 == 0x75)
caslat -= 2;
else if (spd.clk_cycle2 == 0x75)
caslat--;
} else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) {
/* 280~350 range, treated as DDR 333 */
if (spd.clk_cycle3 == 0x60)
caslat -= 2;
else if (spd.clk_cycle2 == 0x60)
caslat--;
} else if (tmp1 < 90 || tmp1 >= 350) {
/* DDR rate out-of-range */
puts("DDR:platform frequency is not fit for DDR rate\n");
return 0;
}
/*
* note: caslat must also be programmed into ddr->sdram_mode
* register.
*
* note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,
* use conservative value here.
*/
ddr->timing_cfg_1 =
(((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |
((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) |
((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) |
((caslat & 0x07) << 16 ) |
(((picos_to_clk(spd.sset[6] * 1000) - 8) & 0x0f) << 12 ) |
( 0x300 ) |
((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1);
ddr->timing_cfg_2 = 0x00000800;
debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
/*
* Only DDR I is supported
* DDR I and II have different mode-register-set definition
*/
/* burst length is always 4 */
switch(caslat) {
case 2:
ddr->sdram_mode = 0x52; /* 1.5 */
break;
case 3:
ddr->sdram_mode = 0x22; /* 2.0 */
break;
case 4:
ddr->sdram_mode = 0x62; /* 2.5 */
break;
case 5:
ddr->sdram_mode = 0x32; /* 3.0 */
break;
default:
puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n");
return 0;
}
debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
switch(spd.refresh) {
case 0x00:
case 0x80:
tmp = picos_to_clk(15625000);
break;
case 0x01:
case 0x81:
tmp = picos_to_clk(3900000);
break;
case 0x02:
case 0x82:
tmp = picos_to_clk(7800000);
break;
case 0x03:
case 0x83:
tmp = picos_to_clk(31300000);
break;
case 0x04:
case 0x84:
tmp = picos_to_clk(62500000);
break;
case 0x05:
case 0x85:
tmp = picos_to_clk(125000000);
break;
default:
tmp = 0x512;
break;
}
/*
* Set BSTOPRE to 0x100 for page mode
* If auto-charge is used, set BSTOPRE = 0
*/
ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
/*
* Is this an ECC DDR chip?
*/
#if defined(CONFIG_DDR_ECC)
if (spd.config == 0x02) {
ddr->err_disable = 0x0000000d;
ddr->err_sbe = 0x00ff0000;
}
debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
asm("sync;isync;msync");
udelay(500);
#ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
/* Setup the clock control (8555 and later)
* SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
* SDRAM_CLK_CNTL[5-7] = Clock Adjust == 3 (3/4 cycle late)
*/
ddr->sdram_clk_cntl = 0x83000000;
#endif
/*
* Figure out the settings for the sdram_cfg register. Build up
* the entire register in 'tmp' before writing since the write into
* the register will actually enable the memory controller, and all
* settings must be done before enabling.
*
* sdram_cfg[0] = 1 (ddr sdram logic enable)
* sdram_cfg[1] = 1 (self-refresh-enable)
* sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
*/
tmp = 0xc2000000;
/*
* sdram_cfg[3] = RD_EN - registered DIMM enable
* A value of 0x26 indicates micron registered DIMMS (micron.com)
*/
if (spd.mod_attr == 0x26) {
tmp |= 0x10000000;
}
#if defined(CONFIG_DDR_ECC)
/*
* If the user wanted ECC (enabled via sdram_cfg[2])
*/
if (spd.config == 0x02) {
tmp |= 0x20000000;
}
#endif
/*
* REV1 uses 1T timing.
* REV2 may use 1T or 2T as configured by the user.
*/
{
uint pvr = get_pvr();
if (pvr != PVR_85xx_REV1) {
#if defined(CONFIG_DDR_2T_TIMING)
/*
* Enable 2T timing by setting sdram_cfg[16].
*/
tmp |= 0x8000;
#endif
}
}
ddr->sdram_cfg = tmp;
asm("sync;isync;msync");
udelay(500);
debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
return memsize * 1024 * 1024;
}
#endif /* CONFIG_SPD_EEPROM */
#if defined(CONFIG_DDR_ECC)
/*
* Initialize all of memory for ECC, then enable errors.
*/
void
ddr_enable_ecc(unsigned int dram_size)
{
uint *p = 0;
uint i = 0;
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile ccsr_ddr_t *ddr= &immap->im_ddr;
dma_init();
for (*p = 0; p < (uint *)(8 * 1024); p++) {
if (((unsigned int)p & 0x1f) == 0) {
ppcDcbz((unsigned long) p);
}
*p = (unsigned int)0xdeadbeef;
if (((unsigned int)p & 0x1c) == 0x1c) {
ppcDcbf((unsigned long) p);
}
}
/* 8K */
dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
/* 16K */
dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
/* 32K */
dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
/* 64K */
dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
/* 128k */
dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
/* 256k */
dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
/* 512k */
dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
/* 1M */
dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
/* 2M */
dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
/* 4M */
dma_xfer((uint *)0x400000, 0x400000, (uint *)0);
for (i = 1; i < dram_size / 0x800000; i++) {
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
}
/*
* Enable errors for ECC.
*/
ddr->err_disable = 0x00000000;
asm("sync;isync;msync");
}
#endif /* CONFIG_DDR_ECC */