mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-19 16:44:30 +00:00
f7ae49fc4f
Move this header out of the common header. Signed-off-by: Simon Glass <sjg@chromium.org>
3150 lines
65 KiB
C
3150 lines
65 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Porting to u-boot:
|
|
*
|
|
* (C) Copyright 2010
|
|
* Stefano Babic, DENX Software Engineering, sbabic@denx.de.
|
|
*
|
|
* Lattice ispVME Embedded code to load Lattice's FPGA:
|
|
*
|
|
* Copyright 2009 Lattice Semiconductor Corp.
|
|
*
|
|
* ispVME Embedded allows programming of Lattice's suite of FPGA
|
|
* devices on embedded systems through the JTAG port. The software
|
|
* is distributed in source code form and is open to re - distribution
|
|
* and modification where applicable.
|
|
*
|
|
* Revision History of ivm_core.c module:
|
|
* 4/25/06 ht Change some variables from unsigned short or int
|
|
* to long int to make the code compiler independent.
|
|
* 5/24/06 ht Support using RESET (TRST) pin as a special purpose
|
|
* control pin such as triggering the loading of known
|
|
* state exit.
|
|
* 3/6/07 ht added functions to support output to terminals
|
|
*
|
|
* 09/11/07 NN Type cast mismatch variables
|
|
* Moved the sclock() function to hardware.c
|
|
* 08/28/08 NN Added Calculate checksum support.
|
|
* 4/1/09 Nguyen replaced the recursive function call codes on
|
|
* the ispVMLCOUNT function
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <log.h>
|
|
#include <linux/string.h>
|
|
#include <malloc.h>
|
|
#include <lattice.h>
|
|
|
|
#define vme_out_char(c) printf("%c", c)
|
|
#define vme_out_hex(c) printf("%x", c)
|
|
#define vme_out_string(s) printf("%s", s)
|
|
|
|
/*
|
|
*
|
|
* Global variables used to specify the flow control and data type.
|
|
*
|
|
* g_usFlowControl: flow control register. Each bit in the
|
|
* register can potentially change the
|
|
* personality of the embedded engine.
|
|
* g_usDataType: holds the data type of the current row.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usFlowControl;
|
|
unsigned short g_usDataType;
|
|
|
|
/*
|
|
*
|
|
* Global variables used to specify the ENDDR and ENDIR.
|
|
*
|
|
* g_ucEndDR: the state that the device goes to after SDR.
|
|
* g_ucEndIR: the state that the device goes to after SIR.
|
|
*
|
|
*/
|
|
|
|
unsigned char g_ucEndDR = DRPAUSE;
|
|
unsigned char g_ucEndIR = IRPAUSE;
|
|
|
|
/*
|
|
*
|
|
* Global variables used to support header/trailer.
|
|
*
|
|
* g_usHeadDR: the number of lead devices in bypass.
|
|
* g_usHeadIR: the sum of IR length of lead devices.
|
|
* g_usTailDR: the number of tail devices in bypass.
|
|
* g_usTailIR: the sum of IR length of tail devices.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usHeadDR;
|
|
static unsigned short g_usHeadIR;
|
|
static unsigned short g_usTailDR;
|
|
static unsigned short g_usTailIR;
|
|
|
|
/*
|
|
*
|
|
* Global variable to store the number of bits of data or instruction
|
|
* to be shifted into or out from the device.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usiDataSize;
|
|
|
|
/*
|
|
*
|
|
* Stores the frequency. Default to 1 MHz.
|
|
*
|
|
*/
|
|
|
|
static int g_iFrequency = 1000;
|
|
|
|
/*
|
|
*
|
|
* Stores the maximum amount of ram needed to hold a row of data.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usMaxSize;
|
|
|
|
/*
|
|
*
|
|
* Stores the LSH or RSH value.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usShiftValue;
|
|
|
|
/*
|
|
*
|
|
* Stores the current repeat loop value.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usRepeatLoops;
|
|
|
|
/*
|
|
*
|
|
* Stores the current vendor.
|
|
*
|
|
*/
|
|
|
|
static signed char g_cVendor = LATTICE;
|
|
|
|
/*
|
|
*
|
|
* Stores the VME file CRC.
|
|
*
|
|
*/
|
|
|
|
unsigned short g_usCalculatedCRC;
|
|
|
|
/*
|
|
*
|
|
* Stores the Device Checksum.
|
|
*
|
|
*/
|
|
/* 08/28/08 NN Added Calculate checksum support. */
|
|
unsigned long g_usChecksum;
|
|
static unsigned int g_uiChecksumIndex;
|
|
|
|
/*
|
|
*
|
|
* Stores the current state of the JTAG state machine.
|
|
*
|
|
*/
|
|
|
|
static signed char g_cCurrentJTAGState;
|
|
|
|
/*
|
|
*
|
|
* Global variables used to support looping.
|
|
*
|
|
* g_pucHeapMemory: holds the entire repeat loop.
|
|
* g_iHeapCounter: points to the current byte in the repeat loop.
|
|
* g_iHEAPSize: the current size of the repeat in bytes.
|
|
*
|
|
*/
|
|
|
|
unsigned char *g_pucHeapMemory;
|
|
unsigned short g_iHeapCounter;
|
|
unsigned short g_iHEAPSize;
|
|
static unsigned short previous_size;
|
|
|
|
/*
|
|
*
|
|
* Global variables used to support intelligent programming.
|
|
*
|
|
* g_usIntelDataIndex: points to the current byte of the
|
|
* intelligent buffer.
|
|
* g_usIntelBufferSize: holds the size of the intelligent
|
|
* buffer.
|
|
*
|
|
*/
|
|
|
|
unsigned short g_usIntelDataIndex;
|
|
unsigned short g_usIntelBufferSize;
|
|
|
|
/*
|
|
*
|
|
* Supported VME versions.
|
|
*
|
|
*/
|
|
|
|
const char *const g_szSupportedVersions[] = {
|
|
"__VME2.0", "__VME3.0", "____12.0", "____12.1", 0};
|
|
|
|
/*
|
|
*
|
|
* Holds the maximum size of each respective buffer. These variables are used
|
|
* to write the HEX files when converting VME to HEX.
|
|
*
|
|
*/
|
|
|
|
static unsigned short g_usTDOSize;
|
|
static unsigned short g_usMASKSize;
|
|
static unsigned short g_usTDISize;
|
|
static unsigned short g_usDMASKSize;
|
|
static unsigned short g_usLCOUNTSize;
|
|
static unsigned short g_usHDRSize;
|
|
static unsigned short g_usTDRSize;
|
|
static unsigned short g_usHIRSize;
|
|
static unsigned short g_usTIRSize;
|
|
static unsigned short g_usHeapSize;
|
|
|
|
/*
|
|
*
|
|
* Global variables used to store data.
|
|
*
|
|
* g_pucOutMaskData: local RAM to hold one row of MASK data.
|
|
* g_pucInData: local RAM to hold one row of TDI data.
|
|
* g_pucOutData: local RAM to hold one row of TDO data.
|
|
* g_pucHIRData: local RAM to hold the current SIR header.
|
|
* g_pucTIRData: local RAM to hold the current SIR trailer.
|
|
* g_pucHDRData: local RAM to hold the current SDR header.
|
|
* g_pucTDRData: local RAM to hold the current SDR trailer.
|
|
* g_pucIntelBuffer: local RAM to hold the current intelligent buffer
|
|
* g_pucOutDMaskData: local RAM to hold one row of DMASK data.
|
|
*
|
|
*/
|
|
|
|
unsigned char *g_pucOutMaskData = NULL,
|
|
*g_pucInData = NULL,
|
|
*g_pucOutData = NULL,
|
|
*g_pucHIRData = NULL,
|
|
*g_pucTIRData = NULL,
|
|
*g_pucHDRData = NULL,
|
|
*g_pucTDRData = NULL,
|
|
*g_pucIntelBuffer = NULL,
|
|
*g_pucOutDMaskData = NULL;
|
|
|
|
/*
|
|
*
|
|
* JTAG state machine transition table.
|
|
*
|
|
*/
|
|
|
|
struct {
|
|
unsigned char CurState; /* From this state */
|
|
unsigned char NextState; /* Step to this state */
|
|
unsigned char Pattern; /* The tragetory of TMS */
|
|
unsigned char Pulses; /* The number of steps */
|
|
} g_JTAGTransistions[25] = {
|
|
{ RESET, RESET, 0xFC, 6 }, /* Transitions from RESET */
|
|
{ RESET, IDLE, 0x00, 1 },
|
|
{ RESET, DRPAUSE, 0x50, 5 },
|
|
{ RESET, IRPAUSE, 0x68, 6 },
|
|
{ IDLE, RESET, 0xE0, 3 }, /* Transitions from IDLE */
|
|
{ IDLE, DRPAUSE, 0xA0, 4 },
|
|
{ IDLE, IRPAUSE, 0xD0, 5 },
|
|
{ DRPAUSE, RESET, 0xF8, 5 }, /* Transitions from DRPAUSE */
|
|
{ DRPAUSE, IDLE, 0xC0, 3 },
|
|
{ DRPAUSE, IRPAUSE, 0xF4, 7 },
|
|
{ DRPAUSE, DRPAUSE, 0xE8, 6 },/* 06/14/06 Support POLL STATUS LOOP*/
|
|
{ IRPAUSE, RESET, 0xF8, 5 }, /* Transitions from IRPAUSE */
|
|
{ IRPAUSE, IDLE, 0xC0, 3 },
|
|
{ IRPAUSE, DRPAUSE, 0xE8, 6 },
|
|
{ DRPAUSE, SHIFTDR, 0x80, 2 }, /* Extra transitions using SHIFTDR */
|
|
{ IRPAUSE, SHIFTDR, 0xE0, 5 },
|
|
{ SHIFTDR, DRPAUSE, 0x80, 2 },
|
|
{ SHIFTDR, IDLE, 0xC0, 3 },
|
|
{ IRPAUSE, SHIFTIR, 0x80, 2 },/* Extra transitions using SHIFTIR */
|
|
{ SHIFTIR, IRPAUSE, 0x80, 2 },
|
|
{ SHIFTIR, IDLE, 0xC0, 3 },
|
|
{ DRPAUSE, DRCAPTURE, 0xE0, 4 }, /* 11/15/05 Support DRCAPTURE*/
|
|
{ DRCAPTURE, DRPAUSE, 0x80, 2 },
|
|
{ IDLE, DRCAPTURE, 0x80, 2 },
|
|
{ IRPAUSE, DRCAPTURE, 0xE0, 4 }
|
|
};
|
|
|
|
/*
|
|
*
|
|
* List to hold all LVDS pairs.
|
|
*
|
|
*/
|
|
|
|
LVDSPair *g_pLVDSList;
|
|
unsigned short g_usLVDSPairCount;
|
|
|
|
/*
|
|
*
|
|
* Function prototypes.
|
|
*
|
|
*/
|
|
|
|
static signed char ispVMDataCode(void);
|
|
static long int ispVMDataSize(void);
|
|
static void ispVMData(unsigned char *Data);
|
|
static signed char ispVMShift(signed char Code);
|
|
static signed char ispVMAmble(signed char Code);
|
|
static signed char ispVMLoop(unsigned short a_usLoopCount);
|
|
static signed char ispVMBitShift(signed char mode, unsigned short bits);
|
|
static void ispVMComment(unsigned short a_usCommentSize);
|
|
static void ispVMHeader(unsigned short a_usHeaderSize);
|
|
static signed char ispVMLCOUNT(unsigned short a_usCountSize);
|
|
static void ispVMClocks(unsigned short Clocks);
|
|
static void ispVMBypass(signed char ScanType, unsigned short Bits);
|
|
static void ispVMStateMachine(signed char NextState);
|
|
static signed char ispVMSend(unsigned short int);
|
|
static signed char ispVMRead(unsigned short int);
|
|
static signed char ispVMReadandSave(unsigned short int);
|
|
static signed char ispVMProcessLVDS(unsigned short a_usLVDSCount);
|
|
static void ispVMMemManager(signed char types, unsigned short size);
|
|
|
|
/*
|
|
*
|
|
* External variables and functions in hardware.c module
|
|
*
|
|
*/
|
|
static signed char g_cCurrentJTAGState;
|
|
|
|
#ifdef DEBUG
|
|
|
|
/*
|
|
*
|
|
* GetState
|
|
*
|
|
* Returns the state as a string based on the opcode. Only used
|
|
* for debugging purposes.
|
|
*
|
|
*/
|
|
|
|
const char *GetState(unsigned char a_ucState)
|
|
{
|
|
switch (a_ucState) {
|
|
case RESET:
|
|
return "RESET";
|
|
case IDLE:
|
|
return "IDLE";
|
|
case IRPAUSE:
|
|
return "IRPAUSE";
|
|
case DRPAUSE:
|
|
return "DRPAUSE";
|
|
case SHIFTIR:
|
|
return "SHIFTIR";
|
|
case SHIFTDR:
|
|
return "SHIFTDR";
|
|
case DRCAPTURE:/* 11/15/05 support DRCAPTURE*/
|
|
return "DRCAPTURE";
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* PrintData
|
|
*
|
|
* Prints the data. Only used for debugging purposes.
|
|
*
|
|
*/
|
|
|
|
void PrintData(unsigned short a_iDataSize, unsigned char *a_pucData)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short usByteSize = 0;
|
|
unsigned short usBitIndex = 0;
|
|
signed short usByteIndex = 0;
|
|
unsigned char ucByte = 0;
|
|
unsigned char ucFlipByte = 0;
|
|
|
|
if (a_iDataSize % 8) {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usByteSize = (unsigned short)(a_iDataSize / 8 + 1);
|
|
} else {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usByteSize = (unsigned short)(a_iDataSize / 8);
|
|
}
|
|
puts("(");
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
for (usByteIndex = (signed short)(usByteSize - 1);
|
|
usByteIndex >= 0; usByteIndex--) {
|
|
ucByte = a_pucData[usByteIndex];
|
|
ucFlipByte = 0x00;
|
|
|
|
/*
|
|
*
|
|
* Flip each byte.
|
|
*
|
|
*/
|
|
|
|
for (usBitIndex = 0; usBitIndex < 8; usBitIndex++) {
|
|
ucFlipByte <<= 1;
|
|
if (ucByte & 0x1) {
|
|
ucFlipByte |= 0x1;
|
|
}
|
|
|
|
ucByte >>= 1;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Print the flipped byte.
|
|
*
|
|
*/
|
|
|
|
printf("%.02X", ucFlipByte);
|
|
if ((usByteSize - usByteIndex) % 40 == 39) {
|
|
puts("\n\t\t");
|
|
}
|
|
if (usByteIndex < 0)
|
|
break;
|
|
}
|
|
puts(")");
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
void ispVMMemManager(signed char cTarget, unsigned short usSize)
|
|
{
|
|
switch (cTarget) {
|
|
case XTDI:
|
|
case TDI:
|
|
if (g_pucInData != NULL) {
|
|
if (previous_size == usSize) {/*memory exist*/
|
|
break;
|
|
} else {
|
|
free(g_pucInData);
|
|
g_pucInData = NULL;
|
|
}
|
|
}
|
|
g_pucInData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
previous_size = usSize;
|
|
case XTDO:
|
|
case TDO:
|
|
if (g_pucOutData != NULL) {
|
|
if (previous_size == usSize) { /*already exist*/
|
|
break;
|
|
} else {
|
|
free(g_pucOutData);
|
|
g_pucOutData = NULL;
|
|
}
|
|
}
|
|
g_pucOutData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
previous_size = usSize;
|
|
break;
|
|
case MASK:
|
|
if (g_pucOutMaskData != NULL) {
|
|
if (previous_size == usSize) {/*already allocated*/
|
|
break;
|
|
} else {
|
|
free(g_pucOutMaskData);
|
|
g_pucOutMaskData = NULL;
|
|
}
|
|
}
|
|
g_pucOutMaskData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
previous_size = usSize;
|
|
break;
|
|
case HIR:
|
|
if (g_pucHIRData != NULL) {
|
|
free(g_pucHIRData);
|
|
g_pucHIRData = NULL;
|
|
}
|
|
g_pucHIRData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
break;
|
|
case TIR:
|
|
if (g_pucTIRData != NULL) {
|
|
free(g_pucTIRData);
|
|
g_pucTIRData = NULL;
|
|
}
|
|
g_pucTIRData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
break;
|
|
case HDR:
|
|
if (g_pucHDRData != NULL) {
|
|
free(g_pucHDRData);
|
|
g_pucHDRData = NULL;
|
|
}
|
|
g_pucHDRData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
break;
|
|
case TDR:
|
|
if (g_pucTDRData != NULL) {
|
|
free(g_pucTDRData);
|
|
g_pucTDRData = NULL;
|
|
}
|
|
g_pucTDRData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
break;
|
|
case HEAP:
|
|
if (g_pucHeapMemory != NULL) {
|
|
free(g_pucHeapMemory);
|
|
g_pucHeapMemory = NULL;
|
|
}
|
|
g_pucHeapMemory = (unsigned char *) malloc(usSize + 2);
|
|
break;
|
|
case DMASK:
|
|
if (g_pucOutDMaskData != NULL) {
|
|
if (previous_size == usSize) { /*already allocated*/
|
|
break;
|
|
} else {
|
|
free(g_pucOutDMaskData);
|
|
g_pucOutDMaskData = NULL;
|
|
}
|
|
}
|
|
g_pucOutDMaskData = (unsigned char *) malloc(usSize / 8 + 2);
|
|
previous_size = usSize;
|
|
break;
|
|
case LHEAP:
|
|
if (g_pucIntelBuffer != NULL) {
|
|
free(g_pucIntelBuffer);
|
|
g_pucIntelBuffer = NULL;
|
|
}
|
|
g_pucIntelBuffer = (unsigned char *) malloc(usSize + 2);
|
|
break;
|
|
case LVDS:
|
|
if (g_pLVDSList != NULL) {
|
|
free(g_pLVDSList);
|
|
g_pLVDSList = NULL;
|
|
}
|
|
g_pLVDSList = (LVDSPair *) malloc(usSize * sizeof(LVDSPair));
|
|
if (g_pLVDSList)
|
|
memset(g_pLVDSList, 0, usSize * sizeof(LVDSPair));
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ispVMFreeMem(void)
|
|
{
|
|
if (g_pucHeapMemory != NULL) {
|
|
free(g_pucHeapMemory);
|
|
g_pucHeapMemory = NULL;
|
|
}
|
|
|
|
if (g_pucOutMaskData != NULL) {
|
|
free(g_pucOutMaskData);
|
|
g_pucOutMaskData = NULL;
|
|
}
|
|
|
|
if (g_pucInData != NULL) {
|
|
free(g_pucInData);
|
|
g_pucInData = NULL;
|
|
}
|
|
|
|
if (g_pucOutData != NULL) {
|
|
free(g_pucOutData);
|
|
g_pucOutData = NULL;
|
|
}
|
|
|
|
if (g_pucHIRData != NULL) {
|
|
free(g_pucHIRData);
|
|
g_pucHIRData = NULL;
|
|
}
|
|
|
|
if (g_pucTIRData != NULL) {
|
|
free(g_pucTIRData);
|
|
g_pucTIRData = NULL;
|
|
}
|
|
|
|
if (g_pucHDRData != NULL) {
|
|
free(g_pucHDRData);
|
|
g_pucHDRData = NULL;
|
|
}
|
|
|
|
if (g_pucTDRData != NULL) {
|
|
free(g_pucTDRData);
|
|
g_pucTDRData = NULL;
|
|
}
|
|
|
|
if (g_pucOutDMaskData != NULL) {
|
|
free(g_pucOutDMaskData);
|
|
g_pucOutDMaskData = NULL;
|
|
}
|
|
|
|
if (g_pucIntelBuffer != NULL) {
|
|
free(g_pucIntelBuffer);
|
|
g_pucIntelBuffer = NULL;
|
|
}
|
|
|
|
if (g_pLVDSList != NULL) {
|
|
free(g_pLVDSList);
|
|
g_pLVDSList = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* ispVMDataSize
|
|
*
|
|
* Returns a VME-encoded number, usually used to indicate the
|
|
* bit length of an SIR/SDR command.
|
|
*
|
|
*/
|
|
|
|
long int ispVMDataSize()
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
long int iSize = 0;
|
|
signed char cCurrentByte = 0;
|
|
signed char cIndex = 0;
|
|
cIndex = 0;
|
|
while ((cCurrentByte = GetByte()) & 0x80) {
|
|
iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
|
|
cIndex += 7;
|
|
}
|
|
iSize |= ((long int) (cCurrentByte & 0x7F)) << cIndex;
|
|
return iSize;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMCode
|
|
*
|
|
* This is the heart of the embedded engine. All the high-level opcodes
|
|
* are extracted here. Once they have been identified, then it
|
|
* will call other functions to handle the processing.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMCode()
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short iRepeatSize = 0;
|
|
signed char cOpcode = 0;
|
|
signed char cRetCode = 0;
|
|
unsigned char ucState = 0;
|
|
unsigned short usDelay = 0;
|
|
unsigned short usToggle = 0;
|
|
unsigned char usByte = 0;
|
|
|
|
/*
|
|
*
|
|
* Check the compression flag only if this is the first time
|
|
* this function is entered. Do not check the compression flag if
|
|
* it is being called recursively from other functions within
|
|
* the embedded engine.
|
|
*
|
|
*/
|
|
|
|
if (!(g_usDataType & LHEAP_IN) && !(g_usDataType & HEAP_IN)) {
|
|
usByte = GetByte();
|
|
if (usByte == 0xf1) {
|
|
g_usDataType |= COMPRESS;
|
|
} else if (usByte == 0xf2) {
|
|
g_usDataType &= ~COMPRESS;
|
|
} else {
|
|
return VME_INVALID_FILE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Begin looping through all the VME opcodes.
|
|
*
|
|
*/
|
|
|
|
while ((cOpcode = GetByte()) >= 0) {
|
|
|
|
switch (cOpcode) {
|
|
case STATE:
|
|
|
|
/*
|
|
* Step the JTAG state machine.
|
|
*/
|
|
|
|
ucState = GetByte();
|
|
|
|
/*
|
|
* Step the JTAG state machine to DRCAPTURE
|
|
* to support Looping.
|
|
*/
|
|
|
|
if ((g_usDataType & LHEAP_IN) &&
|
|
(ucState == DRPAUSE) &&
|
|
(g_cCurrentJTAGState == ucState)) {
|
|
ispVMStateMachine(DRCAPTURE);
|
|
}
|
|
|
|
ispVMStateMachine(ucState);
|
|
|
|
#ifdef DEBUG
|
|
if (g_usDataType & LHEAP_IN) {
|
|
debug("LDELAY %s ", GetState(ucState));
|
|
} else {
|
|
debug("STATE %s;\n", GetState(ucState));
|
|
}
|
|
#endif /* DEBUG */
|
|
break;
|
|
case SIR:
|
|
case SDR:
|
|
case XSDR:
|
|
|
|
#ifdef DEBUG
|
|
switch (cOpcode) {
|
|
case SIR:
|
|
puts("SIR ");
|
|
break;
|
|
case SDR:
|
|
case XSDR:
|
|
if (g_usDataType & LHEAP_IN) {
|
|
puts("LSDR ");
|
|
} else {
|
|
puts("SDR ");
|
|
}
|
|
break;
|
|
}
|
|
#endif /* DEBUG */
|
|
/*
|
|
*
|
|
* Shift in data into the device.
|
|
*
|
|
*/
|
|
|
|
cRetCode = ispVMShift(cOpcode);
|
|
if (cRetCode != 0) {
|
|
return cRetCode;
|
|
}
|
|
break;
|
|
case WAIT:
|
|
|
|
/*
|
|
*
|
|
* Observe delay.
|
|
*
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usDelay = (unsigned short) ispVMDataSize();
|
|
ispVMDelay(usDelay);
|
|
|
|
#ifdef DEBUG
|
|
if (usDelay & 0x8000) {
|
|
|
|
/*
|
|
* Since MSB is set, the delay time must be
|
|
* decoded to millisecond. The SVF2VME encodes
|
|
* the MSB to represent millisecond.
|
|
*/
|
|
|
|
usDelay &= ~0x8000;
|
|
if (g_usDataType & LHEAP_IN) {
|
|
printf("%.2E SEC;\n",
|
|
(float) usDelay / 1000);
|
|
} else {
|
|
printf("RUNTEST %.2E SEC;\n",
|
|
(float) usDelay / 1000);
|
|
}
|
|
} else {
|
|
/*
|
|
* Since MSB is not set, the delay time
|
|
* is given as microseconds.
|
|
*/
|
|
|
|
if (g_usDataType & LHEAP_IN) {
|
|
printf("%.2E SEC;\n",
|
|
(float) usDelay / 1000000);
|
|
} else {
|
|
printf("RUNTEST %.2E SEC;\n",
|
|
(float) usDelay / 1000000);
|
|
}
|
|
}
|
|
#endif /* DEBUG */
|
|
break;
|
|
case TCK:
|
|
|
|
/*
|
|
* Issue clock toggles.
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usToggle = (unsigned short) ispVMDataSize();
|
|
ispVMClocks(usToggle);
|
|
|
|
#ifdef DEBUG
|
|
printf("RUNTEST %d TCK;\n", usToggle);
|
|
#endif /* DEBUG */
|
|
break;
|
|
case ENDDR:
|
|
|
|
/*
|
|
*
|
|
* Set the ENDDR.
|
|
*
|
|
*/
|
|
|
|
g_ucEndDR = GetByte();
|
|
|
|
#ifdef DEBUG
|
|
printf("ENDDR %s;\n", GetState(g_ucEndDR));
|
|
#endif /* DEBUG */
|
|
break;
|
|
case ENDIR:
|
|
|
|
/*
|
|
*
|
|
* Set the ENDIR.
|
|
*
|
|
*/
|
|
|
|
g_ucEndIR = GetByte();
|
|
|
|
#ifdef DEBUG
|
|
printf("ENDIR %s;\n", GetState(g_ucEndIR));
|
|
#endif /* DEBUG */
|
|
break;
|
|
case HIR:
|
|
case TIR:
|
|
case HDR:
|
|
case TDR:
|
|
|
|
#ifdef DEBUG
|
|
switch (cOpcode) {
|
|
case HIR:
|
|
puts("HIR ");
|
|
break;
|
|
case TIR:
|
|
puts("TIR ");
|
|
break;
|
|
case HDR:
|
|
puts("HDR ");
|
|
break;
|
|
case TDR:
|
|
puts("TDR ");
|
|
break;
|
|
}
|
|
#endif /* DEBUG */
|
|
/*
|
|
* Set the header/trailer of the device in order
|
|
* to bypass
|
|
* successfully.
|
|
*/
|
|
|
|
cRetCode = ispVMAmble(cOpcode);
|
|
if (cRetCode != 0) {
|
|
return cRetCode;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
puts(";\n");
|
|
#endif /* DEBUG */
|
|
break;
|
|
case MEM:
|
|
|
|
/*
|
|
* The maximum RAM required to support
|
|
* processing one row of the VME file.
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usMaxSize = (unsigned short) ispVMDataSize();
|
|
|
|
#ifdef DEBUG
|
|
printf("// MEMSIZE %d\n", g_usMaxSize);
|
|
#endif /* DEBUG */
|
|
break;
|
|
case VENDOR:
|
|
|
|
/*
|
|
*
|
|
* Set the VENDOR type.
|
|
*
|
|
*/
|
|
|
|
cOpcode = GetByte();
|
|
switch (cOpcode) {
|
|
case LATTICE:
|
|
#ifdef DEBUG
|
|
puts("// VENDOR LATTICE\n");
|
|
#endif /* DEBUG */
|
|
g_cVendor = LATTICE;
|
|
break;
|
|
case ALTERA:
|
|
#ifdef DEBUG
|
|
puts("// VENDOR ALTERA\n");
|
|
#endif /* DEBUG */
|
|
g_cVendor = ALTERA;
|
|
break;
|
|
case XILINX:
|
|
#ifdef DEBUG
|
|
puts("// VENDOR XILINX\n");
|
|
#endif /* DEBUG */
|
|
g_cVendor = XILINX;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case SETFLOW:
|
|
|
|
/*
|
|
* Set the flow control. Flow control determines
|
|
* the personality of the embedded engine.
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usFlowControl |= (unsigned short) ispVMDataSize();
|
|
break;
|
|
case RESETFLOW:
|
|
|
|
/*
|
|
*
|
|
* Unset the flow control.
|
|
*
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usFlowControl &= (unsigned short) ~(ispVMDataSize());
|
|
break;
|
|
case HEAP:
|
|
|
|
/*
|
|
*
|
|
* Allocate heap size to store loops.
|
|
*
|
|
*/
|
|
|
|
cRetCode = GetByte();
|
|
if (cRetCode != SECUREHEAP) {
|
|
return VME_INVALID_FILE;
|
|
}
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_iHEAPSize = (unsigned short) ispVMDataSize();
|
|
|
|
/*
|
|
* Store the maximum size of the HEAP buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_iHEAPSize > g_usHeapSize) {
|
|
g_usHeapSize = g_iHEAPSize;
|
|
}
|
|
|
|
ispVMMemManager(HEAP, (unsigned short) g_iHEAPSize);
|
|
break;
|
|
case REPEAT:
|
|
|
|
/*
|
|
*
|
|
* Execute loops.
|
|
*
|
|
*/
|
|
|
|
g_usRepeatLoops = 0;
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
iRepeatSize = (unsigned short) ispVMDataSize();
|
|
|
|
cRetCode = ispVMLoop((unsigned short) iRepeatSize);
|
|
if (cRetCode != 0) {
|
|
return cRetCode;
|
|
}
|
|
break;
|
|
case ENDLOOP:
|
|
|
|
/*
|
|
*
|
|
* Exit point from processing loops.
|
|
*
|
|
*/
|
|
|
|
return cRetCode;
|
|
case ENDVME:
|
|
|
|
/*
|
|
* The only valid exit point that indicates
|
|
* end of programming.
|
|
*/
|
|
|
|
return cRetCode;
|
|
case SHR:
|
|
|
|
/*
|
|
*
|
|
* Right-shift address.
|
|
*
|
|
*/
|
|
|
|
g_usFlowControl |= SHIFTRIGHT;
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usShiftValue = (unsigned short) (g_usRepeatLoops *
|
|
(unsigned short)GetByte());
|
|
break;
|
|
case SHL:
|
|
|
|
/*
|
|
* Left-shift address.
|
|
*/
|
|
|
|
g_usFlowControl |= SHIFTLEFT;
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usShiftValue = (unsigned short) (g_usRepeatLoops *
|
|
(unsigned short)GetByte());
|
|
break;
|
|
case FREQUENCY:
|
|
|
|
/*
|
|
*
|
|
* Set the frequency.
|
|
*
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_iFrequency = (int) (ispVMDataSize() / 1000);
|
|
if (g_iFrequency == 1)
|
|
g_iFrequency = 1000;
|
|
|
|
#ifdef DEBUG
|
|
printf("FREQUENCY %.2E HZ;\n",
|
|
(float) g_iFrequency * 1000);
|
|
#endif /* DEBUG */
|
|
break;
|
|
case LCOUNT:
|
|
|
|
/*
|
|
*
|
|
* Process LCOUNT command.
|
|
*
|
|
*/
|
|
|
|
cRetCode = ispVMLCOUNT((unsigned short)ispVMDataSize());
|
|
if (cRetCode != 0) {
|
|
return cRetCode;
|
|
}
|
|
break;
|
|
case VUES:
|
|
|
|
/*
|
|
*
|
|
* Set the flow control to verify USERCODE.
|
|
*
|
|
*/
|
|
|
|
g_usFlowControl |= VERIFYUES;
|
|
break;
|
|
case COMMENT:
|
|
|
|
/*
|
|
*
|
|
* Display comment.
|
|
*
|
|
*/
|
|
|
|
ispVMComment((unsigned short) ispVMDataSize());
|
|
break;
|
|
case LVDS:
|
|
|
|
/*
|
|
*
|
|
* Process LVDS command.
|
|
*
|
|
*/
|
|
|
|
ispVMProcessLVDS((unsigned short) ispVMDataSize());
|
|
break;
|
|
case HEADER:
|
|
|
|
/*
|
|
*
|
|
* Discard header.
|
|
*
|
|
*/
|
|
|
|
ispVMHeader((unsigned short) ispVMDataSize());
|
|
break;
|
|
/* 03/14/06 Support Toggle ispENABLE signal*/
|
|
case ispEN:
|
|
ucState = GetByte();
|
|
if ((ucState == ON) || (ucState == 0x01))
|
|
writePort(g_ucPinENABLE, 0x01);
|
|
else
|
|
writePort(g_ucPinENABLE, 0x00);
|
|
ispVMDelay(1);
|
|
break;
|
|
/* 05/24/06 support Toggle TRST pin*/
|
|
case TRST:
|
|
ucState = GetByte();
|
|
if (ucState == 0x01)
|
|
writePort(g_ucPinTRST, 0x01);
|
|
else
|
|
writePort(g_ucPinTRST, 0x00);
|
|
ispVMDelay(1);
|
|
break;
|
|
default:
|
|
|
|
/*
|
|
*
|
|
* Invalid opcode encountered.
|
|
*
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
printf("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
|
|
#endif /* DEBUG */
|
|
|
|
return VME_INVALID_FILE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Invalid exit point. Processing the token 'ENDVME' is the only
|
|
* valid way to exit the embedded engine.
|
|
*
|
|
*/
|
|
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMDataCode
|
|
*
|
|
* Processes the TDI/TDO/MASK/DMASK etc of an SIR/SDR command.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMDataCode()
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
signed char cDataByte = 0;
|
|
signed char siDataSource = 0; /*source of data from file by default*/
|
|
|
|
if (g_usDataType & HEAP_IN) {
|
|
siDataSource = 1; /*the source of data from memory*/
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Clear the data type register.
|
|
*
|
|
**/
|
|
|
|
g_usDataType &= ~(MASK_DATA + TDI_DATA +
|
|
TDO_DATA + DMASK_DATA + CMASK_DATA);
|
|
|
|
/*
|
|
* Iterate through SIR/SDR command and look for TDI,
|
|
* TDO, MASK, etc.
|
|
*/
|
|
|
|
while ((cDataByte = GetByte()) >= 0) {
|
|
ispVMMemManager(cDataByte, g_usMaxSize);
|
|
switch (cDataByte) {
|
|
case TDI:
|
|
|
|
/*
|
|
* Store the maximum size of the TDI buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usTDISize) {
|
|
g_usTDISize = g_usiDataSize;
|
|
}
|
|
/*
|
|
* Updated data type register to indicate that
|
|
* TDI data is currently being used. Process the
|
|
* data in the VME file into the TDI buffer.
|
|
*/
|
|
|
|
g_usDataType |= TDI_DATA;
|
|
ispVMData(g_pucInData);
|
|
break;
|
|
case XTDO:
|
|
|
|
/*
|
|
* Store the maximum size of the TDO buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usTDOSize) {
|
|
g_usTDOSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Updated data type register to indicate that
|
|
* TDO data is currently being used.
|
|
*/
|
|
|
|
g_usDataType |= TDO_DATA;
|
|
break;
|
|
case TDO:
|
|
|
|
/*
|
|
* Store the maximum size of the TDO buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usTDOSize) {
|
|
g_usTDOSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Updated data type register to indicate
|
|
* that TDO data is currently being used.
|
|
* Process the data in the VME file into the
|
|
* TDO buffer.
|
|
*/
|
|
|
|
g_usDataType |= TDO_DATA;
|
|
ispVMData(g_pucOutData);
|
|
break;
|
|
case MASK:
|
|
|
|
/*
|
|
* Store the maximum size of the MASK buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usMASKSize) {
|
|
g_usMASKSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Updated data type register to indicate that
|
|
* MASK data is currently being used. Process
|
|
* the data in the VME file into the MASK buffer
|
|
*/
|
|
|
|
g_usDataType |= MASK_DATA;
|
|
ispVMData(g_pucOutMaskData);
|
|
break;
|
|
case DMASK:
|
|
|
|
/*
|
|
* Store the maximum size of the DMASK buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usDMASKSize) {
|
|
g_usDMASKSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Updated data type register to indicate that
|
|
* DMASK data is currently being used. Process
|
|
* the data in the VME file into the DMASK
|
|
* buffer.
|
|
*/
|
|
|
|
g_usDataType |= DMASK_DATA;
|
|
ispVMData(g_pucOutDMaskData);
|
|
break;
|
|
case CMASK:
|
|
|
|
/*
|
|
* Updated data type register to indicate that
|
|
* MASK data is currently being used. Process
|
|
* the data in the VME file into the MASK buffer
|
|
*/
|
|
|
|
g_usDataType |= CMASK_DATA;
|
|
ispVMData(g_pucOutMaskData);
|
|
break;
|
|
case CONTINUE:
|
|
return 0;
|
|
default:
|
|
/*
|
|
* Encountered invalid opcode.
|
|
*/
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
switch (cDataByte) {
|
|
case TDI:
|
|
|
|
/*
|
|
* Left bit shift. Used when performing
|
|
* algorithm looping.
|
|
*/
|
|
|
|
if (g_usFlowControl & SHIFTLEFT) {
|
|
ispVMBitShift(SHL, g_usShiftValue);
|
|
g_usFlowControl &= ~SHIFTLEFT;
|
|
}
|
|
|
|
/*
|
|
* Right bit shift. Used when performing
|
|
* algorithm looping.
|
|
*/
|
|
|
|
if (g_usFlowControl & SHIFTRIGHT) {
|
|
ispVMBitShift(SHR, g_usShiftValue);
|
|
g_usFlowControl &= ~SHIFTRIGHT;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (siDataSource) {
|
|
g_usDataType |= HEAP_IN; /*restore from memory*/
|
|
}
|
|
}
|
|
|
|
if (siDataSource) { /*fetch data from heap memory upon return*/
|
|
g_usDataType |= HEAP_IN;
|
|
}
|
|
|
|
if (cDataByte < 0) {
|
|
|
|
/*
|
|
* Encountered invalid opcode.
|
|
*/
|
|
|
|
return VME_INVALID_FILE;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMData
|
|
* Extract one row of data operand from the current data type opcode. Perform
|
|
* the decompression if necessary. Extra RAM is not required for the
|
|
* decompression process. The decompression scheme employed in this module
|
|
* is on row by row basis. The format of the data stream:
|
|
* [compression code][compressed data stream]
|
|
* 0x00 --No compression
|
|
* 0x01 --Compress by 0x00.
|
|
* Example:
|
|
* Original stream: 0x000000000000000000000001
|
|
* Compressed stream: 0x01000901
|
|
* Detail: 0x01 is the code, 0x00 is the key,
|
|
* 0x09 is the count of 0x00 bytes,
|
|
* 0x01 is the uncompressed byte.
|
|
* 0x02 --Compress by 0xFF.
|
|
* Example:
|
|
* Original stream: 0xFFFFFFFFFFFFFFFFFFFFFF01
|
|
* Compressed stream: 0x02FF0901
|
|
* Detail: 0x02 is the code, 0xFF is the key,
|
|
* 0x09 is the count of 0xFF bytes,
|
|
* 0x01 is the uncompressed byte.
|
|
* 0x03
|
|
* : :
|
|
* 0xFE -- Compress by nibble blocks.
|
|
* Example:
|
|
* Original stream: 0x84210842108421084210
|
|
* Compressed stream: 0x0584210
|
|
* Detail: 0x05 is the code, means 5 nibbles block.
|
|
* 0x84210 is the 5 nibble blocks.
|
|
* The whole row is 80 bits given by g_usiDataSize.
|
|
* The number of times the block repeat itself
|
|
* is found by g_usiDataSize/(4*0x05) which is 4.
|
|
* 0xFF -- Compress by the most frequently happen byte.
|
|
* Example:
|
|
* Original stream: 0x04020401030904040404
|
|
* Compressed stream: 0xFF04(0,1,0x02,0,1,0x01,1,0x03,1,0x09,0,0,0)
|
|
* or: 0xFF044090181C240
|
|
* Detail: 0xFF is the code, 0x04 is the key.
|
|
* a bit of 0 represent the key shall be put into
|
|
* the current bit position and a bit of 1
|
|
* represent copying the next of 8 bits of data
|
|
* in.
|
|
*
|
|
*/
|
|
|
|
void ispVMData(unsigned char *ByteData)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short size = 0;
|
|
unsigned short i, j, m, getData = 0;
|
|
unsigned char cDataByte = 0;
|
|
unsigned char compress = 0;
|
|
unsigned short FFcount = 0;
|
|
unsigned char compr_char = 0xFF;
|
|
unsigned short index = 0;
|
|
signed char compression = 0;
|
|
|
|
/*convert number in bits to bytes*/
|
|
if (g_usiDataSize % 8 > 0) {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
size = (unsigned short)(g_usiDataSize / 8 + 1);
|
|
} else {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
size = (unsigned short)(g_usiDataSize / 8);
|
|
}
|
|
|
|
/*
|
|
* If there is compression, then check if compress by key
|
|
* of 0x00 or 0xFF or by other keys or by nibble blocks
|
|
*/
|
|
|
|
if (g_usDataType & COMPRESS) {
|
|
compression = 1;
|
|
compress = GetByte();
|
|
if ((compress == VAR) && (g_usDataType & HEAP_IN)) {
|
|
getData = 1;
|
|
g_usDataType &= ~(HEAP_IN);
|
|
compress = GetByte();
|
|
}
|
|
|
|
switch (compress) {
|
|
case 0x00:
|
|
/* No compression */
|
|
compression = 0;
|
|
break;
|
|
case 0x01:
|
|
/* Compress by byte 0x00 */
|
|
compr_char = 0x00;
|
|
break;
|
|
case 0x02:
|
|
/* Compress by byte 0xFF */
|
|
compr_char = 0xFF;
|
|
break;
|
|
case 0xFF:
|
|
/* Huffman encoding */
|
|
compr_char = GetByte();
|
|
i = 8;
|
|
for (index = 0; index < size; index++) {
|
|
ByteData[index] = 0x00;
|
|
if (i > 7) {
|
|
cDataByte = GetByte();
|
|
i = 0;
|
|
}
|
|
if ((cDataByte << i++) & 0x80)
|
|
m = 8;
|
|
else {
|
|
ByteData[index] = compr_char;
|
|
m = 0;
|
|
}
|
|
|
|
for (j = 0; j < m; j++) {
|
|
if (i > 7) {
|
|
cDataByte = GetByte();
|
|
i = 0;
|
|
}
|
|
ByteData[index] |=
|
|
((cDataByte << i++) & 0x80) >> j;
|
|
}
|
|
}
|
|
size = 0;
|
|
break;
|
|
default:
|
|
for (index = 0; index < size; index++)
|
|
ByteData[index] = 0x00;
|
|
for (index = 0; index < compress; index++) {
|
|
if (index % 2 == 0)
|
|
cDataByte = GetByte();
|
|
for (i = 0; i < size * 2 / compress; i++) {
|
|
j = (unsigned short)(index +
|
|
(i * (unsigned short)compress));
|
|
/*clear the nibble to zero first*/
|
|
if (j%2) {
|
|
if (index % 2)
|
|
ByteData[j/2] |=
|
|
cDataByte & 0xF;
|
|
else
|
|
ByteData[j/2] |=
|
|
cDataByte >> 4;
|
|
} else {
|
|
if (index % 2)
|
|
ByteData[j/2] |=
|
|
cDataByte << 4;
|
|
else
|
|
ByteData[j/2] |=
|
|
cDataByte & 0xF0;
|
|
}
|
|
}
|
|
}
|
|
size = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
FFcount = 0;
|
|
|
|
/* Decompress by byte 0x00 or 0xFF */
|
|
for (index = 0; index < size; index++) {
|
|
if (FFcount <= 0) {
|
|
cDataByte = GetByte();
|
|
if ((cDataByte == VAR) && (g_usDataType&HEAP_IN) &&
|
|
!getData && !(g_usDataType&COMPRESS)) {
|
|
getData = 1;
|
|
g_usDataType &= ~(HEAP_IN);
|
|
cDataByte = GetByte();
|
|
}
|
|
ByteData[index] = cDataByte;
|
|
if ((compression) && (cDataByte == compr_char))
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
FFcount = (unsigned short) ispVMDataSize();
|
|
/*The number of 0xFF or 0x00 bytes*/
|
|
} else {
|
|
FFcount--; /*Use up the 0xFF chain first*/
|
|
ByteData[index] = compr_char;
|
|
}
|
|
}
|
|
|
|
if (getData) {
|
|
g_usDataType |= HEAP_IN;
|
|
getData = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMShift
|
|
*
|
|
* Processes the SDR/XSDR/SIR commands.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMShift(signed char a_cCode)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short iDataIndex = 0;
|
|
unsigned short iReadLoop = 0;
|
|
signed char cRetCode = 0;
|
|
|
|
cRetCode = 0;
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usiDataSize = (unsigned short) ispVMDataSize();
|
|
|
|
/*clear the flags first*/
|
|
g_usDataType &= ~(SIR_DATA + EXPRESS + SDR_DATA);
|
|
switch (a_cCode) {
|
|
case SIR:
|
|
g_usDataType |= SIR_DATA;
|
|
/*
|
|
* 1/15/04 If performing cascading, then go directly to SHIFTIR.
|
|
* Else, go to IRPAUSE before going to SHIFTIR
|
|
*/
|
|
if (g_usFlowControl & CASCADE) {
|
|
ispVMStateMachine(SHIFTIR);
|
|
} else {
|
|
ispVMStateMachine(IRPAUSE);
|
|
ispVMStateMachine(SHIFTIR);
|
|
if (g_usHeadIR > 0) {
|
|
ispVMBypass(HIR, g_usHeadIR);
|
|
sclock();
|
|
}
|
|
}
|
|
break;
|
|
case XSDR:
|
|
g_usDataType |= EXPRESS; /*mark simultaneous in and out*/
|
|
case SDR:
|
|
g_usDataType |= SDR_DATA;
|
|
/*
|
|
* 1/15/04 If already in SHIFTDR, then do not move state or
|
|
* shift in header. This would imply that the previously
|
|
* shifted frame was a cascaded frame.
|
|
*/
|
|
if (g_cCurrentJTAGState != SHIFTDR) {
|
|
/*
|
|
* 1/15/04 If performing cascading, then go directly
|
|
* to SHIFTDR. Else, go to DRPAUSE before going
|
|
* to SHIFTDR
|
|
*/
|
|
if (g_usFlowControl & CASCADE) {
|
|
if (g_cCurrentJTAGState == DRPAUSE) {
|
|
ispVMStateMachine(SHIFTDR);
|
|
/*
|
|
* 1/15/04 If cascade flag has been seat
|
|
* and the current state is DRPAUSE,
|
|
* this implies that the first cascaded
|
|
* frame is about to be shifted in. The
|
|
* header must be shifted prior to
|
|
* shifting the first cascaded frame.
|
|
*/
|
|
if (g_usHeadDR > 0) {
|
|
ispVMBypass(HDR, g_usHeadDR);
|
|
sclock();
|
|
}
|
|
} else {
|
|
ispVMStateMachine(SHIFTDR);
|
|
}
|
|
} else {
|
|
ispVMStateMachine(DRPAUSE);
|
|
ispVMStateMachine(SHIFTDR);
|
|
if (g_usHeadDR > 0) {
|
|
ispVMBypass(HDR, g_usHeadDR);
|
|
sclock();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
cRetCode = ispVMDataCode();
|
|
|
|
if (cRetCode != 0) {
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("%d ", g_usiDataSize);
|
|
|
|
if (g_usDataType & TDI_DATA) {
|
|
puts("TDI ");
|
|
PrintData(g_usiDataSize, g_pucInData);
|
|
}
|
|
|
|
if (g_usDataType & TDO_DATA) {
|
|
puts("\n\t\tTDO ");
|
|
PrintData(g_usiDataSize, g_pucOutData);
|
|
}
|
|
|
|
if (g_usDataType & MASK_DATA) {
|
|
puts("\n\t\tMASK ");
|
|
PrintData(g_usiDataSize, g_pucOutMaskData);
|
|
}
|
|
|
|
if (g_usDataType & DMASK_DATA) {
|
|
puts("\n\t\tDMASK ");
|
|
PrintData(g_usiDataSize, g_pucOutDMaskData);
|
|
}
|
|
|
|
puts(";\n");
|
|
#endif /* DEBUG */
|
|
|
|
if (g_usDataType & TDO_DATA || g_usDataType & DMASK_DATA) {
|
|
if (g_usDataType & DMASK_DATA) {
|
|
cRetCode = ispVMReadandSave(g_usiDataSize);
|
|
if (!cRetCode) {
|
|
if (g_usTailDR > 0) {
|
|
sclock();
|
|
ispVMBypass(TDR, g_usTailDR);
|
|
}
|
|
ispVMStateMachine(DRPAUSE);
|
|
ispVMStateMachine(SHIFTDR);
|
|
if (g_usHeadDR > 0) {
|
|
ispVMBypass(HDR, g_usHeadDR);
|
|
sclock();
|
|
}
|
|
for (iDataIndex = 0;
|
|
iDataIndex < g_usiDataSize / 8 + 1;
|
|
iDataIndex++)
|
|
g_pucInData[iDataIndex] =
|
|
g_pucOutData[iDataIndex];
|
|
g_usDataType &= ~(TDO_DATA + DMASK_DATA);
|
|
cRetCode = ispVMSend(g_usiDataSize);
|
|
}
|
|
} else {
|
|
cRetCode = ispVMRead(g_usiDataSize);
|
|
if (cRetCode == -1 && g_cVendor == XILINX) {
|
|
for (iReadLoop = 0; iReadLoop < 30;
|
|
iReadLoop++) {
|
|
cRetCode = ispVMRead(g_usiDataSize);
|
|
if (!cRetCode) {
|
|
break;
|
|
} else {
|
|
/* Always DRPAUSE */
|
|
ispVMStateMachine(DRPAUSE);
|
|
/*
|
|
* Bypass other devices
|
|
* when appropriate
|
|
*/
|
|
ispVMBypass(TDR, g_usTailDR);
|
|
ispVMStateMachine(g_ucEndDR);
|
|
ispVMStateMachine(IDLE);
|
|
ispVMDelay(1000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else { /*TDI only*/
|
|
cRetCode = ispVMSend(g_usiDataSize);
|
|
}
|
|
|
|
/*transfer the input data to the output buffer for the next verify*/
|
|
if ((g_usDataType & EXPRESS) || (a_cCode == SDR)) {
|
|
if (g_pucOutData) {
|
|
for (iDataIndex = 0; iDataIndex < g_usiDataSize / 8 + 1;
|
|
iDataIndex++)
|
|
g_pucOutData[iDataIndex] =
|
|
g_pucInData[iDataIndex];
|
|
}
|
|
}
|
|
|
|
switch (a_cCode) {
|
|
case SIR:
|
|
/* 1/15/04 If not performing cascading, then shift ENDIR */
|
|
if (!(g_usFlowControl & CASCADE)) {
|
|
if (g_usTailIR > 0) {
|
|
sclock();
|
|
ispVMBypass(TIR, g_usTailIR);
|
|
}
|
|
ispVMStateMachine(g_ucEndIR);
|
|
}
|
|
break;
|
|
case XSDR:
|
|
case SDR:
|
|
/* 1/15/04 If not performing cascading, then shift ENDDR */
|
|
if (!(g_usFlowControl & CASCADE)) {
|
|
if (g_usTailDR > 0) {
|
|
sclock();
|
|
ispVMBypass(TDR, g_usTailDR);
|
|
}
|
|
ispVMStateMachine(g_ucEndDR);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return cRetCode;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMAmble
|
|
*
|
|
* This routine is to extract Header and Trailer parameter for SIR and
|
|
* SDR operations.
|
|
*
|
|
* The Header and Trailer parameter are the pre-amble and post-amble bit
|
|
* stream need to be shifted into TDI or out of TDO of the devices. Mostly
|
|
* is for the purpose of bypassing the leading or trailing devices. ispVM
|
|
* supports only shifting data into TDI to bypass the devices.
|
|
*
|
|
* For a single device, the header and trailer parameters are all set to 0
|
|
* as default by ispVM. If it is for multiple devices, the header and trailer
|
|
* value will change as specified by the VME file.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMAmble(signed char Code)
|
|
{
|
|
signed char compress = 0;
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_usiDataSize = (unsigned short)ispVMDataSize();
|
|
|
|
#ifdef DEBUG
|
|
printf("%d", g_usiDataSize);
|
|
#endif /* DEBUG */
|
|
|
|
if (g_usiDataSize) {
|
|
|
|
/*
|
|
* Discard the TDI byte and set the compression bit in the data
|
|
* type register to false if compression is set because TDI data
|
|
* after HIR/HDR/TIR/TDR is not compressed.
|
|
*/
|
|
|
|
GetByte();
|
|
if (g_usDataType & COMPRESS) {
|
|
g_usDataType &= ~(COMPRESS);
|
|
compress = 1;
|
|
}
|
|
}
|
|
|
|
switch (Code) {
|
|
case HIR:
|
|
|
|
/*
|
|
* Store the maximum size of the HIR buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usHIRSize) {
|
|
g_usHIRSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Assign the HIR value and allocate memory.
|
|
*/
|
|
|
|
g_usHeadIR = g_usiDataSize;
|
|
if (g_usHeadIR) {
|
|
ispVMMemManager(HIR, g_usHeadIR);
|
|
ispVMData(g_pucHIRData);
|
|
|
|
#ifdef DEBUG
|
|
puts(" TDI ");
|
|
PrintData(g_usHeadIR, g_pucHIRData);
|
|
#endif /* DEBUG */
|
|
}
|
|
break;
|
|
case TIR:
|
|
|
|
/*
|
|
* Store the maximum size of the TIR buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usTIRSize) {
|
|
g_usTIRSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Assign the TIR value and allocate memory.
|
|
*/
|
|
|
|
g_usTailIR = g_usiDataSize;
|
|
if (g_usTailIR) {
|
|
ispVMMemManager(TIR, g_usTailIR);
|
|
ispVMData(g_pucTIRData);
|
|
|
|
#ifdef DEBUG
|
|
puts(" TDI ");
|
|
PrintData(g_usTailIR, g_pucTIRData);
|
|
#endif /* DEBUG */
|
|
}
|
|
break;
|
|
case HDR:
|
|
|
|
/*
|
|
* Store the maximum size of the HDR buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usHDRSize) {
|
|
g_usHDRSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Assign the HDR value and allocate memory.
|
|
*
|
|
*/
|
|
|
|
g_usHeadDR = g_usiDataSize;
|
|
if (g_usHeadDR) {
|
|
ispVMMemManager(HDR, g_usHeadDR);
|
|
ispVMData(g_pucHDRData);
|
|
|
|
#ifdef DEBUG
|
|
puts(" TDI ");
|
|
PrintData(g_usHeadDR, g_pucHDRData);
|
|
#endif /* DEBUG */
|
|
}
|
|
break;
|
|
case TDR:
|
|
|
|
/*
|
|
* Store the maximum size of the TDR buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usiDataSize > g_usTDRSize) {
|
|
g_usTDRSize = g_usiDataSize;
|
|
}
|
|
|
|
/*
|
|
* Assign the TDR value and allocate memory.
|
|
*
|
|
*/
|
|
|
|
g_usTailDR = g_usiDataSize;
|
|
if (g_usTailDR) {
|
|
ispVMMemManager(TDR, g_usTailDR);
|
|
ispVMData(g_pucTDRData);
|
|
|
|
#ifdef DEBUG
|
|
puts(" TDI ");
|
|
PrintData(g_usTailDR, g_pucTDRData);
|
|
#endif /* DEBUG */
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Re-enable compression if it was previously set.
|
|
*
|
|
**/
|
|
|
|
if (compress) {
|
|
g_usDataType |= COMPRESS;
|
|
}
|
|
|
|
if (g_usiDataSize) {
|
|
Code = GetByte();
|
|
if (Code == CONTINUE) {
|
|
return 0;
|
|
} else {
|
|
|
|
/*
|
|
* Encountered invalid opcode.
|
|
*/
|
|
|
|
return VME_INVALID_FILE;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMLoop
|
|
*
|
|
* Perform the function call upon by the REPEAT opcode.
|
|
* Memory is to be allocated to store the entire loop from REPEAT to ENDLOOP.
|
|
* After the loop is stored then execution begin. The REPEATLOOP flag is set
|
|
* on the g_usFlowControl register to indicate the repeat loop is in session
|
|
* and therefore fetch opcode from the memory instead of from the file.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMLoop(unsigned short a_usLoopCount)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
signed char cRetCode = 0;
|
|
unsigned short iHeapIndex = 0;
|
|
unsigned short iLoopIndex = 0;
|
|
|
|
g_usShiftValue = 0;
|
|
for (iHeapIndex = 0; iHeapIndex < g_iHEAPSize; iHeapIndex++) {
|
|
g_pucHeapMemory[iHeapIndex] = GetByte();
|
|
}
|
|
|
|
if (g_pucHeapMemory[iHeapIndex - 1] != ENDLOOP) {
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
g_usFlowControl |= REPEATLOOP;
|
|
g_usDataType |= HEAP_IN;
|
|
|
|
for (iLoopIndex = 0; iLoopIndex < a_usLoopCount; iLoopIndex++) {
|
|
g_iHeapCounter = 0;
|
|
cRetCode = ispVMCode();
|
|
g_usRepeatLoops++;
|
|
if (cRetCode < 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
g_usDataType &= ~(HEAP_IN);
|
|
g_usFlowControl &= ~(REPEATLOOP);
|
|
return cRetCode;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMBitShift
|
|
*
|
|
* Shift the TDI stream left or right by the number of bits. The data in
|
|
* *g_pucInData is of the VME format, so the actual shifting is the reverse of
|
|
* IEEE 1532 or SVF format.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMBitShift(signed char mode, unsigned short bits)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short i = 0;
|
|
unsigned short size = 0;
|
|
unsigned short tmpbits = 0;
|
|
|
|
if (g_usiDataSize % 8 > 0) {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
size = (unsigned short)(g_usiDataSize / 8 + 1);
|
|
} else {
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
size = (unsigned short)(g_usiDataSize / 8);
|
|
}
|
|
|
|
switch (mode) {
|
|
case SHR:
|
|
for (i = 0; i < size; i++) {
|
|
if (g_pucInData[i] != 0) {
|
|
tmpbits = bits;
|
|
while (tmpbits > 0) {
|
|
g_pucInData[i] <<= 1;
|
|
if (g_pucInData[i] == 0) {
|
|
i--;
|
|
g_pucInData[i] = 1;
|
|
}
|
|
tmpbits--;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case SHL:
|
|
for (i = 0; i < size; i++) {
|
|
if (g_pucInData[i] != 0) {
|
|
tmpbits = bits;
|
|
while (tmpbits > 0) {
|
|
g_pucInData[i] >>= 1;
|
|
if (g_pucInData[i] == 0) {
|
|
i--;
|
|
g_pucInData[i] = 8;
|
|
}
|
|
tmpbits--;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return VME_INVALID_FILE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMComment
|
|
*
|
|
* Displays the SVF comments.
|
|
*
|
|
*/
|
|
|
|
void ispVMComment(unsigned short a_usCommentSize)
|
|
{
|
|
char cCurByte = 0;
|
|
for (; a_usCommentSize > 0; a_usCommentSize--) {
|
|
/*
|
|
*
|
|
* Print character to the terminal.
|
|
*
|
|
**/
|
|
cCurByte = GetByte();
|
|
vme_out_char(cCurByte);
|
|
}
|
|
cCurByte = '\n';
|
|
vme_out_char(cCurByte);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMHeader
|
|
*
|
|
* Iterate the length of the header and discard it.
|
|
*
|
|
*/
|
|
|
|
void ispVMHeader(unsigned short a_usHeaderSize)
|
|
{
|
|
for (; a_usHeaderSize > 0; a_usHeaderSize--) {
|
|
GetByte();
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMCalculateCRC32
|
|
*
|
|
* Calculate the 32-bit CRC.
|
|
*
|
|
*/
|
|
|
|
void ispVMCalculateCRC32(unsigned char a_ucData)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned char ucIndex = 0;
|
|
unsigned char ucFlipData = 0;
|
|
unsigned short usCRCTableEntry = 0;
|
|
unsigned int crc_table[16] = {
|
|
0x0000, 0xCC01, 0xD801,
|
|
0x1400, 0xF001, 0x3C00,
|
|
0x2800, 0xE401, 0xA001,
|
|
0x6C00, 0x7800, 0xB401,
|
|
0x5000, 0x9C01, 0x8801,
|
|
0x4400
|
|
};
|
|
|
|
for (ucIndex = 0; ucIndex < 8; ucIndex++) {
|
|
ucFlipData <<= 1;
|
|
if (a_ucData & 0x01) {
|
|
ucFlipData |= 0x01;
|
|
}
|
|
a_ucData >>= 1;
|
|
}
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
|
|
g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
|
|
g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
|
|
usCRCTableEntry ^ crc_table[ucFlipData & 0xF]);
|
|
usCRCTableEntry = (unsigned short)(crc_table[g_usCalculatedCRC & 0xF]);
|
|
g_usCalculatedCRC = (unsigned short)((g_usCalculatedCRC >> 4) & 0x0FFF);
|
|
g_usCalculatedCRC = (unsigned short)(g_usCalculatedCRC ^
|
|
usCRCTableEntry ^ crc_table[(ucFlipData >> 4) & 0xF]);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMLCOUNT
|
|
*
|
|
* Process the intelligent programming loops.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMLCOUNT(unsigned short a_usCountSize)
|
|
{
|
|
unsigned short usContinue = 1;
|
|
unsigned short usIntelBufferIndex = 0;
|
|
unsigned short usCountIndex = 0;
|
|
signed char cRetCode = 0;
|
|
signed char cRepeatHeap = 0;
|
|
signed char cOpcode = 0;
|
|
unsigned char ucState = 0;
|
|
unsigned short usDelay = 0;
|
|
unsigned short usToggle = 0;
|
|
|
|
g_usIntelBufferSize = (unsigned short)ispVMDataSize();
|
|
|
|
/*
|
|
* Allocate memory for intel buffer.
|
|
*
|
|
*/
|
|
|
|
ispVMMemManager(LHEAP, g_usIntelBufferSize);
|
|
|
|
/*
|
|
* Store the maximum size of the intelligent buffer.
|
|
* Used to convert VME to HEX.
|
|
*/
|
|
|
|
if (g_usIntelBufferSize > g_usLCOUNTSize) {
|
|
g_usLCOUNTSize = g_usIntelBufferSize;
|
|
}
|
|
|
|
/*
|
|
* Copy intel data to the buffer.
|
|
*/
|
|
|
|
for (usIntelBufferIndex = 0; usIntelBufferIndex < g_usIntelBufferSize;
|
|
usIntelBufferIndex++) {
|
|
g_pucIntelBuffer[usIntelBufferIndex] = GetByte();
|
|
}
|
|
|
|
/*
|
|
* Set the data type register to get data from the intelligent
|
|
* data buffer.
|
|
*/
|
|
|
|
g_usDataType |= LHEAP_IN;
|
|
|
|
/*
|
|
*
|
|
* If the HEAP_IN flag is set, temporarily unset the flag so data will be
|
|
* retrieved from the status buffer.
|
|
*
|
|
**/
|
|
|
|
if (g_usDataType & HEAP_IN) {
|
|
g_usDataType &= ~HEAP_IN;
|
|
cRepeatHeap = 1;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf("LCOUNT %d;\n", a_usCountSize);
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Iterate through the intelligent programming command.
|
|
*/
|
|
|
|
for (usCountIndex = 0; usCountIndex < a_usCountSize; usCountIndex++) {
|
|
|
|
/*
|
|
*
|
|
* Initialize the intel data index to 0 before each iteration.
|
|
*
|
|
**/
|
|
|
|
g_usIntelDataIndex = 0;
|
|
cOpcode = 0;
|
|
ucState = 0;
|
|
usDelay = 0;
|
|
usToggle = 0;
|
|
usContinue = 1;
|
|
|
|
/*
|
|
*
|
|
* Begin looping through all the VME opcodes.
|
|
*
|
|
*/
|
|
/*
|
|
* 4/1/09 Nguyen replaced the recursive function call codes on
|
|
* the ispVMLCOUNT function
|
|
*
|
|
*/
|
|
while (usContinue) {
|
|
cOpcode = GetByte();
|
|
switch (cOpcode) {
|
|
case HIR:
|
|
case TIR:
|
|
case HDR:
|
|
case TDR:
|
|
/*
|
|
* Set the header/trailer of the device in order
|
|
* to bypass successfully.
|
|
*/
|
|
|
|
ispVMAmble(cOpcode);
|
|
break;
|
|
case STATE:
|
|
|
|
/*
|
|
* Step the JTAG state machine.
|
|
*/
|
|
|
|
ucState = GetByte();
|
|
/*
|
|
* Step the JTAG state machine to DRCAPTURE
|
|
* to support Looping.
|
|
*/
|
|
|
|
if ((g_usDataType & LHEAP_IN) &&
|
|
(ucState == DRPAUSE) &&
|
|
(g_cCurrentJTAGState == ucState)) {
|
|
ispVMStateMachine(DRCAPTURE);
|
|
}
|
|
ispVMStateMachine(ucState);
|
|
#ifdef DEBUG
|
|
printf("LDELAY %s ", GetState(ucState));
|
|
#endif /* DEBUG */
|
|
break;
|
|
case SIR:
|
|
#ifdef DEBUG
|
|
printf("SIR ");
|
|
#endif /* DEBUG */
|
|
/*
|
|
* Shift in data into the device.
|
|
*/
|
|
|
|
cRetCode = ispVMShift(cOpcode);
|
|
break;
|
|
case SDR:
|
|
|
|
#ifdef DEBUG
|
|
printf("LSDR ");
|
|
#endif /* DEBUG */
|
|
/*
|
|
* Shift in data into the device.
|
|
*/
|
|
|
|
cRetCode = ispVMShift(cOpcode);
|
|
break;
|
|
case WAIT:
|
|
|
|
/*
|
|
*
|
|
* Observe delay.
|
|
*
|
|
*/
|
|
|
|
usDelay = (unsigned short)ispVMDataSize();
|
|
ispVMDelay(usDelay);
|
|
|
|
#ifdef DEBUG
|
|
if (usDelay & 0x8000) {
|
|
|
|
/*
|
|
* Since MSB is set, the delay time must
|
|
* be decoded to millisecond. The
|
|
* SVF2VME encodes the MSB to represent
|
|
* millisecond.
|
|
*/
|
|
|
|
usDelay &= ~0x8000;
|
|
printf("%.2E SEC;\n",
|
|
(float) usDelay / 1000);
|
|
} else {
|
|
/*
|
|
* Since MSB is not set, the delay time
|
|
* is given as microseconds.
|
|
*/
|
|
|
|
printf("%.2E SEC;\n",
|
|
(float) usDelay / 1000000);
|
|
}
|
|
#endif /* DEBUG */
|
|
break;
|
|
case TCK:
|
|
|
|
/*
|
|
* Issue clock toggles.
|
|
*/
|
|
|
|
usToggle = (unsigned short)ispVMDataSize();
|
|
ispVMClocks(usToggle);
|
|
|
|
#ifdef DEBUG
|
|
printf("RUNTEST %d TCK;\n", usToggle);
|
|
#endif /* DEBUG */
|
|
break;
|
|
case ENDLOOP:
|
|
|
|
/*
|
|
* Exit point from processing loops.
|
|
*/
|
|
usContinue = 0;
|
|
break;
|
|
|
|
case COMMENT:
|
|
|
|
/*
|
|
* Display comment.
|
|
*/
|
|
|
|
ispVMComment((unsigned short) ispVMDataSize());
|
|
break;
|
|
case ispEN:
|
|
ucState = GetByte();
|
|
if ((ucState == ON) || (ucState == 0x01))
|
|
writePort(g_ucPinENABLE, 0x01);
|
|
else
|
|
writePort(g_ucPinENABLE, 0x00);
|
|
ispVMDelay(1);
|
|
break;
|
|
case TRST:
|
|
if (GetByte() == 0x01)
|
|
writePort(g_ucPinTRST, 0x01);
|
|
else
|
|
writePort(g_ucPinTRST, 0x00);
|
|
ispVMDelay(1);
|
|
break;
|
|
default:
|
|
|
|
/*
|
|
* Invalid opcode encountered.
|
|
*/
|
|
|
|
debug("\nINVALID OPCODE: 0x%.2X\n", cOpcode);
|
|
|
|
return VME_INVALID_FILE;
|
|
}
|
|
}
|
|
if (cRetCode >= 0) {
|
|
/*
|
|
* Break if intelligent programming is successful.
|
|
*/
|
|
|
|
break;
|
|
}
|
|
|
|
}
|
|
/*
|
|
* If HEAP_IN flag was temporarily disabled,
|
|
* re-enable it before exiting
|
|
*/
|
|
|
|
if (cRepeatHeap) {
|
|
g_usDataType |= HEAP_IN;
|
|
}
|
|
|
|
/*
|
|
* Set the data type register to not get data from the
|
|
* intelligent data buffer.
|
|
*/
|
|
|
|
g_usDataType &= ~LHEAP_IN;
|
|
return cRetCode;
|
|
}
|
|
/*
|
|
*
|
|
* ispVMClocks
|
|
*
|
|
* Applies the specified number of pulses to TCK.
|
|
*
|
|
*/
|
|
|
|
void ispVMClocks(unsigned short Clocks)
|
|
{
|
|
unsigned short iClockIndex = 0;
|
|
for (iClockIndex = 0; iClockIndex < Clocks; iClockIndex++) {
|
|
sclock();
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMBypass
|
|
*
|
|
* This procedure takes care of the HIR, HDR, TIR, TDR for the
|
|
* purpose of putting the other devices into Bypass mode. The
|
|
* current state is checked to find out if it is at DRPAUSE or
|
|
* IRPAUSE. If it is at DRPAUSE, perform bypass register scan.
|
|
* If it is at IRPAUSE, scan into instruction registers the bypass
|
|
* instruction.
|
|
*
|
|
*/
|
|
|
|
void ispVMBypass(signed char ScanType, unsigned short Bits)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short iIndex = 0;
|
|
unsigned short iSourceIndex = 0;
|
|
unsigned char cBitState = 0;
|
|
unsigned char cCurByte = 0;
|
|
unsigned char *pcSource = NULL;
|
|
|
|
if (Bits <= 0) {
|
|
return;
|
|
}
|
|
|
|
switch (ScanType) {
|
|
case HIR:
|
|
pcSource = g_pucHIRData;
|
|
break;
|
|
case TIR:
|
|
pcSource = g_pucTIRData;
|
|
break;
|
|
case HDR:
|
|
pcSource = g_pucHDRData;
|
|
break;
|
|
case TDR:
|
|
pcSource = g_pucTDRData;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
iSourceIndex = 0;
|
|
cBitState = 0;
|
|
for (iIndex = 0; iIndex < Bits - 1; iIndex++) {
|
|
/* Scan instruction or bypass register */
|
|
if (iIndex % 8 == 0) {
|
|
cCurByte = pcSource[iSourceIndex++];
|
|
}
|
|
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
|
|
? 0x01 : 0x00);
|
|
writePort(g_ucPinTDI, cBitState);
|
|
sclock();
|
|
}
|
|
|
|
if (iIndex % 8 == 0) {
|
|
cCurByte = pcSource[iSourceIndex++];
|
|
}
|
|
|
|
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
|
|
? 0x01 : 0x00);
|
|
writePort(g_ucPinTDI, cBitState);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMStateMachine
|
|
*
|
|
* This procedure steps all devices in the daisy chain from a given
|
|
* JTAG state to the next desirable state. If the next state is TLR,
|
|
* the JTAG state machine is brute forced into TLR by driving TMS
|
|
* high and pulse TCK 6 times.
|
|
*
|
|
*/
|
|
|
|
void ispVMStateMachine(signed char cNextJTAGState)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
signed char cPathIndex = 0;
|
|
signed char cStateIndex = 0;
|
|
|
|
if ((g_cCurrentJTAGState == cNextJTAGState) &&
|
|
(cNextJTAGState != RESET)) {
|
|
return;
|
|
}
|
|
|
|
for (cStateIndex = 0; cStateIndex < 25; cStateIndex++) {
|
|
if ((g_cCurrentJTAGState ==
|
|
g_JTAGTransistions[cStateIndex].CurState) &&
|
|
(cNextJTAGState ==
|
|
g_JTAGTransistions[cStateIndex].NextState)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
g_cCurrentJTAGState = cNextJTAGState;
|
|
for (cPathIndex = 0;
|
|
cPathIndex < g_JTAGTransistions[cStateIndex].Pulses;
|
|
cPathIndex++) {
|
|
if ((g_JTAGTransistions[cStateIndex].Pattern << cPathIndex)
|
|
& 0x80) {
|
|
writePort(g_ucPinTMS, (unsigned char) 0x01);
|
|
} else {
|
|
writePort(g_ucPinTMS, (unsigned char) 0x00);
|
|
}
|
|
sclock();
|
|
}
|
|
|
|
writePort(g_ucPinTDI, 0x00);
|
|
writePort(g_ucPinTMS, 0x00);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMStart
|
|
*
|
|
* Enable the port to the device and set the state to RESET (TLR).
|
|
*
|
|
*/
|
|
|
|
void ispVMStart()
|
|
{
|
|
#ifdef DEBUG
|
|
printf("// ISPVM EMBEDDED ADDED\n");
|
|
printf("STATE RESET;\n");
|
|
#endif
|
|
g_usFlowControl = 0;
|
|
g_usDataType = g_uiChecksumIndex = g_cCurrentJTAGState = 0;
|
|
g_usHeadDR = g_usHeadIR = g_usTailDR = g_usTailIR = 0;
|
|
g_usMaxSize = g_usShiftValue = g_usRepeatLoops = 0;
|
|
g_usTDOSize = g_usMASKSize = g_usTDISize = 0;
|
|
g_usDMASKSize = g_usLCOUNTSize = g_usHDRSize = 0;
|
|
g_usTDRSize = g_usHIRSize = g_usTIRSize = g_usHeapSize = 0;
|
|
g_pLVDSList = NULL;
|
|
g_usLVDSPairCount = 0;
|
|
previous_size = 0;
|
|
|
|
ispVMStateMachine(RESET); /*step devices to RESET state*/
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMEnd
|
|
*
|
|
* Set the state of devices to RESET to enable the devices and disable
|
|
* the port.
|
|
*
|
|
*/
|
|
|
|
void ispVMEnd()
|
|
{
|
|
#ifdef DEBUG
|
|
printf("// ISPVM EMBEDDED ADDED\n");
|
|
printf("STATE RESET;\n");
|
|
printf("RUNTEST 1.00E-001 SEC;\n");
|
|
#endif
|
|
|
|
ispVMStateMachine(RESET); /*step devices to RESET state */
|
|
ispVMDelay(1000); /*wake up devices*/
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMSend
|
|
*
|
|
* Send the TDI data stream to devices. The data stream can be
|
|
* instructions or data.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMSend(unsigned short a_usiDataSize)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short iIndex = 0;
|
|
unsigned short iInDataIndex = 0;
|
|
unsigned char cCurByte = 0;
|
|
unsigned char cBitState = 0;
|
|
|
|
for (iIndex = 0; iIndex < a_usiDataSize - 1; iIndex++) {
|
|
if (iIndex % 8 == 0) {
|
|
cCurByte = g_pucInData[iInDataIndex++];
|
|
}
|
|
cBitState = (unsigned char)(((cCurByte << iIndex % 8) & 0x80)
|
|
? 0x01 : 0x00);
|
|
writePort(g_ucPinTDI, cBitState);
|
|
sclock();
|
|
}
|
|
|
|
if (iIndex % 8 == 0) {
|
|
/* Take care of the last bit */
|
|
cCurByte = g_pucInData[iInDataIndex];
|
|
}
|
|
|
|
cBitState = (unsigned char) (((cCurByte << iIndex % 8) & 0x80)
|
|
? 0x01 : 0x00);
|
|
|
|
writePort(g_ucPinTDI, cBitState);
|
|
if (g_usFlowControl & CASCADE) {
|
|
/*1/15/04 Clock in last bit for the first n-1 cascaded frames */
|
|
sclock();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMRead
|
|
*
|
|
* Read the data stream from devices and verify.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMRead(unsigned short a_usiDataSize)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short usDataSizeIndex = 0;
|
|
unsigned short usErrorCount = 0;
|
|
unsigned short usLastBitIndex = 0;
|
|
unsigned char cDataByte = 0;
|
|
unsigned char cMaskByte = 0;
|
|
unsigned char cInDataByte = 0;
|
|
unsigned char cCurBit = 0;
|
|
unsigned char cByteIndex = 0;
|
|
unsigned short usBufferIndex = 0;
|
|
unsigned char ucDisplayByte = 0x00;
|
|
unsigned char ucDisplayFlag = 0x01;
|
|
char StrChecksum[256] = {0};
|
|
unsigned char g_usCalculateChecksum = 0x00;
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usLastBitIndex = (unsigned short)(a_usiDataSize - 1);
|
|
|
|
#ifndef DEBUG
|
|
/*
|
|
* If mask is not all zeros, then set the display flag to 0x00,
|
|
* otherwise it shall be set to 0x01 to indicate that data read
|
|
* from the device shall be displayed. If DEBUG is defined,
|
|
* always display data.
|
|
*/
|
|
|
|
for (usDataSizeIndex = 0; usDataSizeIndex < (a_usiDataSize + 7) / 8;
|
|
usDataSizeIndex++) {
|
|
if (g_usDataType & MASK_DATA) {
|
|
if (g_pucOutMaskData[usDataSizeIndex] != 0x00) {
|
|
ucDisplayFlag = 0x00;
|
|
break;
|
|
}
|
|
} else if (g_usDataType & CMASK_DATA) {
|
|
g_usCalculateChecksum = 0x01;
|
|
ucDisplayFlag = 0x00;
|
|
break;
|
|
} else {
|
|
ucDisplayFlag = 0x00;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
*
|
|
* Begin shifting data in and out of the device.
|
|
*
|
|
**/
|
|
|
|
for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
|
|
usDataSizeIndex++) {
|
|
if (cByteIndex == 0) {
|
|
|
|
/*
|
|
* Grab byte from TDO buffer.
|
|
*/
|
|
|
|
if (g_usDataType & TDO_DATA) {
|
|
cDataByte = g_pucOutData[usBufferIndex];
|
|
}
|
|
|
|
/*
|
|
* Grab byte from MASK buffer.
|
|
*/
|
|
|
|
if (g_usDataType & MASK_DATA) {
|
|
cMaskByte = g_pucOutMaskData[usBufferIndex];
|
|
} else {
|
|
cMaskByte = 0xFF;
|
|
}
|
|
|
|
/*
|
|
* Grab byte from CMASK buffer.
|
|
*/
|
|
|
|
if (g_usDataType & CMASK_DATA) {
|
|
cMaskByte = 0x00;
|
|
g_usCalculateChecksum = 0x01;
|
|
}
|
|
|
|
/*
|
|
* Grab byte from TDI buffer.
|
|
*/
|
|
|
|
if (g_usDataType & TDI_DATA) {
|
|
cInDataByte = g_pucInData[usBufferIndex];
|
|
}
|
|
|
|
usBufferIndex++;
|
|
}
|
|
|
|
cCurBit = readPort();
|
|
|
|
if (ucDisplayFlag) {
|
|
ucDisplayByte <<= 1;
|
|
ucDisplayByte |= cCurBit;
|
|
}
|
|
|
|
/*
|
|
* Check if data read from port matches with expected TDO.
|
|
*/
|
|
|
|
if (g_usDataType & TDO_DATA) {
|
|
/* 08/28/08 NN Added Calculate checksum support. */
|
|
if (g_usCalculateChecksum) {
|
|
if (cCurBit == 0x01)
|
|
g_usChecksum +=
|
|
(1 << (g_uiChecksumIndex % 8));
|
|
g_uiChecksumIndex++;
|
|
} else {
|
|
if ((((cMaskByte << cByteIndex) & 0x80)
|
|
? 0x01 : 0x00)) {
|
|
if (cCurBit != (unsigned char)
|
|
(((cDataByte << cByteIndex) & 0x80)
|
|
? 0x01 : 0x00)) {
|
|
usErrorCount++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write TDI data to the port.
|
|
*/
|
|
|
|
writePort(g_ucPinTDI,
|
|
(unsigned char)(((cInDataByte << cByteIndex) & 0x80)
|
|
? 0x01 : 0x00));
|
|
|
|
if (usDataSizeIndex < usLastBitIndex) {
|
|
|
|
/*
|
|
* Clock data out from the data shift register.
|
|
*/
|
|
|
|
sclock();
|
|
} else if (g_usFlowControl & CASCADE) {
|
|
|
|
/*
|
|
* Clock in last bit for the first N - 1 cascaded frames
|
|
*/
|
|
|
|
sclock();
|
|
}
|
|
|
|
/*
|
|
* Increment the byte index. If it exceeds 7, then reset it back
|
|
* to zero.
|
|
*/
|
|
|
|
cByteIndex++;
|
|
if (cByteIndex >= 8) {
|
|
if (ucDisplayFlag) {
|
|
|
|
/*
|
|
* Store displayed data in the TDO buffer. By reusing
|
|
* the TDO buffer to store displayed data, there is no
|
|
* need to allocate a buffer simply to hold display
|
|
* data. This will not cause any false verification
|
|
* errors because the true TDO byte has already
|
|
* been consumed.
|
|
*/
|
|
|
|
g_pucOutData[usBufferIndex - 1] = ucDisplayByte;
|
|
ucDisplayByte = 0;
|
|
}
|
|
|
|
cByteIndex = 0;
|
|
}
|
|
/* 09/12/07 Nguyen changed to display the 1 bit expected data */
|
|
else if (a_usiDataSize == 1) {
|
|
if (ucDisplayFlag) {
|
|
|
|
/*
|
|
* Store displayed data in the TDO buffer.
|
|
* By reusing the TDO buffer to store displayed
|
|
* data, there is no need to allocate
|
|
* a buffer simply to hold display data. This
|
|
* will not cause any false verification errors
|
|
* because the true TDO byte has already
|
|
* been consumed.
|
|
*/
|
|
|
|
/*
|
|
* Flip ucDisplayByte and store it in cDataByte.
|
|
*/
|
|
cDataByte = 0x00;
|
|
for (usBufferIndex = 0; usBufferIndex < 8;
|
|
usBufferIndex++) {
|
|
cDataByte <<= 1;
|
|
if (ucDisplayByte & 0x01) {
|
|
cDataByte |= 0x01;
|
|
}
|
|
ucDisplayByte >>= 1;
|
|
}
|
|
g_pucOutData[0] = cDataByte;
|
|
ucDisplayByte = 0;
|
|
}
|
|
|
|
cByteIndex = 0;
|
|
}
|
|
}
|
|
|
|
if (ucDisplayFlag) {
|
|
|
|
#ifdef DEBUG
|
|
debug("RECEIVED TDO (");
|
|
#else
|
|
vme_out_string("Display Data: 0x");
|
|
#endif /* DEBUG */
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
for (usDataSizeIndex = (unsigned short)
|
|
((a_usiDataSize + 7) / 8);
|
|
usDataSizeIndex > 0 ; usDataSizeIndex--) {
|
|
cMaskByte = g_pucOutData[usDataSizeIndex - 1];
|
|
cDataByte = 0x00;
|
|
|
|
/*
|
|
* Flip cMaskByte and store it in cDataByte.
|
|
*/
|
|
|
|
for (usBufferIndex = 0; usBufferIndex < 8;
|
|
usBufferIndex++) {
|
|
cDataByte <<= 1;
|
|
if (cMaskByte & 0x01) {
|
|
cDataByte |= 0x01;
|
|
}
|
|
cMaskByte >>= 1;
|
|
}
|
|
#ifdef DEBUG
|
|
printf("%.2X", cDataByte);
|
|
if ((((a_usiDataSize + 7) / 8) - usDataSizeIndex)
|
|
% 40 == 39) {
|
|
printf("\n\t\t");
|
|
}
|
|
#else
|
|
vme_out_hex(cDataByte);
|
|
#endif /* DEBUG */
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf(")\n\n");
|
|
#else
|
|
vme_out_string("\n\n");
|
|
#endif /* DEBUG */
|
|
/* 09/02/08 Nguyen changed to display the data Checksum */
|
|
if (g_usChecksum != 0) {
|
|
g_usChecksum &= 0xFFFF;
|
|
sprintf(StrChecksum, "Data Checksum: %.4lX\n\n",
|
|
g_usChecksum);
|
|
vme_out_string(StrChecksum);
|
|
g_usChecksum = 0;
|
|
}
|
|
}
|
|
|
|
if (usErrorCount > 0) {
|
|
if (g_usFlowControl & VERIFYUES) {
|
|
vme_out_string(
|
|
"USERCODE verification failed. "
|
|
"Continue programming......\n\n");
|
|
g_usFlowControl &= ~(VERIFYUES);
|
|
return 0;
|
|
} else {
|
|
|
|
#ifdef DEBUG
|
|
printf("TOTAL ERRORS: %d\n", usErrorCount);
|
|
#endif /* DEBUG */
|
|
|
|
return VME_VERIFICATION_FAILURE;
|
|
}
|
|
} else {
|
|
if (g_usFlowControl & VERIFYUES) {
|
|
vme_out_string("USERCODE verification passed. "
|
|
"Programming aborted.\n\n");
|
|
g_usFlowControl &= ~(VERIFYUES);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
* ispVMReadandSave
|
|
*
|
|
* Support dynamic I/O.
|
|
*
|
|
*/
|
|
|
|
signed char ispVMReadandSave(unsigned short int a_usiDataSize)
|
|
{
|
|
/* 09/11/07 NN added local variables initialization */
|
|
unsigned short int usDataSizeIndex = 0;
|
|
unsigned short int usLastBitIndex = 0;
|
|
unsigned short int usBufferIndex = 0;
|
|
unsigned short int usOutBitIndex = 0;
|
|
unsigned short int usLVDSIndex = 0;
|
|
unsigned char cDataByte = 0;
|
|
unsigned char cDMASKByte = 0;
|
|
unsigned char cInDataByte = 0;
|
|
unsigned char cCurBit = 0;
|
|
unsigned char cByteIndex = 0;
|
|
signed char cLVDSByteIndex = 0;
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
usLastBitIndex = (unsigned short) (a_usiDataSize - 1);
|
|
|
|
/*
|
|
*
|
|
* Iterate through the data bits.
|
|
*
|
|
*/
|
|
|
|
for (usDataSizeIndex = 0; usDataSizeIndex < a_usiDataSize;
|
|
usDataSizeIndex++) {
|
|
if (cByteIndex == 0) {
|
|
|
|
/*
|
|
* Grab byte from DMASK buffer.
|
|
*/
|
|
|
|
if (g_usDataType & DMASK_DATA) {
|
|
cDMASKByte = g_pucOutDMaskData[usBufferIndex];
|
|
} else {
|
|
cDMASKByte = 0x00;
|
|
}
|
|
|
|
/*
|
|
* Grab byte from TDI buffer.
|
|
*/
|
|
|
|
if (g_usDataType & TDI_DATA) {
|
|
cInDataByte = g_pucInData[usBufferIndex];
|
|
}
|
|
|
|
usBufferIndex++;
|
|
}
|
|
|
|
cCurBit = readPort();
|
|
cDataByte = (unsigned char)(((cInDataByte << cByteIndex) & 0x80)
|
|
? 0x01 : 0x00);
|
|
|
|
/*
|
|
* Initialize the byte to be zero.
|
|
*/
|
|
|
|
if (usOutBitIndex % 8 == 0) {
|
|
g_pucOutData[usOutBitIndex / 8] = 0x00;
|
|
}
|
|
|
|
/*
|
|
* Use TDI, DMASK, and device TDO to create new TDI (actually
|
|
* stored in g_pucOutData).
|
|
*/
|
|
|
|
if ((((cDMASKByte << cByteIndex) & 0x80) ? 0x01 : 0x00)) {
|
|
|
|
if (g_pLVDSList) {
|
|
for (usLVDSIndex = 0;
|
|
usLVDSIndex < g_usLVDSPairCount;
|
|
usLVDSIndex++) {
|
|
if (g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex ==
|
|
usDataSizeIndex) {
|
|
g_pLVDSList[usLVDSIndex].
|
|
ucUpdate = 0x01;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* DMASK bit is 1, use TDI.
|
|
*/
|
|
|
|
g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
|
|
(((cDataByte & 0x1) ? 0x01 : 0x00) <<
|
|
(7 - usOutBitIndex % 8));
|
|
} else {
|
|
|
|
/*
|
|
* DMASK bit is 0, use device TDO.
|
|
*/
|
|
|
|
g_pucOutData[usOutBitIndex / 8] |= (unsigned char)
|
|
(((cCurBit & 0x1) ? 0x01 : 0x00) <<
|
|
(7 - usOutBitIndex % 8));
|
|
}
|
|
|
|
/*
|
|
* Shift in TDI in order to get TDO out.
|
|
*/
|
|
|
|
usOutBitIndex++;
|
|
writePort(g_ucPinTDI, cDataByte);
|
|
if (usDataSizeIndex < usLastBitIndex) {
|
|
sclock();
|
|
}
|
|
|
|
/*
|
|
* Increment the byte index. If it exceeds 7, then reset it back
|
|
* to zero.
|
|
*/
|
|
|
|
cByteIndex++;
|
|
if (cByteIndex >= 8) {
|
|
cByteIndex = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If g_pLVDSList exists and pairs need updating, then update
|
|
* the negative-pair to receive the flipped positive-pair value.
|
|
*/
|
|
|
|
if (g_pLVDSList) {
|
|
for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount;
|
|
usLVDSIndex++) {
|
|
if (g_pLVDSList[usLVDSIndex].ucUpdate) {
|
|
|
|
/*
|
|
* Read the positive value and flip it.
|
|
*/
|
|
|
|
cDataByte = (unsigned char)
|
|
(((g_pucOutData[g_pLVDSList[usLVDSIndex].
|
|
usPositiveIndex / 8]
|
|
<< (g_pLVDSList[usLVDSIndex].
|
|
usPositiveIndex % 8)) & 0x80) ?
|
|
0x01 : 0x00);
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
cDataByte = (unsigned char) (!cDataByte);
|
|
|
|
/*
|
|
* Get the byte that needs modification.
|
|
*/
|
|
|
|
cInDataByte =
|
|
g_pucOutData[g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex / 8];
|
|
|
|
if (cDataByte) {
|
|
|
|
/*
|
|
* Copy over the current byte and
|
|
* set the negative bit to 1.
|
|
*/
|
|
|
|
cDataByte = 0x00;
|
|
for (cLVDSByteIndex = 7;
|
|
cLVDSByteIndex >= 0;
|
|
cLVDSByteIndex--) {
|
|
cDataByte <<= 1;
|
|
if (7 -
|
|
(g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex % 8) ==
|
|
cLVDSByteIndex) {
|
|
|
|
/*
|
|
* Set negative bit to 1
|
|
*/
|
|
|
|
cDataByte |= 0x01;
|
|
} else if (cInDataByte & 0x80) {
|
|
cDataByte |= 0x01;
|
|
}
|
|
|
|
cInDataByte <<= 1;
|
|
}
|
|
|
|
/*
|
|
* Store the modified byte.
|
|
*/
|
|
|
|
g_pucOutData[g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex / 8] = cDataByte;
|
|
} else {
|
|
|
|
/*
|
|
* Copy over the current byte and set
|
|
* the negative bit to 0.
|
|
*/
|
|
|
|
cDataByte = 0x00;
|
|
for (cLVDSByteIndex = 7;
|
|
cLVDSByteIndex >= 0;
|
|
cLVDSByteIndex--) {
|
|
cDataByte <<= 1;
|
|
if (7 -
|
|
(g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex % 8) ==
|
|
cLVDSByteIndex) {
|
|
|
|
/*
|
|
* Set negative bit to 0
|
|
*/
|
|
|
|
cDataByte |= 0x00;
|
|
} else if (cInDataByte & 0x80) {
|
|
cDataByte |= 0x01;
|
|
}
|
|
|
|
cInDataByte <<= 1;
|
|
}
|
|
|
|
/*
|
|
* Store the modified byte.
|
|
*/
|
|
|
|
g_pucOutData[g_pLVDSList[usLVDSIndex].
|
|
usNegativeIndex / 8] = cDataByte;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
signed char ispVMProcessLVDS(unsigned short a_usLVDSCount)
|
|
{
|
|
unsigned short usLVDSIndex = 0;
|
|
|
|
/*
|
|
* Allocate memory to hold LVDS pairs.
|
|
*/
|
|
|
|
ispVMMemManager(LVDS, a_usLVDSCount);
|
|
g_usLVDSPairCount = a_usLVDSCount;
|
|
|
|
#ifdef DEBUG
|
|
printf("LVDS %d (", a_usLVDSCount);
|
|
#endif /* DEBUG */
|
|
|
|
/*
|
|
* Iterate through each given LVDS pair.
|
|
*/
|
|
|
|
for (usLVDSIndex = 0; usLVDSIndex < g_usLVDSPairCount; usLVDSIndex++) {
|
|
|
|
/*
|
|
* Assign the positive and negative indices of the LVDS pair.
|
|
*/
|
|
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_pLVDSList[usLVDSIndex].usPositiveIndex =
|
|
(unsigned short) ispVMDataSize();
|
|
/* 09/11/07 NN Type cast mismatch variables */
|
|
g_pLVDSList[usLVDSIndex].usNegativeIndex =
|
|
(unsigned short)ispVMDataSize();
|
|
|
|
#ifdef DEBUG
|
|
if (usLVDSIndex < g_usLVDSPairCount - 1) {
|
|
printf("%d:%d, ",
|
|
g_pLVDSList[usLVDSIndex].usPositiveIndex,
|
|
g_pLVDSList[usLVDSIndex].usNegativeIndex);
|
|
} else {
|
|
printf("%d:%d",
|
|
g_pLVDSList[usLVDSIndex].usPositiveIndex,
|
|
g_pLVDSList[usLVDSIndex].usNegativeIndex);
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printf(");\n");
|
|
#endif /* DEBUG */
|
|
|
|
return 0;
|
|
}
|