u-boot/drivers/net/phy/b53.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

767 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017
* Broadcom
* Florian Fainelli <f.fainelli@gmail.com>
*/
/*
* PHY driver for Broadcom BCM53xx (roboswitch) Ethernet switches.
*
* This driver configures the b53 for basic use as a PHY. The switch supports
* vendor tags and VLAN configuration that can affect the switching decisions.
* This driver uses a simple configuration in which all ports are only allowed
* to send frames to the CPU port and receive frames from the CPU port this
* providing port isolation (no cross talk).
*
* The configuration determines which PHY ports to activate using the
* CONFIG_B53_PHY_PORTS bitmask. Set bit N will active port N and so on.
*
* This driver was written primarily for the Lamobo R1 platform using a BCM53152
* switch but the BCM53xx being largely register compatible, extending it to
* cover other switches would be trivial.
*/
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
/* Pseudo-PHY address (non configurable) to access internal registers */
#define BRCM_PSEUDO_PHY_ADDR 30
/* Maximum number of ports possible */
#define B53_N_PORTS 9
#define B53_CTRL_PAGE 0x00 /* Control */
#define B53_MGMT_PAGE 0x02 /* Management Mode */
/* Port VLAN Page */
#define B53_PVLAN_PAGE 0x31
/* Control Page registers */
#define B53_PORT_CTRL(i) (0x00 + (i))
#define PORT_CTRL_RX_DISABLE BIT(0)
#define PORT_CTRL_TX_DISABLE BIT(1)
#define PORT_CTRL_RX_BCST_EN BIT(2) /* Broadcast RX (P8 only) */
#define PORT_CTRL_RX_MCST_EN BIT(3) /* Multicast RX (P8 only) */
#define PORT_CTRL_RX_UCST_EN BIT(4) /* Unicast RX (P8 only) */
/* Switch Mode Control Register (8 bit) */
#define B53_SWITCH_MODE 0x0b
#define SM_SW_FWD_MODE BIT(0) /* 1 = Managed Mode */
#define SM_SW_FWD_EN BIT(1) /* Forwarding Enable */
/* IMP Port state override register (8 bit) */
#define B53_PORT_OVERRIDE_CTRL 0x0e
#define PORT_OVERRIDE_LINK BIT(0)
#define PORT_OVERRIDE_FULL_DUPLEX BIT(1) /* 0 = Half Duplex */
#define PORT_OVERRIDE_SPEED_S 2
#define PORT_OVERRIDE_SPEED_10M (0 << PORT_OVERRIDE_SPEED_S)
#define PORT_OVERRIDE_SPEED_100M (1 << PORT_OVERRIDE_SPEED_S)
#define PORT_OVERRIDE_SPEED_1000M (2 << PORT_OVERRIDE_SPEED_S)
/* BCM5325 only */
#define PORT_OVERRIDE_RV_MII_25 BIT(4)
#define PORT_OVERRIDE_RX_FLOW BIT(4)
#define PORT_OVERRIDE_TX_FLOW BIT(5)
/* BCM5301X only, requires setting 1000M */
#define PORT_OVERRIDE_SPEED_2000M BIT(6)
#define PORT_OVERRIDE_EN BIT(7) /* Use the register contents */
#define B53_RGMII_CTRL_IMP 0x60
#define RGMII_CTRL_ENABLE_GMII BIT(7)
#define RGMII_CTRL_TIMING_SEL BIT(2)
#define RGMII_CTRL_DLL_RXC BIT(1)
#define RGMII_CTRL_DLL_TXC BIT(0)
/* Switch control (8 bit) */
#define B53_SWITCH_CTRL 0x22
#define B53_MII_DUMB_FWDG_EN BIT(6)
/* Software reset register (8 bit) */
#define B53_SOFTRESET 0x79
#define SW_RST BIT(7)
#define EN_CH_RST BIT(6)
#define EN_SW_RST BIT(4)
/* Fast Aging Control register (8 bit) */
#define B53_FAST_AGE_CTRL 0x88
#define FAST_AGE_STATIC BIT(0)
#define FAST_AGE_DYNAMIC BIT(1)
#define FAST_AGE_PORT BIT(2)
#define FAST_AGE_VLAN BIT(3)
#define FAST_AGE_STP BIT(4)
#define FAST_AGE_MC BIT(5)
#define FAST_AGE_DONE BIT(7)
/* Port VLAN mask (16 bit) IMP port is always 8, also on 5325 & co */
#define B53_PVLAN_PORT_MASK(i) ((i) * 2)
/* MII registers */
#define REG_MII_PAGE 0x10 /* MII Page register */
#define REG_MII_ADDR 0x11 /* MII Address register */
#define REG_MII_DATA0 0x18 /* MII Data register 0 */
#define REG_MII_DATA1 0x19 /* MII Data register 1 */
#define REG_MII_DATA2 0x1a /* MII Data register 2 */
#define REG_MII_DATA3 0x1b /* MII Data register 3 */
#define REG_MII_PAGE_ENABLE BIT(0)
#define REG_MII_ADDR_WRITE BIT(0)
#define REG_MII_ADDR_READ BIT(1)
struct b53_device {
struct mii_dev *bus;
unsigned int cpu_port;
};
static int b53_mdio_op(struct mii_dev *bus, u8 page, u8 reg, u16 op)
{
int ret;
int i;
u16 v;
/* set page number */
v = (page << 8) | REG_MII_PAGE_ENABLE;
ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_PAGE, v);
if (ret)
return ret;
/* set register address */
v = (reg << 8) | op;
ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_ADDR, v);
if (ret)
return ret;
/* check if operation completed */
for (i = 0; i < 5; ++i) {
v = bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_ADDR);
if (!(v & (REG_MII_ADDR_WRITE | REG_MII_ADDR_READ)))
break;
udelay(100);
}
if (i == 5)
return -EIO;
return 0;
}
static int b53_mdio_read8(struct mii_dev *bus, u8 page, u8 reg, u8 *val)
{
int ret;
ret = b53_mdio_op(bus, page, reg, REG_MII_ADDR_READ);
if (ret)
return ret;
*val = bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0) & 0xff;
return 0;
}
static int b53_mdio_read16(struct mii_dev *bus, u8 page, u8 reg, u16 *val)
{
int ret;
ret = b53_mdio_op(bus, page, reg, REG_MII_ADDR_READ);
if (ret)
return ret;
*val = bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0);
return 0;
}
static int b53_mdio_read32(struct mii_dev *bus, u8 page, u8 reg, u32 *val)
{
int ret;
ret = b53_mdio_op(bus, page, reg, REG_MII_ADDR_READ);
if (ret)
return ret;
*val = bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0);
*val |= bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA1) << 16;
return 0;
}
static int b53_mdio_read48(struct mii_dev *bus, u8 page, u8 reg, u64 *val)
{
u64 temp = 0;
int i;
int ret;
ret = b53_mdio_op(bus, page, reg, REG_MII_ADDR_READ);
if (ret)
return ret;
for (i = 2; i >= 0; i--) {
temp <<= 16;
temp |= bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0 + i);
}
*val = temp;
return 0;
}
static int b53_mdio_read64(struct mii_dev *bus, u8 page, u8 reg, u64 *val)
{
u64 temp = 0;
int i;
int ret;
ret = b53_mdio_op(bus, page, reg, REG_MII_ADDR_READ);
if (ret)
return ret;
for (i = 3; i >= 0; i--) {
temp <<= 16;
temp |= bus->read(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0 + i);
}
*val = temp;
return 0;
}
static int b53_mdio_write8(struct mii_dev *bus, u8 page, u8 reg, u8 value)
{
int ret;
ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0, value);
if (ret)
return ret;
return b53_mdio_op(bus, page, reg, REG_MII_ADDR_WRITE);
}
static int b53_mdio_write16(struct mii_dev *bus, u8 page, u8 reg,
u16 value)
{
int ret;
ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR, MDIO_DEVAD_NONE,
REG_MII_DATA0, value);
if (ret)
return ret;
return b53_mdio_op(bus, page, reg, REG_MII_ADDR_WRITE);
}
static int b53_mdio_write32(struct mii_dev *bus, u8 page, u8 reg,
u32 value)
{
unsigned int i;
u32 temp = value;
for (i = 0; i < 2; i++) {
int ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR,
MDIO_DEVAD_NONE,
REG_MII_DATA0 + i, temp & 0xffff);
if (ret)
return ret;
temp >>= 16;
}
return b53_mdio_op(bus, page, reg, REG_MII_ADDR_WRITE);
}
static int b53_mdio_write48(struct mii_dev *bus, u8 page, u8 reg,
u64 value)
{
unsigned int i;
u64 temp = value;
for (i = 0; i < 3; i++) {
int ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR,
MDIO_DEVAD_NONE,
REG_MII_DATA0 + i, temp & 0xffff);
if (ret)
return ret;
temp >>= 16;
}
return b53_mdio_op(bus, page, reg, REG_MII_ADDR_WRITE);
}
static int b53_mdio_write64(struct mii_dev *bus, u8 page, u8 reg,
u64 value)
{
unsigned int i;
u64 temp = value;
for (i = 0; i < 4; i++) {
int ret = bus->write(bus, BRCM_PSEUDO_PHY_ADDR,
MDIO_DEVAD_NONE,
REG_MII_DATA0 + i, temp & 0xffff);
if (ret)
return ret;
temp >>= 16;
}
return b53_mdio_op(bus, page, reg, REG_MII_ADDR_WRITE);
}
static inline int b53_read8(struct b53_device *dev, u8 page,
u8 reg, u8 *value)
{
return b53_mdio_read8(dev->bus, page, reg, value);
}
static inline int b53_read16(struct b53_device *dev, u8 page,
u8 reg, u16 *value)
{
return b53_mdio_read16(dev->bus, page, reg, value);
}
static inline int b53_read32(struct b53_device *dev, u8 page,
u8 reg, u32 *value)
{
return b53_mdio_read32(dev->bus, page, reg, value);
}
static inline int b53_read48(struct b53_device *dev, u8 page,
u8 reg, u64 *value)
{
return b53_mdio_read48(dev->bus, page, reg, value);
}
static inline int b53_read64(struct b53_device *dev, u8 page,
u8 reg, u64 *value)
{
return b53_mdio_read64(dev->bus, page, reg, value);
}
static inline int b53_write8(struct b53_device *dev, u8 page,
u8 reg, u8 value)
{
return b53_mdio_write8(dev->bus, page, reg, value);
}
static inline int b53_write16(struct b53_device *dev, u8 page,
u8 reg, u16 value)
{
return b53_mdio_write16(dev->bus, page, reg, value);
}
static inline int b53_write32(struct b53_device *dev, u8 page,
u8 reg, u32 value)
{
return b53_mdio_write32(dev->bus, page, reg, value);
}
static inline int b53_write48(struct b53_device *dev, u8 page,
u8 reg, u64 value)
{
return b53_mdio_write48(dev->bus, page, reg, value);
}
static inline int b53_write64(struct b53_device *dev, u8 page,
u8 reg, u64 value)
{
return b53_mdio_write64(dev->bus, page, reg, value);
}
static int b53_flush_arl(struct b53_device *dev, u8 mask)
{
unsigned int i;
b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask);
for (i = 0; i < 10; i++) {
u8 fast_age_ctrl;
b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
&fast_age_ctrl);
if (!(fast_age_ctrl & FAST_AGE_DONE))
goto out;
mdelay(1);
}
return -ETIMEDOUT;
out:
/* Only age dynamic entries (default behavior) */
b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC);
return 0;
}
static int b53_switch_reset(struct phy_device *phydev)
{
struct b53_device *dev = phydev->priv;
unsigned int timeout = 1000;
u8 mgmt;
u8 reg;
b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
reg |= SW_RST | EN_SW_RST | EN_CH_RST;
b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, reg);
do {
b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
if (!(reg & SW_RST))
break;
mdelay(1);
} while (timeout-- > 0);
if (timeout == 0)
return -ETIMEDOUT;
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
if (!(mgmt & SM_SW_FWD_EN)) {
mgmt &= ~SM_SW_FWD_MODE;
mgmt |= SM_SW_FWD_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
if (!(mgmt & SM_SW_FWD_EN)) {
printf("Failed to enable switch!\n");
return -EINVAL;
}
}
/* Include IMP port in dumb forwarding mode when no tagging protocol
* is configured
*/
b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, &mgmt);
mgmt |= B53_MII_DUMB_FWDG_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, mgmt);
return b53_flush_arl(dev, FAST_AGE_STATIC);
}
static void b53_enable_cpu_port(struct phy_device *phydev)
{
struct b53_device *dev = phydev->priv;
u8 port_ctrl;
port_ctrl = PORT_CTRL_RX_BCST_EN |
PORT_CTRL_RX_MCST_EN |
PORT_CTRL_RX_UCST_EN;
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(dev->cpu_port), port_ctrl);
port_ctrl = PORT_OVERRIDE_EN | PORT_OVERRIDE_LINK |
PORT_OVERRIDE_FULL_DUPLEX | PORT_OVERRIDE_SPEED_1000M;
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL, port_ctrl);
b53_read8(dev, B53_CTRL_PAGE, B53_RGMII_CTRL_IMP, &port_ctrl);
}
static void b53_imp_vlan_setup(struct b53_device *dev, int cpu_port)
{
unsigned int port;
u16 pvlan;
/* Enable the IMP port to be in the same VLAN as the other ports
* on a per-port basis such that we only have Port i and IMP in
* the same VLAN.
*/
for (port = 0; port < B53_N_PORTS; port++) {
if (!((1 << port) & CONFIG_B53_PHY_PORTS))
continue;
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port),
&pvlan);
pvlan |= BIT(cpu_port);
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port),
pvlan);
}
}
static int b53_port_enable(struct phy_device *phydev, unsigned int port)
{
struct b53_device *dev = phydev->priv;
unsigned int cpu_port = dev->cpu_port;
u16 pvlan;
/* Clear the Rx and Tx disable bits and set to no spanning tree */
b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0);
/* Set this port, and only this one to be in the default VLAN */
b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
pvlan &= ~0x1ff;
pvlan |= BIT(port);
b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
b53_imp_vlan_setup(dev, cpu_port);
return 0;
}
static int b53_switch_init(struct phy_device *phydev)
{
static int init;
int ret;
if (init)
return 0;
ret = b53_switch_reset(phydev);
if (ret < 0)
return ret;
b53_enable_cpu_port(phydev);
init = 1;
return 0;
}
static int b53_probe(struct phy_device *phydev)
{
struct b53_device *dev;
int ret;
dev = malloc(sizeof(*dev));
if (!dev)
return -ENOMEM;
memset(dev, 0, sizeof(*dev));
phydev->priv = dev;
dev->bus = phydev->bus;
dev->cpu_port = CONFIG_B53_CPU_PORT;
ret = b53_switch_reset(phydev);
if (ret < 0)
return ret;
return 0;
}
static int b53_phy_config(struct phy_device *phydev)
{
unsigned int port;
int res;
res = b53_switch_init(phydev);
if (res < 0)
return res;
for (port = 0; port < B53_N_PORTS; port++) {
if (!((1 << port) & CONFIG_B53_PHY_PORTS))
continue;
res = b53_port_enable(phydev, port);
if (res < 0) {
printf("Error enabling port %i\n", port);
continue;
}
res = genphy_config_aneg(phydev);
if (res < 0) {
printf("Error setting PHY %i autoneg\n", port);
continue;
}
res = 0;
}
return res;
}
static int b53_phy_startup(struct phy_device *phydev)
{
unsigned int port;
int res;
for (port = 0; port < B53_N_PORTS; port++) {
if (!((1 << port) & CONFIG_B53_PHY_PORTS))
continue;
phydev->addr = port;
res = genphy_startup(phydev);
if (res < 0)
continue;
else
break;
}
/* Since we are connected directly to the switch, hardcode the link
* parameters to match those of the CPU port configured in
* b53_enable_cpu_port, we cannot be dependent on the user-facing port
* settings (e.g: 100Mbits/sec would not work here)
*/
phydev->speed = 1000;
phydev->duplex = 1;
phydev->link = 1;
return 0;
}
static struct phy_driver b53_driver = {
.name = "Broadcom BCM53125",
.uid = 0x03625c00,
.mask = 0xfffffc00,
.features = PHY_GBIT_FEATURES,
.probe = b53_probe,
.config = b53_phy_config,
.startup = b53_phy_startup,
.shutdown = &genphy_shutdown,
};
int phy_b53_init(void)
{
phy_register(&b53_driver);
return 0;
}
int do_b53_reg_read(const char *name, int argc, char * const argv[])
{
u8 page, offset, width;
struct mii_dev *bus;
int ret = -EINVAL;
u64 value64 = 0;
u32 value32 = 0;
u16 value16 = 0;
u8 value8 = 0;
bus = miiphy_get_dev_by_name(name);
if (!bus) {
printf("unable to find MDIO bus: %s\n", name);
return ret;
}
page = simple_strtoul(argv[1], NULL, 16);
offset = simple_strtoul(argv[2], NULL, 16);
width = simple_strtoul(argv[3], NULL, 10);
switch (width) {
case 8:
ret = b53_mdio_read8(bus, page, offset, &value8);
printf("page=0x%02x, offset=0x%02x, value=0x%02x\n",
page, offset, value8);
break;
case 16:
ret = b53_mdio_read16(bus, page, offset, &value16);
printf("page=0x%02x, offset=0x%02x, value=0x%04x\n",
page, offset, value16);
break;
case 32:
ret = b53_mdio_read32(bus, page, offset, &value32);
printf("page=0x%02x, offset=0x%02x, value=0x%08x\n",
page, offset, value32);
break;
case 48:
ret = b53_mdio_read48(bus, page, offset, &value64);
printf("page=0x%02x, offset=0x%02x, value=0x%012llx\n",
page, offset, value64);
break;
case 64:
ret = b53_mdio_read48(bus, page, offset, &value64);
printf("page=0x%02x, offset=0x%02x, value=0x%016llx\n",
page, offset, value64);
break;
default:
printf("Unsupported width: %d\n", width);
break;
}
return ret;
}
int do_b53_reg_write(const char *name, int argc, char * const argv[])
{
u8 page, offset, width;
struct mii_dev *bus;
int ret = -EINVAL;
u64 value64 = 0;
u32 value = 0;
bus = miiphy_get_dev_by_name(name);
if (!bus) {
printf("unable to find MDIO bus: %s\n", name);
return ret;
}
page = simple_strtoul(argv[1], NULL, 16);
offset = simple_strtoul(argv[2], NULL, 16);
width = simple_strtoul(argv[3], NULL, 10);
if (width == 48 || width == 64)
value64 = simple_strtoull(argv[4], NULL, 16);
else
value = simple_strtoul(argv[4], NULL, 16);
switch (width) {
case 8:
ret = b53_mdio_write8(bus, page, offset, value & 0xff);
break;
case 16:
ret = b53_mdio_write16(bus, page, offset, value);
break;
case 32:
ret = b53_mdio_write32(bus, page, offset, value);
break;
case 48:
ret = b53_mdio_write48(bus, page, offset, value64);
break;
case 64:
ret = b53_mdio_write64(bus, page, offset, value64);
break;
default:
printf("Unsupported width: %d\n", width);
break;
}
return ret;
}
int do_b53_reg(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
const char *cmd, *mdioname;
int ret = 0;
if (argc < 2)
return cmd_usage(cmdtp);
cmd = argv[1];
--argc;
++argv;
if (!strcmp(cmd, "write")) {
if (argc < 4)
return cmd_usage(cmdtp);
mdioname = argv[1];
--argc;
++argv;
ret = do_b53_reg_write(mdioname, argc, argv);
} else if (!strcmp(cmd, "read")) {
if (argc < 5)
return cmd_usage(cmdtp);
mdioname = argv[1];
--argc;
++argv;
ret = do_b53_reg_read(mdioname, argc, argv);
} else {
return cmd_usage(cmdtp);
}
return ret;
}
U_BOOT_CMD(b53_reg, 7, 1, do_b53_reg,
"Broadcom B53 switch register access",
"write mdioname page (hex) offset (hex) width (dec) value (hex)\n"
"read mdioname page (hex) offset (hex) width (dec)\n"
);