u-boot/drivers/net/altera_tse.c
Simon Glass 1eb69ae498 common: Move ARM cache operations out of common.h
These functions are CPU-related and do not use driver model. Move them to
cpu_func.h

Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2019-12-02 18:24:58 -05:00

716 lines
18 KiB
C

/*
* Altera 10/100/1000 triple speed ethernet mac driver
*
* Copyright (C) 2008 Altera Corporation.
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <fdt_support.h>
#include <memalign.h>
#include <miiphy.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/dma-mapping.h>
#include <asm/io.h>
#include "altera_tse.h"
DECLARE_GLOBAL_DATA_PTR;
static inline void alt_sgdma_construct_descriptor(
struct alt_sgdma_descriptor *desc,
struct alt_sgdma_descriptor *next,
void *read_addr,
void *write_addr,
u16 length_or_eop,
int generate_eop,
int read_fixed,
int write_fixed_or_sop)
{
u8 val;
/*
* Mark the "next" descriptor as "not" owned by hardware. This prevents
* The SGDMA controller from continuing to process the chain.
*/
next->descriptor_control = next->descriptor_control &
~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK;
memset(desc, 0, sizeof(struct alt_sgdma_descriptor));
desc->source = virt_to_phys(read_addr);
desc->destination = virt_to_phys(write_addr);
desc->next = virt_to_phys(next);
desc->bytes_to_transfer = length_or_eop;
/*
* Set the descriptor control block as follows:
* - Set "owned by hardware" bit
* - Optionally set "generate EOP" bit
* - Optionally set the "read from fixed address" bit
* - Optionally set the "write to fixed address bit (which serves
* serves as a "generate SOP" control bit in memory-to-stream mode).
* - Set the 4-bit atlantic channel, if specified
*
* Note this step is performed after all other descriptor information
* has been filled out so that, if the controller already happens to be
* pointing at this descriptor, it will not run (via the "owned by
* hardware" bit) until all other descriptor has been set up.
*/
val = ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK;
if (generate_eop)
val |= ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK;
if (read_fixed)
val |= ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK;
if (write_fixed_or_sop)
val |= ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK;
desc->descriptor_control = val;
}
static int alt_sgdma_wait_transfer(struct alt_sgdma_registers *regs)
{
int status;
ulong ctime;
/* Wait for the descriptor (chain) to complete */
ctime = get_timer(0);
while (1) {
status = readl(&regs->status);
if (!(status & ALT_SGDMA_STATUS_BUSY_MSK))
break;
if (get_timer(ctime) > ALT_TSE_SGDMA_BUSY_TIMEOUT) {
status = -ETIMEDOUT;
debug("sgdma timeout\n");
break;
}
}
/* Clear Run */
writel(0, &regs->control);
/* Clear status */
writel(0xff, &regs->status);
return status;
}
static int alt_sgdma_start_transfer(struct alt_sgdma_registers *regs,
struct alt_sgdma_descriptor *desc)
{
u32 val;
/* Point the controller at the descriptor */
writel(virt_to_phys(desc), &regs->next_descriptor_pointer);
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
val = ALT_SGDMA_CONTROL_RUN_MSK | ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK;
writel(val, &regs->control);
return 0;
}
static void tse_adjust_link(struct altera_tse_priv *priv,
struct phy_device *phydev)
{
struct alt_tse_mac *mac_dev = priv->mac_dev;
u32 refvar;
if (!phydev->link) {
debug("%s: No link.\n", phydev->dev->name);
return;
}
refvar = readl(&mac_dev->command_config);
if (phydev->duplex)
refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
else
refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;
switch (phydev->speed) {
case 1000:
refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 100:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
break;
case 10:
refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
break;
}
writel(refvar, &mac_dev->command_config);
}
static int altera_tse_send_sgdma(struct udevice *dev, void *packet, int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
alt_sgdma_construct_descriptor(
tx_desc,
tx_desc + 1,
packet, /* read addr */
NULL, /* write addr */
length, /* length or EOP ,will change for each tx */
1, /* gen eop */
0, /* read fixed */
1 /* write fixed or sop */
);
/* send the packet */
alt_sgdma_start_transfer(priv->sgdma_tx, tx_desc);
alt_sgdma_wait_transfer(priv->sgdma_tx);
debug("sent %d bytes\n", tx_desc->actual_bytes_transferred);
return tx_desc->actual_bytes_transferred;
}
static int altera_tse_recv_sgdma(struct udevice *dev, int flags,
uchar **packetp)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
int packet_length;
if (rx_desc->descriptor_status &
ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
alt_sgdma_wait_transfer(priv->sgdma_rx);
packet_length = rx_desc->actual_bytes_transferred;
debug("recv %d bytes\n", packet_length);
*packetp = priv->rx_buf;
return packet_length;
}
return -EAGAIN;
}
static int altera_tse_free_pkt_sgdma(struct udevice *dev, uchar *packet,
int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
alt_sgdma_construct_descriptor(
rx_desc,
rx_desc + 1,
NULL, /* read addr */
priv->rx_buf, /* write addr */
0, /* length or EOP */
0, /* gen eop */
0, /* read fixed */
0 /* write fixed or sop */
);
/* setup the sgdma */
alt_sgdma_start_transfer(priv->sgdma_rx, rx_desc);
debug("recv setup\n");
return 0;
}
static void altera_tse_stop_mac(struct altera_tse_priv *priv)
{
struct alt_tse_mac *mac_dev = priv->mac_dev;
u32 status;
ulong ctime;
/* reset the mac */
writel(ALTERA_TSE_CMD_SW_RESET_MSK, &mac_dev->command_config);
ctime = get_timer(0);
while (1) {
status = readl(&mac_dev->command_config);
if (!(status & ALTERA_TSE_CMD_SW_RESET_MSK))
break;
if (get_timer(ctime) > ALT_TSE_SW_RESET_TIMEOUT) {
debug("Reset mac timeout\n");
break;
}
}
}
static void altera_tse_stop_sgdma(struct udevice *dev)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
int ret;
/* clear rx desc & wait for sgdma to complete */
rx_desc->descriptor_control = 0;
writel(0, &rx_sgdma->control);
ret = alt_sgdma_wait_transfer(rx_sgdma);
if (ret == -ETIMEDOUT)
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK,
&rx_sgdma->control);
writel(0, &tx_sgdma->control);
ret = alt_sgdma_wait_transfer(tx_sgdma);
if (ret == -ETIMEDOUT)
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK,
&tx_sgdma->control);
}
static void msgdma_reset(struct msgdma_csr *csr)
{
u32 status;
ulong ctime;
/* Reset mSGDMA */
writel(MSGDMA_CSR_STAT_MASK, &csr->status);
writel(MSGDMA_CSR_CTL_RESET, &csr->control);
ctime = get_timer(0);
while (1) {
status = readl(&csr->status);
if (!(status & MSGDMA_CSR_STAT_RESETTING))
break;
if (get_timer(ctime) > ALT_TSE_SW_RESET_TIMEOUT) {
debug("Reset msgdma timeout\n");
break;
}
}
/* Clear status */
writel(MSGDMA_CSR_STAT_MASK, &csr->status);
}
static u32 msgdma_wait(struct msgdma_csr *csr)
{
u32 status;
ulong ctime;
/* Wait for the descriptor to complete */
ctime = get_timer(0);
while (1) {
status = readl(&csr->status);
if (!(status & MSGDMA_CSR_STAT_BUSY))
break;
if (get_timer(ctime) > ALT_TSE_SGDMA_BUSY_TIMEOUT) {
debug("sgdma timeout\n");
break;
}
}
/* Clear status */
writel(MSGDMA_CSR_STAT_MASK, &csr->status);
return status;
}
static int altera_tse_send_msgdma(struct udevice *dev, void *packet,
int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct msgdma_extended_desc *desc = priv->tx_desc;
u32 tx_buf = virt_to_phys(packet);
u32 status;
writel(tx_buf, &desc->read_addr_lo);
writel(0, &desc->read_addr_hi);
writel(0, &desc->write_addr_lo);
writel(0, &desc->write_addr_hi);
writel(length, &desc->len);
writel(0, &desc->burst_seq_num);
writel(MSGDMA_DESC_TX_STRIDE, &desc->stride);
writel(MSGDMA_DESC_CTL_TX_SINGLE, &desc->control);
status = msgdma_wait(priv->sgdma_tx);
debug("sent %d bytes, status %08x\n", length, status);
return 0;
}
static int altera_tse_recv_msgdma(struct udevice *dev, int flags,
uchar **packetp)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct msgdma_csr *csr = priv->sgdma_rx;
struct msgdma_response *resp = priv->rx_resp;
u32 level, length, status;
level = readl(&csr->resp_fill_level);
if (level & 0xffff) {
length = readl(&resp->bytes_transferred);
status = readl(&resp->status);
debug("recv %d bytes, status %08x\n", length, status);
*packetp = priv->rx_buf;
return length;
}
return -EAGAIN;
}
static int altera_tse_free_pkt_msgdma(struct udevice *dev, uchar *packet,
int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct msgdma_extended_desc *desc = priv->rx_desc;
u32 rx_buf = virt_to_phys(priv->rx_buf);
writel(0, &desc->read_addr_lo);
writel(0, &desc->read_addr_hi);
writel(rx_buf, &desc->write_addr_lo);
writel(0, &desc->write_addr_hi);
writel(PKTSIZE_ALIGN, &desc->len);
writel(0, &desc->burst_seq_num);
writel(MSGDMA_DESC_RX_STRIDE, &desc->stride);
writel(MSGDMA_DESC_CTL_RX_SINGLE, &desc->control);
debug("recv setup\n");
return 0;
}
static void altera_tse_stop_msgdma(struct udevice *dev)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
msgdma_reset(priv->sgdma_rx);
msgdma_reset(priv->sgdma_tx);
}
static int tse_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct altera_tse_priv *priv = bus->priv;
struct alt_tse_mac *mac_dev = priv->mac_dev;
u32 value;
/* set mdio address */
writel(addr, &mac_dev->mdio_phy1_addr);
/* get the data */
value = readl(&mac_dev->mdio_phy1[reg]);
return value & 0xffff;
}
static int tse_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct altera_tse_priv *priv = bus->priv;
struct alt_tse_mac *mac_dev = priv->mac_dev;
/* set mdio address */
writel(addr, &mac_dev->mdio_phy1_addr);
/* set the data */
writel(val, &mac_dev->mdio_phy1[reg]);
return 0;
}
static int tse_mdio_init(const char *name, struct altera_tse_priv *priv)
{
struct mii_dev *bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate MDIO bus\n");
return -ENOMEM;
}
bus->read = tse_mdio_read;
bus->write = tse_mdio_write;
snprintf(bus->name, sizeof(bus->name), "%s", name);
bus->priv = (void *)priv;
return mdio_register(bus);
}
static int tse_phy_init(struct altera_tse_priv *priv, void *dev)
{
struct phy_device *phydev;
unsigned int mask = 0xffffffff;
if (priv->phyaddr)
mask = 1 << priv->phyaddr;
phydev = phy_find_by_mask(priv->bus, mask, priv->interface);
if (!phydev)
return -ENODEV;
phy_connect_dev(phydev, dev);
phydev->supported &= PHY_GBIT_FEATURES;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
return 0;
}
static int altera_tse_write_hwaddr(struct udevice *dev)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_tse_mac *mac_dev = priv->mac_dev;
struct eth_pdata *pdata = dev_get_platdata(dev);
u8 *hwaddr = pdata->enetaddr;
u32 mac_lo, mac_hi;
mac_lo = (hwaddr[3] << 24) | (hwaddr[2] << 16) |
(hwaddr[1] << 8) | hwaddr[0];
mac_hi = (hwaddr[5] << 8) | hwaddr[4];
debug("Set MAC address to 0x%04x%08x\n", mac_hi, mac_lo);
writel(mac_lo, &mac_dev->mac_addr_0);
writel(mac_hi, &mac_dev->mac_addr_1);
writel(mac_lo, &mac_dev->supp_mac_addr_0_0);
writel(mac_hi, &mac_dev->supp_mac_addr_0_1);
writel(mac_lo, &mac_dev->supp_mac_addr_1_0);
writel(mac_hi, &mac_dev->supp_mac_addr_1_1);
writel(mac_lo, &mac_dev->supp_mac_addr_2_0);
writel(mac_hi, &mac_dev->supp_mac_addr_2_1);
writel(mac_lo, &mac_dev->supp_mac_addr_3_0);
writel(mac_hi, &mac_dev->supp_mac_addr_3_1);
return 0;
}
static int altera_tse_send(struct udevice *dev, void *packet, int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
unsigned long tx_buf = (unsigned long)packet;
flush_dcache_range(tx_buf, tx_buf + length);
return priv->ops->send(dev, packet, length);
}
static int altera_tse_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
return priv->ops->recv(dev, flags, packetp);
}
static int altera_tse_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
unsigned long rx_buf = (unsigned long)priv->rx_buf;
invalidate_dcache_range(rx_buf, rx_buf + PKTSIZE_ALIGN);
return priv->ops->free_pkt(dev, packet, length);
}
static void altera_tse_stop(struct udevice *dev)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
priv->ops->stop(dev);
altera_tse_stop_mac(priv);
}
static int altera_tse_start(struct udevice *dev)
{
struct altera_tse_priv *priv = dev_get_priv(dev);
struct alt_tse_mac *mac_dev = priv->mac_dev;
u32 val;
int ret;
/* need to create sgdma */
debug("Configuring rx desc\n");
altera_tse_free_pkt(dev, priv->rx_buf, PKTSIZE_ALIGN);
/* start TSE */
debug("Configuring TSE Mac\n");
/* Initialize MAC registers */
writel(PKTSIZE_ALIGN, &mac_dev->max_frame_length);
writel(priv->rx_fifo_depth - 16, &mac_dev->rx_sel_empty_threshold);
writel(0, &mac_dev->rx_sel_full_threshold);
writel(priv->tx_fifo_depth - 16, &mac_dev->tx_sel_empty_threshold);
writel(0, &mac_dev->tx_sel_full_threshold);
writel(8, &mac_dev->rx_almost_empty_threshold);
writel(8, &mac_dev->rx_almost_full_threshold);
writel(8, &mac_dev->tx_almost_empty_threshold);
writel(3, &mac_dev->tx_almost_full_threshold);
/* NO Shift */
writel(0, &mac_dev->rx_cmd_stat);
writel(0, &mac_dev->tx_cmd_stat);
/* enable MAC */
val = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;
writel(val, &mac_dev->command_config);
/* Start up the PHY */
ret = phy_startup(priv->phydev);
if (ret) {
debug("Could not initialize PHY %s\n",
priv->phydev->dev->name);
return ret;
}
tse_adjust_link(priv, priv->phydev);
if (!priv->phydev->link)
return -EIO;
return 0;
}
static const struct tse_ops tse_sgdma_ops = {
.send = altera_tse_send_sgdma,
.recv = altera_tse_recv_sgdma,
.free_pkt = altera_tse_free_pkt_sgdma,
.stop = altera_tse_stop_sgdma,
};
static const struct tse_ops tse_msgdma_ops = {
.send = altera_tse_send_msgdma,
.recv = altera_tse_recv_msgdma,
.free_pkt = altera_tse_free_pkt_msgdma,
.stop = altera_tse_stop_msgdma,
};
static int altera_tse_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct altera_tse_priv *priv = dev_get_priv(dev);
void *blob = (void *)gd->fdt_blob;
int node = dev_of_offset(dev);
const char *list, *end;
const fdt32_t *cell;
void *base, *desc_mem = NULL;
unsigned long addr, size;
int parent, addrc, sizec;
int len, idx;
int ret;
priv->dma_type = dev_get_driver_data(dev);
if (priv->dma_type == ALT_SGDMA)
priv->ops = &tse_sgdma_ops;
else
priv->ops = &tse_msgdma_ops;
/*
* decode regs. there are multiple reg tuples, and they need to
* match with reg-names.
*/
parent = fdt_parent_offset(blob, node);
fdt_support_default_count_cells(blob, parent, &addrc, &sizec);
list = fdt_getprop(blob, node, "reg-names", &len);
if (!list)
return -ENOENT;
end = list + len;
cell = fdt_getprop(blob, node, "reg", &len);
if (!cell)
return -ENOENT;
idx = 0;
while (list < end) {
addr = fdt_translate_address((void *)blob,
node, cell + idx);
size = fdt_addr_to_cpu(cell[idx + addrc]);
base = map_physmem(addr, size, MAP_NOCACHE);
len = strlen(list);
if (strcmp(list, "control_port") == 0)
priv->mac_dev = base;
else if (strcmp(list, "rx_csr") == 0)
priv->sgdma_rx = base;
else if (strcmp(list, "rx_desc") == 0)
priv->rx_desc = base;
else if (strcmp(list, "rx_resp") == 0)
priv->rx_resp = base;
else if (strcmp(list, "tx_csr") == 0)
priv->sgdma_tx = base;
else if (strcmp(list, "tx_desc") == 0)
priv->tx_desc = base;
else if (strcmp(list, "s1") == 0)
desc_mem = base;
idx += addrc + sizec;
list += (len + 1);
}
/* decode fifo depth */
priv->rx_fifo_depth = fdtdec_get_int(blob, node,
"rx-fifo-depth", 0);
priv->tx_fifo_depth = fdtdec_get_int(blob, node,
"tx-fifo-depth", 0);
/* decode phy */
addr = fdtdec_get_int(blob, node,
"phy-handle", 0);
addr = fdt_node_offset_by_phandle(blob, addr);
priv->phyaddr = fdtdec_get_int(blob, addr,
"reg", 0);
/* init desc */
if (priv->dma_type == ALT_SGDMA) {
len = sizeof(struct alt_sgdma_descriptor) * 4;
if (!desc_mem) {
desc_mem = dma_alloc_coherent(len, &addr);
if (!desc_mem)
return -ENOMEM;
}
memset(desc_mem, 0, len);
priv->tx_desc = desc_mem;
priv->rx_desc = priv->tx_desc +
2 * sizeof(struct alt_sgdma_descriptor);
}
/* allocate recv packet buffer */
priv->rx_buf = malloc_cache_aligned(PKTSIZE_ALIGN);
if (!priv->rx_buf)
return -ENOMEM;
/* stop controller */
debug("Reset TSE & SGDMAs\n");
altera_tse_stop(dev);
/* start the phy */
priv->interface = pdata->phy_interface;
tse_mdio_init(dev->name, priv);
priv->bus = miiphy_get_dev_by_name(dev->name);
ret = tse_phy_init(priv, dev);
return ret;
}
static int altera_tse_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
const char *phy_mode;
pdata->phy_interface = -1;
phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
return 0;
}
static const struct eth_ops altera_tse_ops = {
.start = altera_tse_start,
.send = altera_tse_send,
.recv = altera_tse_recv,
.free_pkt = altera_tse_free_pkt,
.stop = altera_tse_stop,
.write_hwaddr = altera_tse_write_hwaddr,
};
static const struct udevice_id altera_tse_ids[] = {
{ .compatible = "altr,tse-msgdma-1.0", .data = ALT_MSGDMA },
{ .compatible = "altr,tse-1.0", .data = ALT_SGDMA },
{}
};
U_BOOT_DRIVER(altera_tse) = {
.name = "altera_tse",
.id = UCLASS_ETH,
.of_match = altera_tse_ids,
.ops = &altera_tse_ops,
.ofdata_to_platdata = altera_tse_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.priv_auto_alloc_size = sizeof(struct altera_tse_priv),
.probe = altera_tse_probe,
};