mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-10 04:08:52 +00:00
1cc0a9f496
Spelling corrections for (among other things): * environment * override * variable * ftd (should be "fdt", for flattened device tree) * embedded * FTDI * emulation * controller |
||
---|---|---|
.. | ||
cpu.c | ||
cpu.h | ||
fdt.c | ||
fsl_lsch2_serdes.c | ||
fsl_lsch2_speed.c | ||
fsl_lsch3_serdes.c | ||
fsl_lsch3_speed.c | ||
lowlevel.S | ||
ls1043a_serdes.c | ||
ls2080a_serdes.c | ||
Makefile | ||
mp.c | ||
README.lsch2 | ||
README.lsch3 | ||
soc.c | ||
spl.c |
# # Copyright 2014-2015 Freescale Semiconductor # # SPDX-License-Identifier: GPL-2.0+ # Freescale LayerScape with Chassis Generation 3 This architecture supports Freescale ARMv8 SoCs with Chassis generation 3, for example LS2080A. DDR Layout ============ Entire DDR region splits into two regions. - Region 1 is at address 0x8000_0000 to 0xffff_ffff. - Region 2 is at 0x80_8000_0000 to the top of total memory, for example 16GB, 0x83_ffff_ffff. All DDR memory is marked as cache-enabled. When MC and Debug server is enabled, they carve 512MB away from the high end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB with MC and Debug server enabled. Linux only sees 15.5GB. The reserved 512MB layout looks like +---------------+ <-- top/end of memory | 256MB | debug server +---------------+ | 256MB | MC +---------------+ | ... | MC requires the memory to be aligned with 512MB, so even debug server is not enabled, 512MB is reserved, not 256MB. Flash Layout ============ (1) A typical layout of various images (including Linux and other firmware images) is shown below considering a 32MB NOR flash device present on most pre-silicon platforms (simulator and emulator): ------------------------- | FIT Image | | (linux + DTB + RFS) | ------------------------- ----> 0x0120_0000 | Debug Server FW | ------------------------- ----> 0x00C0_0000 | AIOP FW | ------------------------- ----> 0x0070_0000 | MC FW | ------------------------- ----> 0x006C_0000 | MC DPL Blob | ------------------------- ----> 0x0020_0000 | BootLoader + Env| ------------------------- ----> 0x0000_1000 | PBI | ------------------------- ----> 0x0000_0080 | RCW | ------------------------- ----> 0x0000_0000 32-MB NOR flash layout for pre-silicon platforms (simulator and emulator) (2) A typical layout of various images (including Linux and other firmware images) is shown below considering a 128MB NOR flash device present on QDS and RDB boards: ----------------------------------------- ----> 0x5_8800_0000 --- | .. Unused .. (7M) | | ----------------------------------------- ----> 0x5_8790_0000 | | FIT Image (linux + DTB + RFS) (40M) | | ----------------------------------------- ----> 0x5_8510_0000 | | PHY firmware (2M) | | ----------------------------------------- ----> 0x5_84F0_0000 | 64K | Debug Server FW (2M) | | Alt ----------------------------------------- ----> 0x5_84D0_0000 | Bank | AIOP FW (4M) | | ----------------------------------------- ----> 0x5_8490_0000 (vbank4) | MC DPC Blob (1M) | | ----------------------------------------- ----> 0x5_8480_0000 | | MC DPL Blob (1M) | | ----------------------------------------- ----> 0x5_8470_0000 | | MC FW (4M) | | ----------------------------------------- ----> 0x5_8430_0000 | | BootLoader Environment (1M) | | ----------------------------------------- ----> 0x5_8420_0000 | | BootLoader (1M) | | ----------------------------------------- ----> 0x5_8410_0000 | | RCW and PBI (1M) | | ----------------------------------------- ----> 0x5_8400_0000 --- | .. Unused .. (7M) | | ----------------------------------------- ----> 0x5_8390_0000 | | FIT Image (linux + DTB + RFS) (40M) | | ----------------------------------------- ----> 0x5_8110_0000 | | PHY firmware (2M) | | ----------------------------------------- ----> 0x5_80F0_0000 | 64K | Debug Server FW (2M) | | Bank ----------------------------------------- ----> 0x5_80D0_0000 | | AIOP FW (4M) | | ----------------------------------------- ----> 0x5_8090_0000 (vbank0) | MC DPC Blob (1M) | | ----------------------------------------- ----> 0x5_8080_0000 | | MC DPL Blob (1M) | | ----------------------------------------- ----> 0x5_8070_0000 | | MC FW (4M) | | ----------------------------------------- ----> 0x5_8030_0000 | | BootLoader Environment (1M) | | ----------------------------------------- ----> 0x5_8020_0000 | | BootLoader (1M) | | ----------------------------------------- ----> 0x5_8010_0000 | | RCW and PBI (1M) | | ----------------------------------------- ----> 0x5_8000_0000 --- 128-MB NOR flash layout for QDS and RDB boards Environment Variables ===================== mcboottimeout: MC boot timeout in milliseconds. If this variable is not defined the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed. mcmemsize: MC DRAM block size. If this variable is not defined, the value CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed. Booting from NAND ------------------- Booting from NAND requires two images, RCW and u-boot-with-spl.bin. The difference between NAND boot RCW image and NOR boot image is the PBI command sequence. Below is one example for PBI commands for QDS which uses NAND device with 2KB/page, block size 128KB. 1) CCSR 4-byte write to 0x00e00404, data=0x00000000 2) CCSR 4-byte write to 0x00e00400, data=0x1800a000 The above two commands set bootloc register to 0x00000000_1800a000 where the u-boot code will be running in OCRAM. 3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000, BLOCK_SIZE=0x00014000 This command copies u-boot image from NAND device into OCRAM. The values need to adjust accordingly. SRC should match the cfg_rcw_src, the reset config pins. It depends on the NAND device. See reference manual for cfg_rcw_src. SRC_ADDR is the offset of u-boot-with-spl.bin image in NAND device. In the example above, 128KB. For easy maintenance, we put it at the beginning of next block from RCW. DEST_ADDR is fixed at 0x1800a000, matching bootloc set above. BLOCK_SIZE is the size to be copied by PBI. RCW image should be written to the beginning of NAND device. Example of using u-boot command nand write <rcw image in memory> 0 <size of rcw image> To form the NAND image, build u-boot with NAND config, for example, ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin. The u-boot image should be written to match SRC_ADDR, in above example 0x20000. nand write <u-boot image in memory> 200000 <size of u-boot image> With these two images in NAND device, the board can boot from NAND. Another example for RDB boards, 1) CCSR 4-byte write to 0x00e00404, data=0x00000000 2) CCSR 4-byte write to 0x00e00400, data=0x1800a000 3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000, BLOCK_SIZE=0x00014000 nand write <rcw image in memory> 0 <size of rcw image> nand write <u-boot image in memory> 80000 <size of u-boot image> Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image to match board NAND device with 4KB/page, block size 512KB. MMU Translation Tables ====================== (1) Early MMU Tables: Level 0 Level 1 Level 2 ------------------ ------------------ ------------------ | 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 | ------------------ ------------------ ------------------ | 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 | ------------------ | ------------------ ------------------ | invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 | ------------------ | ------------------ ------------------ | | 0x00_c000_0000 | | 0x00_0060_0000 | | ------------------ ------------------ | | 0x01_0000_0000 | | 0x00_0080_0000 | | ------------------ ------------------ | ... ... | ------------------ | | 0x05_8000_0000 | --| | ------------------ | | | 0x05_c000_0000 | | | ------------------ | | ... | | ------------------ | ------------------ |--> | 0x80_0000_0000 | |-> | 0x00_3000_0000 | ------------------ ------------------ | 0x80_4000_0000 | | 0x00_3020_0000 | ------------------ ------------------ | 0x80_8000_0000 | | 0x00_3040_0000 | ------------------ ------------------ | 0x80_c000_0000 | | 0x00_3060_0000 | ------------------ ------------------ | 0x81_0000_0000 | | 0x00_3080_0000 | ------------------ ------------------ ... ... (2) Final MMU Tables: Level 0 Level 1 Level 2 ------------------ ------------------ ------------------ | 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 | ------------------ ------------------ ------------------ | 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 | ------------------ | ------------------ ------------------ | invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 | ------------------ | ------------------ ------------------ | | 0x00_c000_0000 | | 0x00_0060_0000 | | ------------------ ------------------ | | 0x01_0000_0000 | | 0x00_0080_0000 | | ------------------ ------------------ | ... ... | ------------------ | | 0x08_0000_0000 | --| | ------------------ | | | 0x08_4000_0000 | | | ------------------ | | ... | | ------------------ | ------------------ |--> | 0x80_0000_0000 | |--> | 0x08_0000_0000 | ------------------ ------------------ | 0x80_4000_0000 | | 0x08_0020_0000 | ------------------ ------------------ | 0x80_8000_0000 | | 0x08_0040_0000 | ------------------ ------------------ | 0x80_c000_0000 | | 0x08_0060_0000 | ------------------ ------------------ | 0x81_0000_0000 | | 0x08_0080_0000 | ------------------ ------------------ ... ... DPAA2 commands to manage Management Complex (MC) ------------------------------------------------ DPAA2 commands has been introduced to manage Management Complex (MC). These commands are used to start mc, aiop and apply DPL from u-boot command prompt. Please note Management complex Firmware(MC), DPL and DPC are no more deployed during u-boot boot-sequence. Commands: a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex b) fsl_mc apply DPL <DPL_addr> - Apply DPL file c) fsl_mc start aiop <FW_addr> - Start AIOP How to use commands :- 1. Command sequence for u-boot ethernet: a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex b) DPMAC net-devices are now available for use Example- Assumption: MC firmware, DPL and DPC dtb is already programmed on NOR flash. => fsl_mc start mc 580300000 580800000 => setenv ethact DPMAC1@xgmii => ping $serverip 2. Command sequence for Linux boot: a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex b) fsl_mc apply DPL <DPL_addr> - Apply DPL file c) No DPMAC net-devices are available for use in u-boot d) boot Linux Example- Assumption: MC firmware, DPL and DPC dtb is already programmed on NOR flash. => fsl_mc start mc 580300000 580800000 => setenv ethact DPMAC1@xgmii => tftp a0000000 kernel.itb => fsl_mc apply dpl 580700000 => bootm a0000000 3. Command sequence for AIOP boot: a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex b) fsl_mc start aiop <FW_addr> - Start AIOP c) fsl_mc apply DPL <DPL_addr> - Apply DPL file d) No DPMAC net-devices are availabe for use in u-boot Please note actual AIOP start will happen during DPL parsing of Management complex Example- Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already programmed on NOR flash. => fsl_mc start mc 580300000 580800000 => fsl_mc start aiop 0x580900000 => setenv ethact DPMAC1@xgmii => fsl_mc apply dpl 580700000 Errata A009635 --------------- If the core runs at higher than x3 speed of the platform, there is possiblity about sev instruction to getting missed by other cores. This is because of SoC Run Control block may not able to sample the EVENTI(Sev) signals. Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to wake up A57 cores Errata workaround uses Env variable "a009635_interval_val". It uses decimal value. - Default value of env variable is platform clock (MHz) - User can modify default value by updating the env variable setenv a009635_interval_val 600; saveenv; It configure platform clock as 600 MHz - Env variable as 0 signifies no workaround