u-boot/drivers/core/ofnode.c
Simon Glass 878d68c0c3 dm: core: Add functions to obtain node's address/size cells
The of_n_addr_cells() and of_n_size_cells() functions are useful for
getting the size of addresses in a node, but in a few places U-Boot needs
to obtain the actual property value for a node without walking up the
stack. Add functions for this and just the existing code to use it.

Add a comment to the existing ofnode functions which do not do the right
thing with a flat tree.

This fixes a problem reading PCI addresses.

Signed-off-by: Simon Glass <sjg@chromium.org>
Tested-by: Marcel Ziswiler <marcel.ziswiler@toradex.com>
Tested-on: Beaver, Jetson-TK1
2017-07-11 10:08:20 -06:00

605 lines
14 KiB
C

/*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <libfdt.h>
#include <dm/of_access.h>
#include <dm/of_addr.h>
#include <dm/ofnode.h>
#include <linux/err.h>
int ofnode_read_u32(ofnode node, const char *propname, u32 *outp)
{
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
return of_read_u32(ofnode_to_np(node), propname, outp);
} else {
const int *cell;
int len;
cell = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, &len);
if (!cell || len < sizeof(int)) {
debug("(not found)\n");
return -EINVAL;
}
*outp = fdt32_to_cpu(cell[0]);
}
debug("%#x (%d)\n", *outp, *outp);
return 0;
}
int ofnode_read_u32_default(ofnode node, const char *propname, u32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32(node, propname, &def);
return def;
}
int ofnode_read_s32_default(ofnode node, const char *propname, s32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32(node, propname, (u32 *)&def);
return def;
}
bool ofnode_read_bool(ofnode node, const char *propname)
{
bool val;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
val = !!of_find_property(ofnode_to_np(node), propname, NULL);
} else {
val = !!fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, NULL);
}
debug("%s\n", val ? "true" : "false");
return val;
}
const char *ofnode_read_string(ofnode node, const char *propname)
{
const char *str = NULL;
int len = -1;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
struct property *prop = of_find_property(
ofnode_to_np(node), propname, NULL);
if (prop) {
str = prop->value;
len = prop->length;
}
} else {
str = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, &len);
}
if (!str) {
debug("<not found>\n");
return NULL;
}
if (strnlen(str, len) >= len) {
debug("<invalid>\n");
return NULL;
}
debug("%s\n", str);
return str;
}
ofnode ofnode_find_subnode(ofnode node, const char *subnode_name)
{
ofnode subnode;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, subnode_name);
if (ofnode_is_np(node)) {
const struct device_node *np = ofnode_to_np(node);
for (np = np->child; np; np = np->sibling) {
if (!strcmp(subnode_name, np->name))
break;
}
subnode = np_to_ofnode(np);
} else {
int ooffset = fdt_subnode_offset(gd->fdt_blob,
ofnode_to_offset(node), subnode_name);
subnode = offset_to_ofnode(ooffset);
}
debug("%s\n", ofnode_valid(subnode) ?
ofnode_get_name(subnode) : "<none>");
return subnode;
}
int ofnode_read_u32_array(ofnode node, const char *propname,
u32 *out_values, size_t sz)
{
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
return of_read_u32_array(ofnode_to_np(node), propname,
out_values, sz);
} else {
return fdtdec_get_int_array(gd->fdt_blob,
ofnode_to_offset(node), propname,
out_values, sz);
}
}
ofnode ofnode_first_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->child);
return offset_to_ofnode(
fdt_first_subnode(gd->fdt_blob, ofnode_to_offset(node)));
}
ofnode ofnode_next_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->sibling);
return offset_to_ofnode(
fdt_next_subnode(gd->fdt_blob, ofnode_to_offset(node)));
}
const char *ofnode_get_name(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return strrchr(node.np->full_name, '/') + 1;
return fdt_get_name(gd->fdt_blob, ofnode_to_offset(node), NULL);
}
int ofnode_read_size(ofnode node, const char *propname)
{
int len;
if (ofnode_is_np(node)) {
struct property *prop = of_find_property(
ofnode_to_np(node), propname, NULL);
if (prop)
return prop->length;
} else {
if (fdt_getprop(gd->fdt_blob, ofnode_to_offset(node), propname,
&len))
return len;
}
return -EINVAL;
}
fdt_addr_t ofnode_get_addr_index(ofnode node, int index)
{
if (ofnode_is_np(node)) {
const __be32 *prop_val;
uint flags;
u64 size;
prop_val = of_get_address(
(struct device_node *)ofnode_to_np(node), index,
&size, &flags);
if (!prop_val)
return FDT_ADDR_T_NONE;
return be32_to_cpup(prop_val);
} else {
return fdt_get_base_address(gd->fdt_blob,
ofnode_to_offset(node));
}
return FDT_ADDR_T_NONE;
}
fdt_addr_t ofnode_get_addr(ofnode node)
{
return ofnode_get_addr_index(node, 0);
}
int ofnode_stringlist_search(ofnode node, const char *property,
const char *string)
{
if (ofnode_is_np(node)) {
return of_property_match_string(ofnode_to_np(node),
property, string);
} else {
int ret;
ret = fdt_stringlist_search(gd->fdt_blob,
ofnode_to_offset(node), property,
string);
if (ret == -FDT_ERR_NOTFOUND)
return -ENODATA;
else if (ret < 0)
return -EINVAL;
return ret;
}
}
int ofnode_read_string_index(ofnode node, const char *property, int index,
const char **outp)
{
if (ofnode_is_np(node)) {
return of_property_read_string_index(ofnode_to_np(node),
property, index, outp);
} else {
int len;
*outp = fdt_stringlist_get(gd->fdt_blob, ofnode_to_offset(node),
property, index, &len);
if (len < 0)
return -EINVAL;
return 0;
}
}
int ofnode_read_string_count(ofnode node, const char *property)
{
if (ofnode_is_np(node)) {
return of_property_count_strings(ofnode_to_np(node), property);
} else {
return fdt_stringlist_count(gd->fdt_blob,
ofnode_to_offset(node), property);
}
}
static void ofnode_from_fdtdec_phandle_args(struct fdtdec_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = offset_to_ofnode(in->node);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
static void ofnode_from_of_phandle_args(struct of_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = np_to_ofnode(in->np);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
int ofnode_parse_phandle_with_args(ofnode node, const char *list_name,
const char *cells_name, int cell_count,
int index,
struct ofnode_phandle_args *out_args)
{
if (ofnode_is_np(node)) {
struct of_phandle_args args;
int ret;
ret = of_parse_phandle_with_args(ofnode_to_np(node),
list_name, cells_name, index, &args);
if (ret)
return ret;
ofnode_from_of_phandle_args(&args, out_args);
} else {
struct fdtdec_phandle_args args;
int ret;
ret = fdtdec_parse_phandle_with_args(gd->fdt_blob,
ofnode_to_offset(node), list_name, cells_name,
cell_count, index, &args);
if (ret)
return ret;
ofnode_from_fdtdec_phandle_args(&args, out_args);
}
return 0;
}
ofnode ofnode_path(const char *path)
{
if (of_live_active())
return np_to_ofnode(of_find_node_by_path(path));
else
return offset_to_ofnode(fdt_path_offset(gd->fdt_blob, path));
}
const char *ofnode_get_chosen_prop(const char *name)
{
ofnode chosen_node;
chosen_node = ofnode_path("/chosen");
return ofnode_read_string(chosen_node, name);
}
ofnode ofnode_get_chosen_node(const char *name)
{
const char *prop;
prop = ofnode_get_chosen_prop(name);
if (!prop)
return ofnode_null();
return ofnode_path(prop);
}
static int decode_timing_property(ofnode node, const char *name,
struct timing_entry *result)
{
int length, ret = 0;
length = ofnode_read_size(node, name);
if (length < 0) {
debug("%s: could not find property %s\n",
ofnode_get_name(node), name);
return length;
}
if (length == sizeof(u32)) {
result->typ = ofnode_read_u32_default(node, name, 0);
result->min = result->typ;
result->max = result->typ;
} else {
ret = ofnode_read_u32_array(node, name, &result->min, 3);
}
return ret;
}
int ofnode_decode_display_timing(ofnode parent, int index,
struct display_timing *dt)
{
int i;
ofnode timings, node;
u32 val = 0;
int ret = 0;
timings = ofnode_find_subnode(parent, "display-timings");
if (!ofnode_valid(timings))
return -EINVAL;
for (i = 0, node = ofnode_first_subnode(timings);
ofnode_valid(node) && i != index;
node = ofnode_first_subnode(node))
i++;
if (!ofnode_valid(node))
return -EINVAL;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(node, "hback-porch", &dt->hback_porch);
ret |= decode_timing_property(node, "hfront-porch", &dt->hfront_porch);
ret |= decode_timing_property(node, "hactive", &dt->hactive);
ret |= decode_timing_property(node, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(node, "vback-porch", &dt->vback_porch);
ret |= decode_timing_property(node, "vfront-porch", &dt->vfront_porch);
ret |= decode_timing_property(node, "vactive", &dt->vactive);
ret |= decode_timing_property(node, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(node, "clock-frequency", &dt->pixelclock);
dt->flags = 0;
val = ofnode_read_u32_default(node, "vsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
val = ofnode_read_u32_default(node, "hsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
val = ofnode_read_u32_default(node, "de-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
val = ofnode_read_u32_default(node, "pixelclk-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (ofnode_read_bool(node, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (ofnode_read_bool(node, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (ofnode_read_bool(node, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return ret;
}
const u32 *ofnode_read_prop(ofnode node, const char *propname, int *lenp)
{
if (ofnode_is_np(node)) {
struct property *prop;
prop = of_find_property(ofnode_to_np(node), propname, lenp);
if (!prop)
return NULL;
return prop->value;
} else {
return fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, lenp);
}
}
bool ofnode_is_available(ofnode node)
{
if (ofnode_is_np(node))
return of_device_is_available(ofnode_to_np(node));
else
return fdtdec_get_is_enabled(gd->fdt_blob,
ofnode_to_offset(node));
}
fdt_addr_t ofnode_get_addr_size(ofnode node, const char *property,
fdt_size_t *sizep)
{
if (ofnode_is_np(node)) {
int na, ns;
int psize;
const struct device_node *np = ofnode_to_np(node);
const __be32 *prop = of_get_property(np, "reg", &psize);
na = of_n_addr_cells(np);
ns = of_n_addr_cells(np);
*sizep = of_read_number(prop + na, ns);
return of_read_number(prop, na);
} else {
return fdtdec_get_addr_size(gd->fdt_blob,
ofnode_to_offset(node), property,
sizep);
}
}
const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname,
size_t sz)
{
if (ofnode_is_np(node)) {
const struct device_node *np = ofnode_to_np(node);
int psize;
const __be32 *prop = of_get_property(np, propname, &psize);
if (!prop || sz != psize)
return NULL;
return (uint8_t *)prop;
} else {
return fdtdec_locate_byte_array(gd->fdt_blob,
ofnode_to_offset(node), propname, sz);
}
}
int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type,
const char *propname, struct fdt_pci_addr *addr)
{
const u32 *cell;
int len;
int ret = -ENOENT;
debug("%s: %s: ", __func__, propname);
/*
* If we follow the pci bus bindings strictly, we should check
* the value of the node's parent node's #address-cells and
* #size-cells. They need to be 3 and 2 accordingly. However,
* for simplicity we skip the check here.
*/
cell = ofnode_read_prop(node, propname, &len);
if (!cell)
goto fail;
if ((len % FDT_PCI_REG_SIZE) == 0) {
int num = len / FDT_PCI_REG_SIZE;
int i;
for (i = 0; i < num; i++) {
debug("pci address #%d: %08lx %08lx %08lx\n", i,
(ulong)fdt32_to_cpu(cell[0]),
(ulong)fdt32_to_cpu(cell[1]),
(ulong)fdt32_to_cpu(cell[2]));
if ((fdt32_to_cpu(*cell) & type) == type) {
addr->phys_hi = fdt32_to_cpu(cell[0]);
addr->phys_mid = fdt32_to_cpu(cell[1]);
addr->phys_lo = fdt32_to_cpu(cell[1]);
break;
} else {
cell += (FDT_PCI_ADDR_CELLS +
FDT_PCI_SIZE_CELLS);
}
}
if (i == num) {
ret = -ENXIO;
goto fail;
}
return 0;
} else {
ret = -EINVAL;
}
fail:
debug("(not found)\n");
return ret;
}
int ofnode_read_addr_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_n_addr_cells(ofnode_to_np(node));
else /* NOTE: this call should walk up the parent stack */
return fdt_address_cells(gd->fdt_blob, ofnode_to_offset(node));
}
int ofnode_read_size_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_n_size_cells(ofnode_to_np(node));
else /* NOTE: this call should walk up the parent stack */
return fdt_size_cells(gd->fdt_blob, ofnode_to_offset(node));
}
int ofnode_read_simple_addr_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_simple_addr_cells(ofnode_to_np(node));
else
return fdt_address_cells(gd->fdt_blob, ofnode_to_offset(node));
}
int ofnode_read_simple_size_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_simple_size_cells(ofnode_to_np(node));
else
return fdt_size_cells(gd->fdt_blob, ofnode_to_offset(node));
}
bool ofnode_pre_reloc(ofnode node)
{
if (ofnode_read_prop(node, "u-boot,dm-pre-reloc", NULL))
return true;
#ifdef CONFIG_TPL_BUILD
if (ofnode_read_prop(node, "u-boot,dm-tpl", NULL))
return true;
#elif defined(CONFIG_SPL_BUILD)
if (ofnode_read_prop(node, "u-boot,dm-spl", NULL))
return true;
#else
/*
* In regular builds individual spl and tpl handling both
* count as handled pre-relocation for later second init.
*/
if (ofnode_read_prop(node, "u-boot,dm-spl", NULL) ||
ofnode_read_prop(node, "u-boot,dm-tpl", NULL))
return true;
#endif
return false;
}