mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-20 18:23:08 +00:00
7ba084c7f8
This allows to merge BOOT_FROM_MMC and BOOT_FROM_MMC_ALT constants to one macro. And also allows to extend other BOOT_FROM_* macros for other variants. Signed-off-by: Pali Rohár <pali@kernel.org> Tested-by: Tony Dinh <mibodhi@gmail.com> Tested-by: Martin Rowe <martin.p.rowe@gmail.com> Reviewed-by: Stefan Roese <sr@denx.de>
696 lines
17 KiB
C
696 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <ahci.h>
|
|
#include <cpu_func.h>
|
|
#include <init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mbus.h>
|
|
#include <asm/io.h>
|
|
#include <asm/pl310.h>
|
|
#include <asm/arch/cpu.h>
|
|
#include <asm/arch/soc.h>
|
|
#include <asm/spl.h>
|
|
#include <sdhci.h>
|
|
|
|
#define DDR_BASE_CS_OFF(n) (0x0000 + ((n) << 3))
|
|
#define DDR_SIZE_CS_OFF(n) (0x0004 + ((n) << 3))
|
|
|
|
static const struct mbus_win windows[] = {
|
|
/* SPI */
|
|
{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
|
|
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
|
|
|
|
/* BootROM */
|
|
{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
|
|
CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
|
|
|
|
#ifdef CONFIG_ARMADA_MSYS
|
|
/* DFX */
|
|
{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
|
|
#endif
|
|
};
|
|
|
|
/* SPI0 CS0 Flash of size MBUS_SPI_SIZE is mapped to address MBUS_SPI_BASE */
|
|
#if CONFIG_ENV_SPI_BUS == 0 && CONFIG_ENV_SPI_CS == 0 && \
|
|
CONFIG_ENV_OFFSET + CONFIG_ENV_SIZE <= MBUS_SPI_SIZE
|
|
void *env_sf_get_env_addr(void)
|
|
{
|
|
return (void *)MBUS_SPI_BASE + CONFIG_ENV_OFFSET;
|
|
}
|
|
#endif
|
|
|
|
void lowlevel_init(void)
|
|
{
|
|
/*
|
|
* Dummy implementation, we only need LOWLEVEL_INIT
|
|
* on Armada to configure CP15 in start.S / cpu_init_cp15()
|
|
*/
|
|
}
|
|
|
|
void reset_cpu(void)
|
|
{
|
|
struct mvebu_system_registers *reg =
|
|
(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
|
|
|
|
writel(readl(®->rstoutn_mask) | 1, ®->rstoutn_mask);
|
|
writel(readl(®->sys_soft_rst) | 1, ®->sys_soft_rst);
|
|
while (1)
|
|
;
|
|
}
|
|
|
|
u32 get_boot_device(void)
|
|
{
|
|
u32 val;
|
|
u32 boot_device;
|
|
u32 boot_err_mode;
|
|
#ifdef CONFIG_ARMADA_38X
|
|
u32 boot_err_code;
|
|
#endif
|
|
|
|
/*
|
|
* First check, if UART boot-mode is active. This can only
|
|
* be done, via the bootrom error register. Here the
|
|
* MSB marks if the UART mode is active.
|
|
*/
|
|
val = readl(BOOTROM_ERR_REG);
|
|
boot_err_mode = (val & BOOTROM_ERR_MODE_MASK) >> BOOTROM_ERR_MODE_OFFS;
|
|
debug("BOOTROM_ERR_REG=0x%08x boot_err_mode=0x%x\n", val, boot_err_mode);
|
|
if (boot_err_mode == BOOTROM_ERR_MODE_UART)
|
|
return BOOT_DEVICE_UART;
|
|
|
|
#ifdef CONFIG_ARMADA_38X
|
|
/*
|
|
* If the bootrom error code contains any other than zeros it's an
|
|
* error condition and the bootROM has fallen back to UART boot
|
|
*/
|
|
boot_err_code = (val & BOOTROM_ERR_CODE_MASK) >> BOOTROM_ERR_CODE_OFFS;
|
|
debug("boot_err_code=0x%x\n", boot_err_code);
|
|
if (boot_err_code)
|
|
return BOOT_DEVICE_UART;
|
|
#endif
|
|
|
|
/*
|
|
* Now check the SAR register for the strapped boot-device
|
|
*/
|
|
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
|
|
boot_device = (val & BOOT_DEV_SEL_MASK) >> BOOT_DEV_SEL_OFFS;
|
|
debug("SAR_REG=0x%08x boot_device=0x%x\n", val, boot_device);
|
|
#ifdef BOOT_FROM_NAND
|
|
if (BOOT_FROM_NAND(boot_device))
|
|
return BOOT_DEVICE_NAND;
|
|
#endif
|
|
#ifdef BOOT_FROM_MMC
|
|
if (BOOT_FROM_MMC(boot_device))
|
|
return BOOT_DEVICE_MMC1;
|
|
#endif
|
|
#ifdef BOOT_FROM_UART
|
|
if (BOOT_FROM_UART(boot_device))
|
|
return BOOT_DEVICE_UART;
|
|
#endif
|
|
#ifdef BOOT_FROM_SATA
|
|
if (BOOT_FROM_SATA(boot_device))
|
|
return BOOT_DEVICE_SATA;
|
|
#endif
|
|
#ifdef BOOT_FROM_SPI
|
|
if (BOOT_FROM_SPI(boot_device))
|
|
return BOOT_DEVICE_SPI;
|
|
#endif
|
|
return BOOT_DEVICE_BOOTROM;
|
|
}
|
|
|
|
#if defined(CONFIG_DISPLAY_CPUINFO)
|
|
|
|
#if defined(CONFIG_ARMADA_375)
|
|
/* SAR frequency values for Armada 375 */
|
|
static const struct sar_freq_modes sar_freq_tab[] = {
|
|
{ 0, 0x0, 266, 133, 266 },
|
|
{ 1, 0x0, 333, 167, 167 },
|
|
{ 2, 0x0, 333, 167, 222 },
|
|
{ 3, 0x0, 333, 167, 333 },
|
|
{ 4, 0x0, 400, 200, 200 },
|
|
{ 5, 0x0, 400, 200, 267 },
|
|
{ 6, 0x0, 400, 200, 400 },
|
|
{ 7, 0x0, 500, 250, 250 },
|
|
{ 8, 0x0, 500, 250, 334 },
|
|
{ 9, 0x0, 500, 250, 500 },
|
|
{ 10, 0x0, 533, 267, 267 },
|
|
{ 11, 0x0, 533, 267, 356 },
|
|
{ 12, 0x0, 533, 267, 533 },
|
|
{ 13, 0x0, 600, 300, 300 },
|
|
{ 14, 0x0, 600, 300, 400 },
|
|
{ 15, 0x0, 600, 300, 600 },
|
|
{ 16, 0x0, 666, 333, 333 },
|
|
{ 17, 0x0, 666, 333, 444 },
|
|
{ 18, 0x0, 666, 333, 666 },
|
|
{ 19, 0x0, 800, 400, 267 },
|
|
{ 20, 0x0, 800, 400, 400 },
|
|
{ 21, 0x0, 800, 400, 534 },
|
|
{ 22, 0x0, 900, 450, 300 },
|
|
{ 23, 0x0, 900, 450, 450 },
|
|
{ 24, 0x0, 900, 450, 600 },
|
|
{ 25, 0x0, 1000, 500, 500 },
|
|
{ 26, 0x0, 1000, 500, 667 },
|
|
{ 27, 0x0, 1000, 333, 500 },
|
|
{ 28, 0x0, 400, 400, 400 },
|
|
{ 29, 0x0, 1100, 550, 550 },
|
|
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
|
|
};
|
|
#elif defined(CONFIG_ARMADA_38X)
|
|
/* SAR frequency values for Armada 38x */
|
|
static const struct sar_freq_modes sar_freq_tab[] = {
|
|
{ 0x0, 0x0, 666, 333, 333 },
|
|
{ 0x2, 0x0, 800, 400, 400 },
|
|
{ 0x4, 0x0, 1066, 533, 533 },
|
|
{ 0x6, 0x0, 1200, 600, 600 },
|
|
{ 0x8, 0x0, 1332, 666, 666 },
|
|
{ 0xc, 0x0, 1600, 800, 800 },
|
|
{ 0x10, 0x0, 1866, 933, 933 },
|
|
{ 0x13, 0x0, 2000, 1000, 933 },
|
|
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
|
|
};
|
|
#elif defined(CONFIG_ARMADA_MSYS)
|
|
static const struct sar_freq_modes sar_freq_tab[] = {
|
|
{ 0x0, 0x0, 400, 400, 400 },
|
|
{ 0x2, 0x0, 667, 333, 667 },
|
|
{ 0x3, 0x0, 800, 400, 800 },
|
|
{ 0x5, 0x0, 800, 400, 800 },
|
|
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
|
|
};
|
|
#else
|
|
/* SAR frequency values for Armada XP */
|
|
static const struct sar_freq_modes sar_freq_tab[] = {
|
|
{ 0xa, 0x5, 800, 400, 400 },
|
|
{ 0x1, 0x5, 1066, 533, 533 },
|
|
{ 0x2, 0x5, 1200, 600, 600 },
|
|
{ 0x2, 0x9, 1200, 600, 400 },
|
|
{ 0x3, 0x5, 1333, 667, 667 },
|
|
{ 0x4, 0x5, 1500, 750, 750 },
|
|
{ 0x4, 0x9, 1500, 750, 500 },
|
|
{ 0xb, 0x9, 1600, 800, 533 },
|
|
{ 0xb, 0xa, 1600, 800, 640 },
|
|
{ 0xb, 0x5, 1600, 800, 800 },
|
|
{ 0xff, 0xff, 0, 0, 0 } /* 0xff marks end of array */
|
|
};
|
|
#endif
|
|
|
|
void get_sar_freq(struct sar_freq_modes *sar_freq)
|
|
{
|
|
u32 val;
|
|
u32 freq;
|
|
int i;
|
|
|
|
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
|
|
val = readl(CFG_SAR2_REG); /* SAR - Sample At Reset */
|
|
#else
|
|
val = readl(CFG_SAR_REG); /* SAR - Sample At Reset */
|
|
#endif
|
|
freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
|
|
#if defined(SAR2_CPU_FREQ_MASK)
|
|
/*
|
|
* Shift CPU0 clock frequency select bit from SAR2 register
|
|
* into correct position
|
|
*/
|
|
freq |= ((readl(CFG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
|
|
>> SAR2_CPU_FREQ_OFFS) << 3;
|
|
#endif
|
|
for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
|
|
if (sar_freq_tab[i].val == freq) {
|
|
#if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
|
|
*sar_freq = sar_freq_tab[i];
|
|
return;
|
|
#else
|
|
int k;
|
|
u8 ffc;
|
|
|
|
ffc = (val & SAR_FFC_FREQ_MASK) >>
|
|
SAR_FFC_FREQ_OFFS;
|
|
for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
|
|
if (sar_freq_tab[k].ffc == ffc) {
|
|
*sar_freq = sar_freq_tab[k];
|
|
return;
|
|
}
|
|
}
|
|
i = k;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* SAR value not found, return 0 for frequencies */
|
|
*sar_freq = sar_freq_tab[i - 1];
|
|
}
|
|
|
|
int print_cpuinfo(void)
|
|
{
|
|
u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
|
|
u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
|
|
struct sar_freq_modes sar_freq;
|
|
|
|
puts("SoC: ");
|
|
|
|
switch (devid) {
|
|
case SOC_MV78230_ID:
|
|
puts("MV78230-");
|
|
break;
|
|
case SOC_MV78260_ID:
|
|
puts("MV78260-");
|
|
break;
|
|
case SOC_MV78460_ID:
|
|
puts("MV78460-");
|
|
break;
|
|
case SOC_88F6720_ID:
|
|
puts("MV88F6720-");
|
|
break;
|
|
case SOC_88F6810_ID:
|
|
puts("MV88F6810-");
|
|
break;
|
|
case SOC_88F6820_ID:
|
|
puts("MV88F6820-");
|
|
break;
|
|
case SOC_88F6828_ID:
|
|
puts("MV88F6828-");
|
|
break;
|
|
case SOC_98DX3236_ID:
|
|
puts("98DX3236-");
|
|
break;
|
|
case SOC_98DX3336_ID:
|
|
puts("98DX3336-");
|
|
break;
|
|
case SOC_98DX4251_ID:
|
|
puts("98DX4251-");
|
|
break;
|
|
default:
|
|
puts("Unknown-");
|
|
break;
|
|
}
|
|
|
|
switch (devid) {
|
|
case SOC_MV78230_ID:
|
|
case SOC_MV78260_ID:
|
|
case SOC_MV78460_ID:
|
|
switch (revid) {
|
|
case 1:
|
|
puts("A0");
|
|
break;
|
|
case 2:
|
|
puts("B0");
|
|
break;
|
|
default:
|
|
printf("?? (%x)", revid);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOC_88F6720_ID:
|
|
switch (revid) {
|
|
case MV_88F67XX_A0_ID:
|
|
puts("A0");
|
|
break;
|
|
default:
|
|
printf("?? (%x)", revid);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOC_88F6810_ID:
|
|
case SOC_88F6820_ID:
|
|
case SOC_88F6828_ID:
|
|
switch (revid) {
|
|
case MV_88F68XX_Z1_ID:
|
|
puts("Z1");
|
|
break;
|
|
case MV_88F68XX_A0_ID:
|
|
puts("A0");
|
|
break;
|
|
case MV_88F68XX_B0_ID:
|
|
puts("B0");
|
|
break;
|
|
default:
|
|
printf("?? (%x)", revid);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOC_98DX3236_ID:
|
|
case SOC_98DX3336_ID:
|
|
case SOC_98DX4251_ID:
|
|
switch (revid) {
|
|
case 3:
|
|
puts("A0");
|
|
break;
|
|
case 4:
|
|
puts("A1");
|
|
break;
|
|
default:
|
|
printf("?? (%x)", revid);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf("?? (%x)", revid);
|
|
break;
|
|
}
|
|
|
|
get_sar_freq(&sar_freq);
|
|
printf(" at %d MHz\n", sar_freq.p_clk);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_DISPLAY_CPUINFO */
|
|
|
|
/*
|
|
* This function initialize Controller DRAM Fastpath windows.
|
|
* It takes the CS size information from the 0x1500 scratch registers
|
|
* and sets the correct windows sizes and base addresses accordingly.
|
|
*
|
|
* These values are set in the scratch registers by the Marvell
|
|
* DDR3 training code, which is executed by the SPL before the
|
|
* main payload (U-Boot) is executed.
|
|
*/
|
|
static void update_sdram_window_sizes(void)
|
|
{
|
|
u64 base = 0;
|
|
u32 size, temp;
|
|
int i;
|
|
|
|
for (i = 0; i < SDRAM_MAX_CS; i++) {
|
|
size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
|
|
if (size != 0) {
|
|
size |= ~(SDRAM_ADDR_MASK);
|
|
|
|
/* Set Base Address */
|
|
temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
|
|
writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
|
|
|
|
/*
|
|
* Check if out of max window size and resize
|
|
* the window
|
|
*/
|
|
temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
|
|
~(SDRAM_ADDR_MASK)) | 1;
|
|
temp |= (size & SDRAM_ADDR_MASK);
|
|
writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
|
|
|
|
base += ((u64)size + 1);
|
|
} else {
|
|
/*
|
|
* Disable window if not used, otherwise this
|
|
* leads to overlapping enabled windows with
|
|
* pretty strange results
|
|
*/
|
|
clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_CPU_INIT
|
|
#define MV_USB_PHY_BASE (MVEBU_AXP_USB_BASE + 0x800)
|
|
#define MV_USB_PHY_PLL_REG(reg) (MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
|
|
#define MV_USB_X3_BASE(addr) (MVEBU_AXP_USB_BASE | BIT(11) | \
|
|
(((addr) & 0xF) << 6))
|
|
#define MV_USB_X3_PHY_CHANNEL(dev, reg) (MV_USB_X3_BASE((dev) + 1) | \
|
|
(((reg) & 0xF) << 2))
|
|
|
|
static void setup_usb_phys(void)
|
|
{
|
|
int dev;
|
|
|
|
/*
|
|
* USB PLL init
|
|
*/
|
|
|
|
/* Setup PLL frequency */
|
|
/* USB REF frequency = 25 MHz */
|
|
clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
|
|
|
|
/* Power up PLL and PHY channel */
|
|
setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
|
|
|
|
/* Assert VCOCAL_START */
|
|
setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
|
|
|
|
mdelay(1);
|
|
|
|
/*
|
|
* USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
|
|
*/
|
|
|
|
for (dev = 0; dev < 3; dev++) {
|
|
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
|
|
|
|
/* Assert REG_RCAL_START in channel REG 1 */
|
|
setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
|
|
udelay(40);
|
|
clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is not called from the SPL U-Boot version
|
|
*/
|
|
int arch_cpu_init(void)
|
|
{
|
|
/*
|
|
* We need to call mvebu_mbus_probe() before calling
|
|
* update_sdram_window_sizes() as it disables all previously
|
|
* configured mbus windows and then configures them as
|
|
* required for U-Boot. Calling update_sdram_window_sizes()
|
|
* without this configuration will not work, as the internal
|
|
* registers can't be accessed reliably because of potenial
|
|
* double mapping.
|
|
* After updating the SDRAM access windows we need to call
|
|
* mvebu_mbus_probe() again, as this now correctly configures
|
|
* the SDRAM areas that are later used by the MVEBU drivers
|
|
* (e.g. USB, NETA).
|
|
*/
|
|
|
|
/*
|
|
* First disable all windows
|
|
*/
|
|
mvebu_mbus_probe(NULL, 0);
|
|
|
|
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
|
|
/*
|
|
* Now the SDRAM access windows can be reconfigured using
|
|
* the information in the SDRAM scratch pad registers
|
|
*/
|
|
update_sdram_window_sizes();
|
|
}
|
|
|
|
/*
|
|
* Finally the mbus windows can be configured with the
|
|
* updated SDRAM sizes
|
|
*/
|
|
mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
|
|
|
|
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
|
|
/* Enable GBE0, GBE1, LCD and NFC PUP */
|
|
clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
|
|
GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
|
|
NAND_PUP_EN | SPI_PUP_EN);
|
|
|
|
/* Configure USB PLL and PHYs on AXP */
|
|
setup_usb_phys();
|
|
}
|
|
|
|
/* Enable NAND and NAND arbiter */
|
|
clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
|
|
|
|
/* Disable MBUS error propagation */
|
|
clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARCH_CPU_INIT */
|
|
|
|
u32 mvebu_get_nand_clock(void)
|
|
{
|
|
u32 reg;
|
|
|
|
if (IS_ENABLED(CONFIG_ARMADA_38X))
|
|
reg = MVEBU_DFX_DIV_CLK_CTRL(1);
|
|
else if (IS_ENABLED(CONFIG_ARMADA_MSYS))
|
|
reg = MVEBU_DFX_DIV_CLK_CTRL(8);
|
|
else
|
|
reg = MVEBU_CORE_DIV_CLK_CTRL(1);
|
|
|
|
return CONFIG_SYS_MVEBU_PLL_CLOCK /
|
|
((readl(reg) &
|
|
NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
|
|
}
|
|
|
|
#if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
|
|
int board_mmc_init(struct bd_info *bis)
|
|
{
|
|
mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
|
|
SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define AHCI_VENDOR_SPECIFIC_0_ADDR 0xa0
|
|
#define AHCI_VENDOR_SPECIFIC_0_DATA 0xa4
|
|
|
|
#define AHCI_WINDOW_CTRL(win) (0x60 + ((win) << 4))
|
|
#define AHCI_WINDOW_BASE(win) (0x64 + ((win) << 4))
|
|
#define AHCI_WINDOW_SIZE(win) (0x68 + ((win) << 4))
|
|
|
|
static void ahci_mvebu_mbus_config(void __iomem *base)
|
|
{
|
|
const struct mbus_dram_target_info *dram;
|
|
int i;
|
|
|
|
/* mbus is not initialized in SPL; keep the ROM settings */
|
|
if (IS_ENABLED(CONFIG_SPL_BUILD))
|
|
return;
|
|
|
|
dram = mvebu_mbus_dram_info();
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
writel(0, base + AHCI_WINDOW_CTRL(i));
|
|
writel(0, base + AHCI_WINDOW_BASE(i));
|
|
writel(0, base + AHCI_WINDOW_SIZE(i));
|
|
}
|
|
|
|
for (i = 0; i < dram->num_cs; i++) {
|
|
const struct mbus_dram_window *cs = dram->cs + i;
|
|
|
|
writel((cs->mbus_attr << 8) |
|
|
(dram->mbus_dram_target_id << 4) | 1,
|
|
base + AHCI_WINDOW_CTRL(i));
|
|
writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
|
|
writel(((cs->size - 1) & 0xffff0000),
|
|
base + AHCI_WINDOW_SIZE(i));
|
|
}
|
|
}
|
|
|
|
static void ahci_mvebu_regret_option(void __iomem *base)
|
|
{
|
|
/*
|
|
* Enable the regret bit to allow the SATA unit to regret a
|
|
* request that didn't receive an acknowlegde and avoid a
|
|
* deadlock
|
|
*/
|
|
writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
|
|
writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
|
|
}
|
|
|
|
int board_ahci_enable(void)
|
|
{
|
|
ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
|
|
ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SCSI_AHCI_PLAT
|
|
void scsi_init(void)
|
|
{
|
|
printf("MVEBU SATA INIT\n");
|
|
board_ahci_enable();
|
|
ahci_init((void __iomem *)MVEBU_SATA0_BASE);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_USB_XHCI_MVEBU
|
|
#define USB3_MAX_WINDOWS 4
|
|
#define USB3_WIN_CTRL(w) (0x0 + ((w) * 8))
|
|
#define USB3_WIN_BASE(w) (0x4 + ((w) * 8))
|
|
|
|
static void xhci_mvebu_mbus_config(void __iomem *base,
|
|
const struct mbus_dram_target_info *dram)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < USB3_MAX_WINDOWS; i++) {
|
|
writel(0, base + USB3_WIN_CTRL(i));
|
|
writel(0, base + USB3_WIN_BASE(i));
|
|
}
|
|
|
|
for (i = 0; i < dram->num_cs; i++) {
|
|
const struct mbus_dram_window *cs = dram->cs + i;
|
|
|
|
/* Write size, attributes and target id to control register */
|
|
writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
|
|
(dram->mbus_dram_target_id << 4) | 1,
|
|
base + USB3_WIN_CTRL(i));
|
|
|
|
/* Write base address to base register */
|
|
writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
|
|
}
|
|
}
|
|
|
|
int board_xhci_enable(fdt_addr_t base)
|
|
{
|
|
const struct mbus_dram_target_info *dram;
|
|
|
|
printf("MVEBU XHCI INIT controller @ 0x%lx\n", base);
|
|
|
|
dram = mvebu_mbus_dram_info();
|
|
xhci_mvebu_mbus_config((void __iomem *)base, dram);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void enable_caches(void)
|
|
{
|
|
/* Avoid problem with e.g. neta ethernet driver */
|
|
invalidate_dcache_all();
|
|
|
|
/*
|
|
* Armada 375 still has some problems with d-cache enabled in the
|
|
* ethernet driver (mvpp2). So lets keep the d-cache disabled
|
|
* until this is solved.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_ARMADA_375)) {
|
|
/* Enable D-cache. I-cache is already enabled in start.S */
|
|
dcache_enable();
|
|
}
|
|
}
|
|
|
|
void v7_outer_cache_enable(void)
|
|
{
|
|
struct pl310_regs *const pl310 =
|
|
(struct pl310_regs *)CFG_SYS_PL310_BASE;
|
|
|
|
/* The L2 cache is already disabled at this point */
|
|
|
|
/*
|
|
* For now L2 cache will be enabled only for Armada XP and Armada 38x.
|
|
* It can be enabled also for other SoCs after testing that it works fine.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_ARMADA_XP) && !IS_ENABLED(CONFIG_ARMADA_38X))
|
|
return;
|
|
|
|
if (IS_ENABLED(CONFIG_ARMADA_XP)) {
|
|
u32 u;
|
|
|
|
/*
|
|
* For Aurora cache in no outer mode, enable via the CP15
|
|
* coprocessor broadcasting of cache commands to L2.
|
|
*/
|
|
asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
|
|
u |= BIT(8); /* Set the FW bit */
|
|
asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
|
|
|
|
isb();
|
|
}
|
|
|
|
/* Enable the L2 cache */
|
|
setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
|
|
}
|
|
|
|
void v7_outer_cache_disable(void)
|
|
{
|
|
struct pl310_regs *const pl310 =
|
|
(struct pl310_regs *)CFG_SYS_PL310_BASE;
|
|
|
|
clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
|
|
}
|