u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c
Marek Vasut 7411cdf0e2 arm: mxs: Add LCDIF clock configuration function
This function turns on the LCDIF clock and configures it's frequency. The
dividers settings are calculated within the function and the current
implementation should be fast and accurate.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Fabio Estevam <fabio.estevam@freescale.com>
Cc: Otavio Salvador <otavio@ossystems.com.br>
Cc: Stefano Babic <sbabic@denx.de>
2013-05-06 17:40:22 +02:00

452 lines
11 KiB
C

/*
* Freescale i.MX23/i.MX28 clock setup code
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* Based on code from LTIB:
* Copyright (C) 2010 Freescale Semiconductor, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
/*
* The PLL frequency is 480MHz and XTAL frequency is 24MHz
* iMX23: datasheet section 4.2
* iMX28: datasheet section 10.2
*/
#define PLL_FREQ_KHZ 480000
#define PLL_FREQ_COEF 18
#define XTAL_FREQ_KHZ 24000
#define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000)
#define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000)
#if defined(CONFIG_MX23)
#define MXC_SSPCLK_MAX MXC_SSPCLK0
#elif defined(CONFIG_MX28)
#define MXC_SSPCLK_MAX MXC_SSPCLK3
#endif
static uint32_t mxs_get_pclk(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t clkctrl, clkseq, div;
uint8_t clkfrac, frac;
clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu);
/* No support of fractional divider calculation */
if (clkctrl &
(CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) {
return 0;
}
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
/* XTAL Path */
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) {
div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >>
CLKCTRL_CPU_DIV_XTAL_OFFSET;
return XTAL_FREQ_MHZ / div;
}
/* REF Path */
clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]);
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK;
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
}
static uint32_t mxs_get_hclk(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t div;
uint32_t clkctrl;
clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus);
/* No support of fractional divider calculation */
if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN)
return 0;
div = clkctrl & CLKCTRL_HBUS_DIV_MASK;
return mxs_get_pclk() / div;
}
static uint32_t mxs_get_emiclk(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t clkctrl, clkseq, div;
uint8_t clkfrac, frac;
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi);
/* XTAL Path */
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) {
div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >>
CLKCTRL_EMI_DIV_XTAL_OFFSET;
return XTAL_FREQ_MHZ / div;
}
/* REF Path */
clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]);
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK;
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
}
static uint32_t mxs_get_gpmiclk(void)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
#if defined(CONFIG_MX23)
uint8_t *reg =
&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU];
#elif defined(CONFIG_MX28)
uint8_t *reg =
&clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI];
#endif
uint32_t clkctrl, clkseq, div;
uint8_t clkfrac, frac;
clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi);
/* XTAL Path */
if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) {
div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
return XTAL_FREQ_MHZ / div;
}
/* REF Path */
clkfrac = readb(reg);
frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
}
/*
* Set IO clock frequency, in kHz
*/
void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t div;
int io_reg;
if (freq == 0)
return;
if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
return;
div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq;
if (div < 18)
div = 18;
if (div > 35)
div = 35;
io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac0_set[io_reg]);
writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK),
&clkctrl_regs->hw_clkctrl_frac0[io_reg]);
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]);
}
/*
* Get IO clock, returns IO clock in kHz
*/
static uint32_t mxs_get_ioclk(enum mxs_ioclock io)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint8_t ret;
int io_reg;
if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
return 0;
io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) &
CLKCTRL_FRAC_FRAC_MASK;
return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret;
}
/*
* Configure SSP clock frequency, in kHz
*/
void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t clk, clkreg;
if (ssp > MXC_SSPCLK_MAX)
return;
clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
(ssp * sizeof(struct mxs_register_32));
clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE);
while (readl(clkreg) & CLKCTRL_SSP_CLKGATE)
;
if (xtal)
clk = XTAL_FREQ_KHZ;
else
clk = mxs_get_ioclk(ssp >> 1);
if (freq > clk)
return;
/* Calculate the divider and cap it if necessary */
clk /= freq;
if (clk > CLKCTRL_SSP_DIV_MASK)
clk = CLKCTRL_SSP_DIV_MASK;
clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk);
while (readl(clkreg) & CLKCTRL_SSP_BUSY)
;
if (xtal)
writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
&clkctrl_regs->hw_clkctrl_clkseq_set);
else
writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
&clkctrl_regs->hw_clkctrl_clkseq_clr);
}
/*
* Return SSP frequency, in kHz
*/
static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t clkreg;
uint32_t clk, tmp;
if (ssp > MXC_SSPCLK_MAX)
return 0;
tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq);
if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp))
return XTAL_FREQ_KHZ;
clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
(ssp * sizeof(struct mxs_register_32));
tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK;
if (tmp == 0)
return 0;
clk = mxs_get_ioclk(ssp >> 1);
return clk / tmp;
}
/*
* Set SSP/MMC bus frequency, in kHz)
*/
void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq)
{
struct mxs_ssp_regs *ssp_regs;
const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus);
const uint32_t sspclk = mxs_get_sspclk(clk);
uint32_t reg;
uint32_t divide, rate, tgtclk;
ssp_regs = mxs_ssp_regs_by_bus(bus);
/*
* SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
* CLOCK_DIVIDE has to be an even value from 2 to 254, and
* CLOCK_RATE could be any integer from 0 to 255.
*/
for (divide = 2; divide < 254; divide += 2) {
rate = sspclk / freq / divide;
if (rate <= 256)
break;
}
tgtclk = sspclk / divide / rate;
while (tgtclk > freq) {
rate++;
tgtclk = sspclk / divide / rate;
}
if (rate > 256)
rate = 256;
/* Always set timeout the maximum */
reg = SSP_TIMING_TIMEOUT_MASK |
(divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) |
((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET);
writel(reg, &ssp_regs->hw_ssp_timing);
debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n",
bus, tgtclk, freq);
}
void mxs_set_lcdclk(uint32_t freq)
{
struct mxs_clkctrl_regs *clkctrl_regs =
(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
uint32_t fp, x, k_rest, k_best, x_best, tk;
int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff;
if (freq == 0)
return;
#if defined(CONFIG_MX23)
writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr);
#elif defined(CONFIG_MX28)
writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr);
#endif
/*
* / 18 \ 1 1
* freq kHz = | 480000000 Hz * -- | * --- * ------
* \ x / k 1000
*
* 480000000 Hz 18
* ------------ * --
* freq kHz x
* k = -------------------
* 1000
*/
fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18;
for (x = 18; x <= 35; x++) {
tk = fp / x;
if ((tk / 1000 == 0) || (tk / 1000 > 255))
continue;
k_rest = tk % 1000;
if (k_rest < (k_best_l % 1000)) {
k_best_l = tk;
x_best_l = x;
}
if (k_rest > (k_best_t % 1000)) {
k_best_t = tk;
x_best_t = x;
}
}
if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) {
k_best = k_best_l;
x_best = x_best_l;
} else {
k_best = k_best_t;
x_best = x_best_t;
}
k_best /= 1000;
#if defined(CONFIG_MX23)
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]);
writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]);
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]);
writel(CLKCTRL_PIX_CLKGATE,
&clkctrl_regs->hw_clkctrl_pix_set);
clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix,
CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE,
k_best << CLKCTRL_PIX_DIV_OFFSET);
while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY)
;
#elif defined(CONFIG_MX28)
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]);
writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
&clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]);
writeb(CLKCTRL_FRAC_CLKGATE,
&clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]);
writel(CLKCTRL_DIS_LCDIF_CLKGATE,
&clkctrl_regs->hw_clkctrl_lcdif_set);
clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif,
CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE,
k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET);
while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY)
;
#endif
}
uint32_t mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return mxs_get_pclk() * 1000000;
case MXC_GPMI_CLK:
return mxs_get_gpmiclk() * 1000000;
case MXC_AHB_CLK:
case MXC_IPG_CLK:
return mxs_get_hclk() * 1000000;
case MXC_EMI_CLK:
return mxs_get_emiclk();
case MXC_IO0_CLK:
return mxs_get_ioclk(MXC_IOCLK0);
case MXC_IO1_CLK:
return mxs_get_ioclk(MXC_IOCLK1);
case MXC_XTAL_CLK:
return XTAL_FREQ_KHZ * 1000;
case MXC_SSP0_CLK:
return mxs_get_sspclk(MXC_SSPCLK0);
#ifdef CONFIG_MX28
case MXC_SSP1_CLK:
return mxs_get_sspclk(MXC_SSPCLK1);
case MXC_SSP2_CLK:
return mxs_get_sspclk(MXC_SSPCLK2);
case MXC_SSP3_CLK:
return mxs_get_sspclk(MXC_SSPCLK3);
#endif
}
return 0;
}