mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-13 13:49:04 +00:00
ed96683e00
At present one must hack the Makefile to see what is going on with these files. Also it doesn't quite work correctly. Fix this by using an environment variable for debugging. Update the docs also. Signed-off-by: Simon Glass <sjg@chromium.org>
1287 lines
49 KiB
ReStructuredText
1287 lines
49 KiB
ReStructuredText
.. SPDX-License-Identifier: GPL-2.0+
|
|
.. Copyright (c) 2016 Google, Inc
|
|
|
|
Introduction
|
|
============
|
|
|
|
Firmware often consists of several components which must be packaged together.
|
|
For example, we may have SPL, U-Boot, a device tree and an environment area
|
|
grouped together and placed in MMC flash. When the system starts, it must be
|
|
able to find these pieces.
|
|
|
|
Building firmware should be separate from packaging it. Many of the complexities
|
|
of modern firmware build systems come from trying to do both at once. With
|
|
binman, you build all the pieces that are needed, using whatever assortment of
|
|
projects and build systems are needed, then use binman to stitch everything
|
|
together.
|
|
|
|
|
|
What it does
|
|
------------
|
|
|
|
Binman reads your board's device tree and finds a node which describes the
|
|
required image layout. It uses this to work out what to place where.
|
|
|
|
Binman provides a mechanism for building images, from simple SPL + U-Boot
|
|
combinations, to more complex arrangements with many parts. It also allows
|
|
users to inspect images, extract and replace binaries within them, repacking if
|
|
needed.
|
|
|
|
|
|
Features
|
|
--------
|
|
|
|
Apart from basic padding, alignment and positioning features, Binman supports
|
|
hierarchical images, compression, hashing and dealing with the binary blobs
|
|
which are a sad trend in open-source firmware at present.
|
|
|
|
Executable binaries can access the location of other binaries in an image by
|
|
using special linker symbols (zero-overhead but somewhat limited) or by reading
|
|
the devicetree description of the image.
|
|
|
|
Binman is designed primarily for use with U-Boot and associated binaries such
|
|
as ARM Trusted Firmware, but it is suitable for use with other projects, such
|
|
as Zephyr. Binman also provides facilities useful in Chromium OS, such as CBFS,
|
|
vblocks and and the like.
|
|
|
|
Binman provides a way to process binaries before they are included, by adding a
|
|
Python plug-in.
|
|
|
|
Binman is intended for use with U-Boot but is designed to be general enough
|
|
to be useful in other image-packaging situations.
|
|
|
|
|
|
Motivation
|
|
----------
|
|
|
|
As mentioned above, packaging of firmware is quite a different task from
|
|
building the various parts. In many cases the various binaries which go into
|
|
the image come from separate build systems. For example, ARM Trusted Firmware
|
|
is used on ARMv8 devices but is not built in the U-Boot tree. If a Linux kernel
|
|
is included in the firmware image, it is built elsewhere.
|
|
|
|
It is of course possible to add more and more build rules to the U-Boot
|
|
build system to cover these cases. It can shell out to other Makefiles and
|
|
build scripts. But it seems better to create a clear divide between building
|
|
software and packaging it.
|
|
|
|
At present this is handled by manual instructions, different for each board,
|
|
on how to create images that will boot. By turning these instructions into a
|
|
standard format, we can support making valid images for any board without
|
|
manual effort, lots of READMEs, etc.
|
|
|
|
Benefits:
|
|
|
|
- Each binary can have its own build system and tool chain without creating
|
|
any dependencies between them
|
|
- Avoids the need for a single-shot build: individual parts can be updated
|
|
and brought in as needed
|
|
- Provides for a standard image description available in the build and at
|
|
run-time
|
|
- SoC-specific image-signing tools can be accommodated
|
|
- Avoids cluttering the U-Boot build system with image-building code
|
|
- The image description is automatically available at run-time in U-Boot,
|
|
SPL. It can be made available to other software also
|
|
- The image description is easily readable (it's a text file in device-tree
|
|
format) and permits flexible packing of binaries
|
|
|
|
|
|
Terminology
|
|
-----------
|
|
|
|
Binman uses the following terms:
|
|
|
|
- image - an output file containing a firmware image
|
|
- binary - an input binary that goes into the image
|
|
|
|
|
|
Relationship to FIT
|
|
-------------------
|
|
|
|
FIT is U-Boot's official image format. It supports multiple binaries with
|
|
load / execution addresses, compression. It also supports verification
|
|
through hashing and RSA signatures.
|
|
|
|
FIT was originally designed to support booting a Linux kernel (with an
|
|
optional ramdisk) and device tree chosen from various options in the FIT.
|
|
Now that U-Boot supports configuration via device tree, it is possible to
|
|
load U-Boot from a FIT, with the device tree chosen by SPL.
|
|
|
|
Binman considers FIT to be one of the binaries it can place in the image.
|
|
|
|
Where possible it is best to put as much as possible in the FIT, with binman
|
|
used to deal with cases not covered by FIT. Examples include initial
|
|
execution (since FIT itself does not have an executable header) and dealing
|
|
with device boundaries, such as the read-only/read-write separation in SPI
|
|
flash.
|
|
|
|
For U-Boot, binman should not be used to create ad-hoc images in place of
|
|
FIT.
|
|
|
|
|
|
Relationship to mkimage
|
|
-----------------------
|
|
|
|
The mkimage tool provides a means to create a FIT. Traditionally it has
|
|
needed an image description file: a device tree, like binman, but in a
|
|
different format. More recently it has started to support a '-f auto' mode
|
|
which can generate that automatically.
|
|
|
|
More relevant to binman, mkimage also permits creation of many SoC-specific
|
|
image types. These can be listed by running 'mkimage -T list'. Examples
|
|
include 'rksd', the Rockchip SD/MMC boot format. The mkimage tool is often
|
|
called from the U-Boot build system for this reason.
|
|
|
|
Binman considers the output files created by mkimage to be binary blobs
|
|
which it can place in an image. Binman does not replace the mkimage tool or
|
|
this purpose. It would be possible in some situations to create a new entry
|
|
type for the images in mkimage, but this would not add functionality. It
|
|
seems better to use the mkimage tool to generate binaries and avoid blurring
|
|
the boundaries between building input files (mkimage) and packaging then
|
|
into a final image (binman).
|
|
|
|
|
|
Using binman
|
|
============
|
|
|
|
Example use of binman in U-Boot
|
|
-------------------------------
|
|
|
|
Binman aims to replace some of the ad-hoc image creation in the U-Boot
|
|
build system.
|
|
|
|
Consider sunxi. It has the following steps:
|
|
|
|
#. It uses a custom mksunxiboot tool to build an SPL image called
|
|
sunxi-spl.bin. This should probably move into mkimage.
|
|
|
|
#. It uses mkimage to package U-Boot into a legacy image file (so that it can
|
|
hold the load and execution address) called u-boot.img.
|
|
|
|
#. It builds a final output image called u-boot-sunxi-with-spl.bin which
|
|
consists of sunxi-spl.bin, some padding and u-boot.img.
|
|
|
|
Binman is intended to replace the last step. The U-Boot build system builds
|
|
u-boot.bin and sunxi-spl.bin. Binman can then take over creation of
|
|
sunxi-spl.bin (by calling mksunxiboot, or hopefully one day mkimage). In any
|
|
case, it would then create the image from the component parts.
|
|
|
|
This simplifies the U-Boot Makefile somewhat, since various pieces of logic
|
|
can be replaced by a call to binman.
|
|
|
|
|
|
Example use of binman for x86
|
|
-----------------------------
|
|
|
|
In most cases x86 images have a lot of binary blobs, 'black-box' code
|
|
provided by Intel which must be run for the platform to work. Typically
|
|
these blobs are not relocatable and must be placed at fixed areas in the
|
|
firmware image.
|
|
|
|
Currently this is handled by ifdtool, which places microcode, FSP, MRC, VGA
|
|
BIOS, reference code and Intel ME binaries into a u-boot.rom file.
|
|
|
|
Binman is intended to replace all of this, with ifdtool left to handle only
|
|
the configuration of the Intel-format descriptor.
|
|
|
|
|
|
Running binman
|
|
--------------
|
|
|
|
First install prerequisites, e.g::
|
|
|
|
sudo apt-get install python-pyelftools python3-pyelftools lzma-alone \
|
|
liblz4-tool
|
|
|
|
Type::
|
|
|
|
binman build -b <board_name>
|
|
|
|
to build an image for a board. The board name is the same name used when
|
|
configuring U-Boot (e.g. for sandbox_defconfig the board name is 'sandbox').
|
|
Binman assumes that the input files for the build are in ../b/<board_name>.
|
|
|
|
Or you can specify this explicitly::
|
|
|
|
binman build -I <build_path>
|
|
|
|
where <build_path> is the build directory containing the output of the U-Boot
|
|
build.
|
|
|
|
(Future work will make this more configurable)
|
|
|
|
In either case, binman picks up the device tree file (u-boot.dtb) and looks
|
|
for its instructions in the 'binman' node.
|
|
|
|
Binman has a few other options which you can see by running 'binman -h'.
|
|
|
|
|
|
Enabling binman for a board
|
|
---------------------------
|
|
|
|
At present binman is invoked from a rule in the main Makefile. You should be
|
|
able to enable CONFIG_BINMAN to enable this rule.
|
|
|
|
The output file is typically named image.bin and is located in the output
|
|
directory. If input files are needed to you add these to INPUTS-y either in the
|
|
main Makefile or in a config.mk file in your arch subdirectory.
|
|
|
|
Once binman is executed it will pick up its instructions from a device-tree
|
|
file, typically <soc>-u-boot.dtsi, where <soc> is your CONFIG_SYS_SOC value.
|
|
You can use other, more specific CONFIG options - see 'Automatic .dtsi
|
|
inclusion' below.
|
|
|
|
|
|
Access to binman entry offsets at run time (symbols)
|
|
----------------------------------------------------
|
|
|
|
Binman assembles images and determines where each entry is placed in the image.
|
|
This information may be useful to U-Boot at run time. For example, in SPL it
|
|
is useful to be able to find the location of U-Boot so that it can be executed
|
|
when SPL is finished.
|
|
|
|
Binman allows you to declare symbols in the SPL image which are filled in
|
|
with their correct values during the build. For example::
|
|
|
|
binman_sym_declare(ulong, u_boot_any, image_pos);
|
|
|
|
declares a ulong value which will be assigned to the image-pos of any U-Boot
|
|
image (u-boot.bin, u-boot.img, u-boot-nodtb.bin) that is present in the image.
|
|
You can access this value with something like::
|
|
|
|
ulong u_boot_offset = binman_sym(ulong, u_boot_any, image_pos);
|
|
|
|
Thus u_boot_offset will be set to the image-pos of U-Boot in memory, assuming
|
|
that the whole image has been loaded, or is available in flash. You can then
|
|
jump to that address to start U-Boot.
|
|
|
|
At present this feature is only supported in SPL and TPL. In principle it is
|
|
possible to fill in such symbols in U-Boot proper, as well, but a future C
|
|
library is planned for this instead, to read from the device tree.
|
|
|
|
As well as image-pos, it is possible to read the size of an entry and its
|
|
offset (which is the start position of the entry within its parent).
|
|
|
|
A small technical note: Binman automatically adds the base address of the image
|
|
(i.e. __image_copy_start) to the value of the image-pos symbol, so that when the
|
|
image is loaded to its linked address, the value will be correct and actually
|
|
point into the image.
|
|
|
|
For example, say SPL is at the start of the image and linked to start at address
|
|
80108000. If U-Boot's image-pos is 0x8000 then binman will write an image-pos
|
|
for U-Boot of 80110000 into the SPL binary, since it assumes the image is loaded
|
|
to 80108000, with SPL at 80108000 and U-Boot at 80110000.
|
|
|
|
For x86 devices (with the end-at-4gb property) this base address is not added
|
|
since it is assumed that images are XIP and the offsets already include the
|
|
address.
|
|
|
|
|
|
Access to binman entry offsets at run time (fdt)
|
|
------------------------------------------------
|
|
|
|
Binman can update the U-Boot FDT to include the final position and size of
|
|
each entry in the images it processes. The option to enable this is -u and it
|
|
causes binman to make sure that the 'offset', 'image-pos' and 'size' properties
|
|
are set correctly for every entry. Since it is not necessary to specify these in
|
|
the image definition, binman calculates the final values and writes these to
|
|
the device tree. These can be used by U-Boot at run-time to find the location
|
|
of each entry.
|
|
|
|
Alternatively, an FDT map entry can be used to add a special FDT containing
|
|
just the information about the image. This is preceded by a magic string so can
|
|
be located anywhere in the image. An image header (typically at the start or end
|
|
of the image) can be used to point to the FDT map. See fdtmap and image-header
|
|
entries for more information.
|
|
|
|
|
|
Map files
|
|
---------
|
|
|
|
The -m option causes binman to output a .map file for each image that it
|
|
generates. This shows the offset and size of each entry. For example::
|
|
|
|
Offset Size Name
|
|
00000000 00000028 main-section
|
|
00000000 00000010 section@0
|
|
00000000 00000004 u-boot
|
|
00000010 00000010 section@1
|
|
00000000 00000004 u-boot
|
|
|
|
This shows a hierarchical image with two sections, each with a single entry. The
|
|
offsets of the sections are absolute hex byte offsets within the image. The
|
|
offsets of the entries are relative to their respective sections. The size of
|
|
each entry is also shown, in bytes (hex). The indentation shows the entries
|
|
nested inside their sections.
|
|
|
|
|
|
Passing command-line arguments to entries
|
|
-----------------------------------------
|
|
|
|
Sometimes it is useful to pass binman the value of an entry property from the
|
|
command line. For example some entries need access to files and it is not
|
|
always convenient to put these filenames in the image definition (device tree).
|
|
|
|
The -a option supports this::
|
|
|
|
-a <prop>=<value>
|
|
|
|
where::
|
|
|
|
<prop> is the property to set
|
|
<value> is the value to set it to
|
|
|
|
Not all properties can be provided this way. Only some entries support it,
|
|
typically for filenames.
|
|
|
|
|
|
Image description format
|
|
========================
|
|
|
|
The binman node is called 'binman'. An example image description is shown
|
|
below::
|
|
|
|
binman {
|
|
filename = "u-boot-sunxi-with-spl.bin";
|
|
pad-byte = <0xff>;
|
|
blob {
|
|
filename = "spl/sunxi-spl.bin";
|
|
};
|
|
u-boot {
|
|
offset = <CONFIG_SPL_PAD_TO>;
|
|
};
|
|
};
|
|
|
|
|
|
This requests binman to create an image file called u-boot-sunxi-with-spl.bin
|
|
consisting of a specially formatted SPL (spl/sunxi-spl.bin, built by the
|
|
normal U-Boot Makefile), some 0xff padding, and a U-Boot legacy image. The
|
|
padding comes from the fact that the second binary is placed at
|
|
CONFIG_SPL_PAD_TO. If that line were omitted then the U-Boot binary would
|
|
immediately follow the SPL binary.
|
|
|
|
The binman node describes an image. The sub-nodes describe entries in the
|
|
image. Each entry represents a region within the overall image. The name of
|
|
the entry (blob, u-boot) tells binman what to put there. For 'blob' we must
|
|
provide a filename. For 'u-boot', binman knows that this means 'u-boot.bin'.
|
|
|
|
Entries are normally placed into the image sequentially, one after the other.
|
|
The image size is the total size of all entries. As you can see, you can
|
|
specify the start offset of an entry using the 'offset' property.
|
|
|
|
Note that due to a device tree requirement, all entries must have a unique
|
|
name. If you want to put the same binary in the image multiple times, you can
|
|
use any unique name, with the 'type' property providing the type.
|
|
|
|
The attributes supported for entries are described below.
|
|
|
|
offset:
|
|
This sets the offset of an entry within the image or section containing
|
|
it. The first byte of the image is normally at offset 0. If 'offset' is
|
|
not provided, binman sets it to the end of the previous region, or the
|
|
start of the image's entry area (normally 0) if there is no previous
|
|
region.
|
|
|
|
align:
|
|
This sets the alignment of the entry. The entry offset is adjusted
|
|
so that the entry starts on an aligned boundary within the containing
|
|
section or image. For example 'align = <16>' means that the entry will
|
|
start on a 16-byte boundary. This may mean that padding is added before
|
|
the entry. The padding is part of the containing section but is not
|
|
included in the entry, meaning that an empty space may be created before
|
|
the entry starts. Alignment should be a power of 2. If 'align' is not
|
|
provided, no alignment is performed.
|
|
|
|
size:
|
|
This sets the size of the entry. The contents will be padded out to
|
|
this size. If this is not provided, it will be set to the size of the
|
|
contents.
|
|
|
|
pad-before:
|
|
Padding before the contents of the entry. Normally this is 0, meaning
|
|
that the contents start at the beginning of the entry. This can be used
|
|
to offset the entry contents a little. While this does not affect the
|
|
contents of the entry within binman itself (the padding is performed
|
|
only when its parent section is assembled), the end result will be that
|
|
the entry starts with the padding bytes, so may grow. Defaults to 0.
|
|
|
|
pad-after:
|
|
Padding after the contents of the entry. Normally this is 0, meaning
|
|
that the entry ends at the last byte of content (unless adjusted by
|
|
other properties). This allows room to be created in the image for
|
|
this entry to expand later. While this does not affect the contents of
|
|
the entry within binman itself (the padding is performed only when its
|
|
parent section is assembled), the end result will be that the entry ends
|
|
with the padding bytes, so may grow. Defaults to 0.
|
|
|
|
align-size:
|
|
This sets the alignment of the entry size. For example, to ensure
|
|
that the size of an entry is a multiple of 64 bytes, set this to 64.
|
|
While this does not affect the contents of the entry within binman
|
|
itself (the padding is performed only when its parent section is
|
|
assembled), the end result is that the entry ends with the padding
|
|
bytes, so may grow. If 'align-size' is not provided, no alignment is
|
|
performed.
|
|
|
|
align-end:
|
|
This sets the alignment of the end of an entry with respect to the
|
|
containing section. Some entries require that they end on an alignment
|
|
boundary, regardless of where they start. This does not move the start
|
|
of the entry, so the contents of the entry will still start at the
|
|
beginning. But there may be padding at the end. While this does not
|
|
affect the contents of the entry within binman itself (the padding is
|
|
performed only when its parent section is assembled), the end result
|
|
is that the entry ends with the padding bytes, so may grow.
|
|
If 'align-end' is not provided, no alignment is performed.
|
|
|
|
filename:
|
|
For 'blob' types this provides the filename containing the binary to
|
|
put into the entry. If binman knows about the entry type (like
|
|
u-boot-bin), then there is no need to specify this.
|
|
|
|
type:
|
|
Sets the type of an entry. This defaults to the entry name, but it is
|
|
possible to use any name, and then add (for example) 'type = "u-boot"'
|
|
to specify the type.
|
|
|
|
offset-unset:
|
|
Indicates that the offset of this entry should not be set by placing
|
|
it immediately after the entry before. Instead, is set by another
|
|
entry which knows where this entry should go. When this boolean
|
|
property is present, binman will give an error if another entry does
|
|
not set the offset (with the GetOffsets() method).
|
|
|
|
image-pos:
|
|
This cannot be set on entry (or at least it is ignored if it is), but
|
|
with the -u option, binman will set it to the absolute image position
|
|
for each entry. This makes it easy to find out exactly where the entry
|
|
ended up in the image, regardless of parent sections, etc.
|
|
|
|
expand-size:
|
|
Expand the size of this entry to fit available space. This space is only
|
|
limited by the size of the image/section and the position of the next
|
|
entry.
|
|
|
|
compress:
|
|
Sets the compression algortihm to use (for blobs only). See the entry
|
|
documentation for details.
|
|
|
|
missing-msg:
|
|
Sets the tag of the message to show if this entry is missing. This is
|
|
used for external blobs. When they are missing it is helpful to show
|
|
information about what needs to be fixed. See missing-blob-help for the
|
|
message for each tag.
|
|
|
|
no-expanded:
|
|
By default binman substitutes entries with expanded versions if available,
|
|
so that a `u-boot` entry type turns into `u-boot-expanded`, for example. The
|
|
`--no-expanded` command-line option disables this globally. The
|
|
`no-expanded` property disables this just for a single entry. Put the
|
|
`no-expanded` boolean property in the node to select this behaviour.
|
|
|
|
The attributes supported for images and sections are described below. Several
|
|
are similar to those for entries.
|
|
|
|
size:
|
|
Sets the image size in bytes, for example 'size = <0x100000>' for a
|
|
1MB image.
|
|
|
|
offset:
|
|
This is similar to 'offset' in entries, setting the offset of a section
|
|
within the image or section containing it. The first byte of the section
|
|
is normally at offset 0. If 'offset' is not provided, binman sets it to
|
|
the end of the previous region, or the start of the image's entry area
|
|
(normally 0) if there is no previous region.
|
|
|
|
align-size:
|
|
This sets the alignment of the image size. For example, to ensure
|
|
that the image ends on a 512-byte boundary, use 'align-size = <512>'.
|
|
If 'align-size' is not provided, no alignment is performed.
|
|
|
|
pad-before:
|
|
This sets the padding before the image entries. The first entry will
|
|
be positioned after the padding. This defaults to 0.
|
|
|
|
pad-after:
|
|
This sets the padding after the image entries. The padding will be
|
|
placed after the last entry. This defaults to 0.
|
|
|
|
pad-byte:
|
|
This specifies the pad byte to use when padding in the image. It
|
|
defaults to 0. To use 0xff, you would add 'pad-byte = <0xff>'.
|
|
|
|
filename:
|
|
This specifies the image filename. It defaults to 'image.bin'.
|
|
|
|
sort-by-offset:
|
|
This causes binman to reorder the entries as needed to make sure they
|
|
are in increasing positional order. This can be used when your entry
|
|
order may not match the positional order. A common situation is where
|
|
the 'offset' properties are set by CONFIG options, so their ordering is
|
|
not known a priori.
|
|
|
|
This is a boolean property so needs no value. To enable it, add a
|
|
line 'sort-by-offset;' to your description.
|
|
|
|
multiple-images:
|
|
Normally only a single image is generated. To create more than one
|
|
image, put this property in the binman node. For example, this will
|
|
create image1.bin containing u-boot.bin, and image2.bin containing
|
|
both spl/u-boot-spl.bin and u-boot.bin::
|
|
|
|
binman {
|
|
multiple-images;
|
|
image1 {
|
|
u-boot {
|
|
};
|
|
};
|
|
|
|
image2 {
|
|
spl {
|
|
};
|
|
u-boot {
|
|
};
|
|
};
|
|
};
|
|
|
|
end-at-4gb:
|
|
For x86 machines the ROM offsets start just before 4GB and extend
|
|
up so that the image finished at the 4GB boundary. This boolean
|
|
option can be enabled to support this. The image size must be
|
|
provided so that binman knows when the image should start. For an
|
|
8MB ROM, the offset of the first entry would be 0xfff80000 with
|
|
this option, instead of 0 without this option.
|
|
|
|
skip-at-start:
|
|
This property specifies the entry offset of the first entry.
|
|
|
|
For PowerPC mpc85xx based CPU, CONFIG_SYS_TEXT_BASE is the entry
|
|
offset of the first entry. It can be 0xeff40000 or 0xfff40000 for
|
|
nor flash boot, 0x201000 for sd boot etc.
|
|
|
|
'end-at-4gb' property is not applicable where CONFIG_SYS_TEXT_BASE +
|
|
Image size != 4gb.
|
|
|
|
align-default:
|
|
Specifies the default alignment for entries in this section, if they do
|
|
not specify an alignment. Note that this only applies to top-level entries
|
|
in the section (direct subentries), not any subentries of those entries.
|
|
This means that each section must specify its own default alignment, if
|
|
required.
|
|
|
|
Examples of the above options can be found in the tests. See the
|
|
tools/binman/test directory.
|
|
|
|
It is possible to have the same binary appear multiple times in the image,
|
|
either by using a unit number suffix (u-boot@0, u-boot@1) or by using a
|
|
different name for each and specifying the type with the 'type' attribute.
|
|
|
|
|
|
Sections and hierachical images
|
|
-------------------------------
|
|
|
|
Sometimes it is convenient to split an image into several pieces, each of which
|
|
contains its own set of binaries. An example is a flash device where part of
|
|
the image is read-only and part is read-write. We can set up sections for each
|
|
of these, and place binaries in them independently. The image is still produced
|
|
as a single output file.
|
|
|
|
This feature provides a way of creating hierarchical images. For example here
|
|
is an example image with two copies of U-Boot. One is read-only (ro), intended
|
|
to be written only in the factory. Another is read-write (rw), so that it can be
|
|
upgraded in the field. The sizes are fixed so that the ro/rw boundary is known
|
|
and can be programmed::
|
|
|
|
binman {
|
|
section@0 {
|
|
read-only;
|
|
name-prefix = "ro-";
|
|
size = <0x100000>;
|
|
u-boot {
|
|
};
|
|
};
|
|
section@1 {
|
|
name-prefix = "rw-";
|
|
size = <0x100000>;
|
|
u-boot {
|
|
};
|
|
};
|
|
};
|
|
|
|
This image could be placed into a SPI flash chip, with the protection boundary
|
|
set at 1MB.
|
|
|
|
A few special properties are provided for sections:
|
|
|
|
read-only:
|
|
Indicates that this section is read-only. This has no impact on binman's
|
|
operation, but his property can be read at run time.
|
|
|
|
name-prefix:
|
|
This string is prepended to all the names of the binaries in the
|
|
section. In the example above, the 'u-boot' binaries which actually be
|
|
renamed to 'ro-u-boot' and 'rw-u-boot'. This can be useful to
|
|
distinguish binaries with otherwise identical names.
|
|
|
|
|
|
Image Properties
|
|
----------------
|
|
|
|
Image nodes act like sections but also have a few extra properties:
|
|
|
|
filename:
|
|
Output filename for the image. This defaults to image.bin (or in the
|
|
case of multiple images <nodename>.bin where <nodename> is the name of
|
|
the image node.
|
|
|
|
allow-repack:
|
|
Create an image that can be repacked. With this option it is possible
|
|
to change anything in the image after it is created, including updating
|
|
the position and size of image components. By default this is not
|
|
permitted since it is not possibly to know whether this might violate a
|
|
constraint in the image description. For example, if a section has to
|
|
increase in size to hold a larger binary, that might cause the section
|
|
to fall out of its allow region (e.g. read-only portion of flash).
|
|
|
|
Adding this property causes the original offset and size values in the
|
|
image description to be stored in the FDT and fdtmap.
|
|
|
|
|
|
Hashing Entries
|
|
---------------
|
|
|
|
It is possible to ask binman to hash the contents of an entry and write that
|
|
value back to the device-tree node. For example::
|
|
|
|
binman {
|
|
u-boot {
|
|
hash {
|
|
algo = "sha256";
|
|
};
|
|
};
|
|
};
|
|
|
|
Here, a new 'value' property will be written to the 'hash' node containing
|
|
the hash of the 'u-boot' entry. Only SHA256 is supported at present. Whole
|
|
sections can be hased if desired, by adding the 'hash' node to the section.
|
|
|
|
The has value can be chcked at runtime by hashing the data actually read and
|
|
comparing this has to the value in the device tree.
|
|
|
|
|
|
Expanded entries
|
|
----------------
|
|
|
|
Binman automatically replaces 'u-boot' with an expanded version of that, i.e.
|
|
'u-boot-expanded'. This means that when you write::
|
|
|
|
u-boot {
|
|
};
|
|
|
|
you actually get::
|
|
|
|
u-boot {
|
|
type = "u-boot-expanded';
|
|
};
|
|
|
|
which in turn expands to::
|
|
|
|
u-boot {
|
|
type = "section";
|
|
|
|
u-boot-nodtb {
|
|
};
|
|
|
|
u-boot-dtb {
|
|
};
|
|
};
|
|
|
|
U-Boot's various phase binaries actually comprise two or three pieces.
|
|
For example, u-boot.bin has the executable followed by a devicetree.
|
|
|
|
With binman we want to be able to update that devicetree with full image
|
|
information so that it is accessible to the executable. This is tricky
|
|
if it is not clear where the devicetree starts.
|
|
|
|
The above feature ensures that the devicetree is clearly separated from the
|
|
U-Boot executable and can be updated separately by binman as needed. It can be
|
|
disabled with the --no-expanded flag if required.
|
|
|
|
The same applies for u-boot-spl and u-boot-spl. In those cases, the expansion
|
|
includes the BSS padding, so for example::
|
|
|
|
spl {
|
|
type = "u-boot-spl"
|
|
};
|
|
|
|
you actually get::
|
|
|
|
spl {
|
|
type = "u-boot-expanded';
|
|
};
|
|
|
|
which in turn expands to::
|
|
|
|
spl {
|
|
type = "section";
|
|
|
|
u-boot-spl-nodtb {
|
|
};
|
|
|
|
u-boot-spl-bss-pad {
|
|
};
|
|
|
|
u-boot-spl-dtb {
|
|
};
|
|
};
|
|
|
|
Of course we should not expand SPL if it has no devicetree. Also if the BSS
|
|
padding is not needed (because BSS is in RAM as with CONFIG_SPL_SEPARATE_BSS),
|
|
the 'u-boot-spl-bss-pad' subnode should not be created. The use of the expaned
|
|
entry type is controlled by the UseExpanded() method. In the SPL case it checks
|
|
the 'spl-dtb' entry arg, which is 'y' or '1' if SPL has a devicetree.
|
|
|
|
For the BSS case, a 'spl-bss-pad' entry arg controls whether it is present. All
|
|
entry args are provided by the U-Boot Makefile.
|
|
|
|
|
|
Compression
|
|
-----------
|
|
|
|
Binman support compression for 'blob' entries (those of type 'blob' and
|
|
derivatives). To enable this for an entry, add a 'compress' property::
|
|
|
|
blob {
|
|
filename = "datafile";
|
|
compress = "lz4";
|
|
};
|
|
|
|
The entry will then contain the compressed data, using the 'lz4' compression
|
|
algorithm. Currently this is the only one that is supported. The uncompressed
|
|
size is written to the node in an 'uncomp-size' property, if -u is used.
|
|
|
|
Compression is also supported for sections. In that case the entire section is
|
|
compressed in one block, including all its contents. This means that accessing
|
|
an entry from the section required decompressing the entire section. Also, the
|
|
size of a section indicates the space that it consumes in its parent section
|
|
(and typically the image). With compression, the section may contain more data,
|
|
and the uncomp-size property indicates that, as above. The contents of the
|
|
section is compressed first, before any padding is added. This ensures that the
|
|
padding itself is not compressed, which would be a waste of time.
|
|
|
|
|
|
Automatic .dtsi inclusion
|
|
-------------------------
|
|
|
|
It is sometimes inconvenient to add a 'binman' node to the .dts file for each
|
|
board. This can be done by using #include to bring in a common file. Another
|
|
approach supported by the U-Boot build system is to automatically include
|
|
a common header. You can then put the binman node (and anything else that is
|
|
specific to U-Boot, such as u-boot,dm-pre-reloc properies) in that header
|
|
file.
|
|
|
|
Binman will search for the following files in arch/<arch>/dts::
|
|
|
|
<dts>-u-boot.dtsi where <dts> is the base name of the .dts file
|
|
<CONFIG_SYS_SOC>-u-boot.dtsi
|
|
<CONFIG_SYS_CPU>-u-boot.dtsi
|
|
<CONFIG_SYS_VENDOR>-u-boot.dtsi
|
|
u-boot.dtsi
|
|
|
|
U-Boot will only use the first one that it finds. If you need to include a
|
|
more general file you can do that from the more specific file using #include.
|
|
If you are having trouble figuring out what is going on, you can use
|
|
`DEVICE_TREE_DEBUG=1` with your build::
|
|
|
|
make DEVICE_TREE_DEBUG=1
|
|
scripts/Makefile.lib:334: Automatic .dtsi inclusion: options:
|
|
arch/arm/dts/juno-r2-u-boot.dtsi arch/arm/dts/-u-boot.dtsi
|
|
arch/arm/dts/armv8-u-boot.dtsi arch/arm/dts/armltd-u-boot.dtsi
|
|
arch/arm/dts/u-boot.dtsi ... found: "arch/arm/dts/juno-r2-u-boot.dtsi"
|
|
|
|
|
|
Updating an ELF file
|
|
====================
|
|
|
|
For the EFI app, where U-Boot is loaded from UEFI and runs as an app, there is
|
|
no way to update the devicetree after U-Boot is built. Normally this works by
|
|
creating a new u-boot.dtb.out with he updated devicetree, which is automatically
|
|
built into the output image. With ELF this is not possible since the ELF is
|
|
not part of an image, just a stand-along file. We must create an updated ELF
|
|
file with the new devicetree.
|
|
|
|
This is handled by the --update-fdt-in-elf option. It takes four arguments,
|
|
separated by comma:
|
|
|
|
infile - filename of input ELF file, e.g. 'u-boot's
|
|
outfile - filename of output ELF file, e.g. 'u-boot.out'
|
|
begin_sym - symbol at the start of the embedded devicetree, e.g.
|
|
'__dtb_dt_begin'
|
|
end_sym - symbol at the start of the embedded devicetree, e.g.
|
|
'__dtb_dt_end'
|
|
|
|
When this flag is used, U-Boot does all the normal packaging, but as an
|
|
additional step, it creates a new ELF file with the new devicetree embedded in
|
|
it.
|
|
|
|
If logging is enabled you will see a message like this::
|
|
|
|
Updating file 'u-boot' with data length 0x400a (16394) between symbols
|
|
'__dtb_dt_begin' and '__dtb_dt_end'
|
|
|
|
There must be enough space for the updated devicetree. If not, an error like
|
|
the following is produced::
|
|
|
|
ValueError: Not enough space in 'u-boot' for data length 0x400a (16394);
|
|
size is 0x1744 (5956)
|
|
|
|
|
|
Entry Documentation
|
|
===================
|
|
|
|
For details on the various entry types supported by binman and how to use them,
|
|
see entries.rst which is generated from the source code using:
|
|
|
|
binman entry-docs >tools/binman/entries.rst
|
|
|
|
.. toctree::
|
|
:maxdepth: 2
|
|
|
|
entries
|
|
|
|
|
|
Managing images
|
|
===============
|
|
|
|
Listing images
|
|
--------------
|
|
|
|
It is possible to list the entries in an existing firmware image created by
|
|
binman, provided that there is an 'fdtmap' entry in the image. For example::
|
|
|
|
$ binman ls -i image.bin
|
|
Name Image-pos Size Entry-type Offset Uncomp-size
|
|
----------------------------------------------------------------------
|
|
main-section c00 section 0
|
|
u-boot 0 4 u-boot 0
|
|
section 5fc section 4
|
|
cbfs 100 400 cbfs 0
|
|
u-boot 138 4 u-boot 38
|
|
u-boot-dtb 180 108 u-boot-dtb 80 3b5
|
|
u-boot-dtb 500 1ff u-boot-dtb 400 3b5
|
|
fdtmap 6fc 381 fdtmap 6fc
|
|
image-header bf8 8 image-header bf8
|
|
|
|
This shows the hierarchy of the image, the position, size and type of each
|
|
entry, the offset of each entry within its parent and the uncompressed size if
|
|
the entry is compressed.
|
|
|
|
It is also possible to list just some files in an image, e.g.::
|
|
|
|
$ binman ls -i image.bin section/cbfs
|
|
Name Image-pos Size Entry-type Offset Uncomp-size
|
|
--------------------------------------------------------------------
|
|
cbfs 100 400 cbfs 0
|
|
u-boot 138 4 u-boot 38
|
|
u-boot-dtb 180 108 u-boot-dtb 80 3b5
|
|
|
|
or with wildcards::
|
|
|
|
$ binman ls -i image.bin "*cb*" "*head*"
|
|
Name Image-pos Size Entry-type Offset Uncomp-size
|
|
----------------------------------------------------------------------
|
|
cbfs 100 400 cbfs 0
|
|
u-boot 138 4 u-boot 38
|
|
u-boot-dtb 180 108 u-boot-dtb 80 3b5
|
|
image-header bf8 8 image-header bf8
|
|
|
|
If an older version of binman is used to list images created by a newer one, it
|
|
is possible that it will contain entry types that are not supported. These still
|
|
show with the correct type, but binman just sees them as blobs (plain binary
|
|
data). Any special features of that etype are not supported by the old binman.
|
|
|
|
|
|
Extracting files from images
|
|
----------------------------
|
|
|
|
You can extract files from an existing firmware image created by binman,
|
|
provided that there is an 'fdtmap' entry in the image. For example::
|
|
|
|
$ binman extract -i image.bin section/cbfs/u-boot
|
|
|
|
which will write the uncompressed contents of that entry to the file 'u-boot' in
|
|
the current directory. You can also extract to a particular file, in this case
|
|
u-boot.bin::
|
|
|
|
$ binman extract -i image.bin section/cbfs/u-boot -f u-boot.bin
|
|
|
|
It is possible to extract all files into a destination directory, which will
|
|
put files in subdirectories matching the entry hierarchy::
|
|
|
|
$ binman extract -i image.bin -O outdir
|
|
|
|
or just a selection::
|
|
|
|
$ binman extract -i image.bin "*u-boot*" -O outdir
|
|
|
|
Some entry types have alternative formats, for example fdtmap which allows
|
|
extracted just the devicetree binary without the fdtmap header::
|
|
|
|
$ binman extract -i /tmp/b/odroid-c4/image.bin -f out.dtb -F fdt fdtmap
|
|
$ fdtdump out.dtb
|
|
/dts-v1/;
|
|
// magic: 0xd00dfeed
|
|
// totalsize: 0x8ab (2219)
|
|
// off_dt_struct: 0x38
|
|
// off_dt_strings: 0x82c
|
|
// off_mem_rsvmap: 0x28
|
|
// version: 17
|
|
// last_comp_version: 2
|
|
// boot_cpuid_phys: 0x0
|
|
// size_dt_strings: 0x7f
|
|
// size_dt_struct: 0x7f4
|
|
|
|
/ {
|
|
image-node = "binman";
|
|
image-pos = <0x00000000>;
|
|
size = <0x0011162b>;
|
|
...
|
|
|
|
Use `-F list` to see what alternative formats are available::
|
|
|
|
$ binman extract -i /tmp/b/odroid-c4/image.bin -F list
|
|
Flag (-F) Entry type Description
|
|
fdt fdtmap Extract the devicetree blob from the fdtmap
|
|
|
|
|
|
Replacing files in an image
|
|
---------------------------
|
|
|
|
You can replace files in an existing firmware image created by binman, provided
|
|
that there is an 'fdtmap' entry in the image. For example::
|
|
|
|
$ binman replace -i image.bin section/cbfs/u-boot
|
|
|
|
which will write the contents of the file 'u-boot' from the current directory
|
|
to the that entry, compressing if necessary. If the entry size changes, you must
|
|
add the 'allow-repack' property to the original image before generating it (see
|
|
above), otherwise you will get an error.
|
|
|
|
You can also use a particular file, in this case u-boot.bin::
|
|
|
|
$ binman replace -i image.bin section/cbfs/u-boot -f u-boot.bin
|
|
|
|
It is possible to replace all files from a source directory which uses the same
|
|
hierarchy as the entries::
|
|
|
|
$ binman replace -i image.bin -I indir
|
|
|
|
Files that are missing will generate a warning.
|
|
|
|
You can also replace just a selection of entries::
|
|
|
|
$ binman replace -i image.bin "*u-boot*" -I indir
|
|
|
|
|
|
Logging
|
|
-------
|
|
|
|
Binman normally operates silently unless there is an error, in which case it
|
|
just displays the error. The -D/--debug option can be used to create a full
|
|
backtrace when errors occur. You can use BINMAN_DEBUG=1 when building to select
|
|
this.
|
|
|
|
Internally binman logs some output while it is running. This can be displayed
|
|
by increasing the -v/--verbosity from the default of 1:
|
|
|
|
0: silent
|
|
1: warnings only
|
|
2: notices (important messages)
|
|
3: info about major operations
|
|
4: detailed information about each operation
|
|
5: debug (all output)
|
|
|
|
You can use BINMAN_VERBOSE=5 (for example) when building to select this.
|
|
|
|
|
|
Technical details
|
|
=================
|
|
|
|
Order of image creation
|
|
-----------------------
|
|
|
|
Image creation proceeds in the following order, for each entry in the image.
|
|
|
|
1. AddMissingProperties() - binman can add calculated values to the device
|
|
tree as part of its processing, for example the offset and size of each
|
|
entry. This method adds any properties associated with this, expanding the
|
|
device tree as needed. These properties can have placeholder values which are
|
|
set later by SetCalculatedProperties(). By that stage the size of sections
|
|
cannot be changed (since it would cause the images to need to be repacked),
|
|
but the correct values can be inserted.
|
|
|
|
2. ProcessFdt() - process the device tree information as required by the
|
|
particular entry. This may involve adding or deleting properties. If the
|
|
processing is complete, this method should return True. If the processing
|
|
cannot complete because it needs the ProcessFdt() method of another entry to
|
|
run first, this method should return False, in which case it will be called
|
|
again later.
|
|
|
|
3. GetEntryContents() - the contents of each entry are obtained, normally by
|
|
reading from a file. This calls the Entry.ObtainContents() to read the
|
|
contents. The default version of Entry.ObtainContents() calls
|
|
Entry.GetDefaultFilename() and then reads that file. So a common mechanism
|
|
to select a file to read is to override that function in the subclass. The
|
|
functions must return True when they have read the contents. Binman will
|
|
retry calling the functions a few times if False is returned, allowing
|
|
dependencies between the contents of different entries.
|
|
|
|
4. GetEntryOffsets() - calls Entry.GetOffsets() for each entry. This can
|
|
return a dict containing entries that need updating. The key should be the
|
|
entry name and the value is a tuple (offset, size). This allows an entry to
|
|
provide the offset and size for other entries. The default implementation
|
|
of GetEntryOffsets() returns {}.
|
|
|
|
5. PackEntries() - calls Entry.Pack() which figures out the offset and
|
|
size of an entry. The 'current' image offset is passed in, and the function
|
|
returns the offset immediately after the entry being packed. The default
|
|
implementation of Pack() is usually sufficient.
|
|
|
|
Note: for sections, this also checks that the entries do not overlap, nor extend
|
|
outside the section. If the section does not have a defined size, the size is
|
|
set large enough to hold all the entries.
|
|
|
|
6. SetImagePos() - sets the image position of every entry. This is the absolute
|
|
position 'image-pos', as opposed to 'offset' which is relative to the containing
|
|
section. This must be done after all offsets are known, which is why it is quite
|
|
late in the ordering.
|
|
|
|
7. SetCalculatedProperties() - update any calculated properties in the device
|
|
tree. This sets the correct 'offset' and 'size' vaues, for example.
|
|
|
|
8. ProcessEntryContents() - this calls Entry.ProcessContents() on each entry.
|
|
The default implementatoin does nothing. This can be overriden to adjust the
|
|
contents of an entry in some way. For example, it would be possible to create
|
|
an entry containing a hash of the contents of some other entries. At this
|
|
stage the offset and size of entries should not be adjusted unless absolutely
|
|
necessary, since it requires a repack (going back to PackEntries()).
|
|
|
|
9. ResetForPack() - if the ProcessEntryContents() step failed, in that an entry
|
|
has changed its size, then there is no alternative but to go back to step 5 and
|
|
try again, repacking the entries with the updated size. ResetForPack() removes
|
|
the fixed offset/size values added by binman, so that the packing can start from
|
|
scratch.
|
|
|
|
10. WriteSymbols() - write the value of symbols into the U-Boot SPL binary.
|
|
See 'Access to binman entry offsets at run time' below for a description of
|
|
what happens in this stage.
|
|
|
|
11. BuildImage() - builds the image and writes it to a file
|
|
|
|
12. WriteMap() - writes a text file containing a map of the image. This is the
|
|
final step.
|
|
|
|
|
|
External tools
|
|
--------------
|
|
|
|
Binman can make use of external command-line tools to handle processing of
|
|
entry contents or to generate entry contents. These tools are executed using
|
|
the 'tools' module's Run() method. The tools generally must exist on the PATH,
|
|
but the --toolpath option can be used to specify additional search paths to
|
|
use. This option can be specified multiple times to add more than one path.
|
|
|
|
For some compile tools binman will use the versions specified by commonly-used
|
|
environment variables like CC and HOSTCC for the C compiler, based on whether
|
|
the tool's output will be used for the target or for the host machine. If those
|
|
aren't given, it will also try to derive target-specific versions from the
|
|
CROSS_COMPILE environment variable during a cross-compilation.
|
|
|
|
If the tool is not available in the path you can use BINMAN_TOOLPATHS to specify
|
|
a space-separated list of paths to search, e.g.::
|
|
|
|
BINMAN_TOOLPATHS="/tools/g12a /tools/tegra" binman ...
|
|
|
|
|
|
External blobs
|
|
--------------
|
|
|
|
Binary blobs, even if the source code is available, complicate building
|
|
firmware. The instructions can involve multiple steps and the binaries may be
|
|
hard to build or obtain. Binman at least provides a unified description of how
|
|
to build the final image, no matter what steps are needed to get there.
|
|
|
|
Binman also provides a `blob-ext` entry type that pulls in a binary blob from an
|
|
external file. If the file is missing, binman can optionally complete the build
|
|
and just report a warning. Use the `-M/--allow-missing` option to enble this.
|
|
This is useful in CI systems which want to check that everything is correct but
|
|
don't have access to the blobs.
|
|
|
|
If the blobs are in a different directory, you can specify this with the `-I`
|
|
option.
|
|
|
|
For U-Boot, you can use set the BINMAN_INDIRS environment variable to provide a
|
|
space-separated list of directories to search for binary blobs::
|
|
|
|
BINMAN_INDIRS="odroid-c4/fip/g12a \
|
|
odroid-c4/build/board/hardkernel/odroidc4/firmware \
|
|
odroid-c4/build/scp_task" binman ...
|
|
|
|
Code coverage
|
|
-------------
|
|
|
|
Binman is a critical tool and is designed to be very testable. Entry
|
|
implementations target 100% test coverage. Run 'binman test -T' to check this.
|
|
|
|
To enable Python test coverage on Debian-type distributions (e.g. Ubuntu)::
|
|
|
|
$ sudo apt-get install python-coverage python3-coverage python-pytest
|
|
|
|
|
|
Concurrent tests
|
|
----------------
|
|
|
|
Binman tries to run tests concurrently. This means that the tests make use of
|
|
all available CPUs to run.
|
|
|
|
To enable this::
|
|
|
|
$ sudo apt-get install python-subunit python3-subunit
|
|
|
|
Use '-P 1' to disable this. It is automatically disabled when code coverage is
|
|
being used (-T) since they are incompatible.
|
|
|
|
|
|
Debugging tests
|
|
---------------
|
|
|
|
Sometimes when debugging tests it is useful to keep the input and output
|
|
directories so they can be examined later. Use -X or --test-preserve-dirs for
|
|
this.
|
|
|
|
|
|
Running tests on non-x86 architectures
|
|
--------------------------------------
|
|
|
|
Binman's tests have been written under the assumption that they'll be run on a
|
|
x86-like host and there hasn't been an attempt to make them portable yet.
|
|
However, it's possible to run the tests by cross-compiling to x86.
|
|
|
|
To install an x86 cross-compiler on Debian-type distributions (e.g. Ubuntu)::
|
|
|
|
$ sudo apt-get install gcc-x86-64-linux-gnu
|
|
|
|
Then, you can run the tests under cross-compilation::
|
|
|
|
$ CROSS_COMPILE=x86_64-linux-gnu- binman test -T
|
|
|
|
You can also use gcc-i686-linux-gnu similar to the above.
|
|
|
|
|
|
Writing new entries and debugging
|
|
---------------------------------
|
|
|
|
The behaviour of entries is defined by the Entry class. All other entries are
|
|
a subclass of this. An important subclass is Entry_blob which takes binary
|
|
data from a file and places it in the entry. In fact most entry types are
|
|
subclasses of Entry_blob.
|
|
|
|
Each entry type is a separate file in the tools/binman/etype directory. Each
|
|
file contains a class called Entry_<type> where <type> is the entry type.
|
|
New entry types can be supported by adding new files in that directory.
|
|
These will automatically be detected by binman when needed.
|
|
|
|
Entry properties are documented in entry.py. The entry subclasses are free
|
|
to change the values of properties to support special behaviour. For example,
|
|
when Entry_blob loads a file, it sets content_size to the size of the file.
|
|
Entry classes can adjust other entries. For example, an entry that knows
|
|
where other entries should be positioned can set up those entries' offsets
|
|
so they don't need to be set in the binman decription. It can also adjust
|
|
entry contents.
|
|
|
|
Most of the time such essoteric behaviour is not needed, but it can be
|
|
essential for complex images.
|
|
|
|
If you need to specify a particular device-tree compiler to use, you can define
|
|
the DTC environment variable. This can be useful when the system dtc is too
|
|
old.
|
|
|
|
To enable a full backtrace and other debugging features in binman, pass
|
|
BINMAN_DEBUG=1 to your build::
|
|
|
|
make qemu-x86_defconfig
|
|
make BINMAN_DEBUG=1
|
|
|
|
To enable verbose logging from binman, base BINMAN_VERBOSE to your build, which
|
|
adds a -v<level> option to the call to binman::
|
|
|
|
make qemu-x86_defconfig
|
|
make BINMAN_VERBOSE=5
|
|
|
|
|
|
Building sections in parallel
|
|
-----------------------------
|
|
|
|
By default binman uses multiprocessing to speed up compilation of large images.
|
|
This works at a section level, with one thread for each entry in the section.
|
|
This can speed things up if the entries are large and use compression.
|
|
|
|
This feature can be disabled with the '-T' flag, which defaults to a suitable
|
|
value for your machine. This depends on the Python version, e.g on v3.8 it uses
|
|
12 threads on an 8-core machine. See ConcurrentFutures_ for more details.
|
|
|
|
The special value -T0 selects single-threaded mode, useful for debugging during
|
|
development, since dealing with exceptions and problems in threads is more
|
|
difficult. This avoids any use of ThreadPoolExecutor.
|
|
|
|
|
|
History / Credits
|
|
-----------------
|
|
|
|
Binman takes a lot of inspiration from a Chrome OS tool called
|
|
'cros_bundle_firmware', which I wrote some years ago. That tool was based on
|
|
a reasonably simple and sound design but has expanded greatly over the
|
|
years. In particular its handling of x86 images is convoluted.
|
|
|
|
Quite a few lessons have been learned which are hopefully applied here.
|
|
|
|
|
|
Design notes
|
|
------------
|
|
|
|
On the face of it, a tool to create firmware images should be fairly simple:
|
|
just find all the input binaries and place them at the right place in the
|
|
image. The difficulty comes from the wide variety of input types (simple
|
|
flat binaries containing code, packaged data with various headers), packing
|
|
requirments (alignment, spacing, device boundaries) and other required
|
|
features such as hierarchical images.
|
|
|
|
The design challenge is to make it easy to create simple images, while
|
|
allowing the more complex cases to be supported. For example, for most
|
|
images we don't much care exactly where each binary ends up, so we should
|
|
not have to specify that unnecessarily.
|
|
|
|
New entry types should aim to provide simple usage where possible. If new
|
|
core features are needed, they can be added in the Entry base class.
|
|
|
|
|
|
To do
|
|
-----
|
|
|
|
Some ideas:
|
|
|
|
- Use of-platdata to make the information available to code that is unable
|
|
to use device tree (such as a very small SPL image). For now, limited info is
|
|
available via linker symbols
|
|
- Allow easy building of images by specifying just the board name
|
|
- Support building an image for a board (-b) more completely, with a
|
|
configurable build directory
|
|
- Detect invalid properties in nodes
|
|
- Sort the fdtmap by offset
|
|
- Output temporary files to a different directory
|
|
|
|
--
|
|
Simon Glass <sjg@chromium.org>
|
|
7/7/2016
|
|
|
|
.. _ConcurrentFutures: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor
|