u-boot/lib/efi/efi_app.c
Simon Glass 866e2ac5aa efi: Move exit_boot_services into a function
At present this code is inline in the app and stub. But they do the same
thing. The difference is that the stub does it immediately and the app
doesn't want to do it until the end (when it boots a kernel) or not at
all, if returning to UEFI.

Move it into a function so it can be called as needed.

Add a comment showing how to store the memory map so that it can be
accessed within the app if needed, for debugging purposes only. The map
can change without notice.

Signed-off-by: Simon Glass <sjg@chromium.org>
2022-01-15 10:57:22 +01:00

372 lines
9.4 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2015 Google, Inc
*
* EFI information obtained here:
* http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES
*
* This file implements U-Boot running as an EFI application.
*/
#include <common.h>
#include <cpu_func.h>
#include <debug_uart.h>
#include <dm.h>
#include <errno.h>
#include <init.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <linux/err.h>
#include <linux/types.h>
#include <efi.h>
#include <efi_api.h>
#include <sysreset.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/root.h>
DECLARE_GLOBAL_DATA_PTR;
int efi_info_get(enum efi_entry_t type, void **datap, int *sizep)
{
return -ENOSYS;
}
/**
* efi_bind_block() - bind a new block device to an EFI device
*
* Binds a new top-level EFI_MEDIA device as well as a child block device so
* that the block device can be accessed in U-Boot.
*
* The device can then be accessed using 'part list efi 0', 'fat ls efi 0:1',
* for example, just like any other interface type.
*
* @handle: handle of the controller on which this driver is installed
* @blkio: block io protocol proxied by this driver
* @device_path: EFI device path structure for this
* @len: Length of @device_path in bytes
* @devp: Returns the bound device
* @return 0 if OK, -ve on error
*/
int efi_bind_block(efi_handle_t handle, struct efi_block_io *blkio,
struct efi_device_path *device_path, int len,
struct udevice **devp)
{
struct efi_media_plat plat;
struct udevice *dev;
char name[18];
int ret;
plat.handle = handle;
plat.blkio = blkio;
plat.device_path = malloc(device_path->length);
if (!plat.device_path)
return log_msg_ret("path", -ENOMEM);
memcpy(plat.device_path, device_path, device_path->length);
ret = device_bind(dm_root(), DM_DRIVER_GET(efi_media), "efi_media",
&plat, ofnode_null(), &dev);
if (ret)
return log_msg_ret("bind", ret);
snprintf(name, sizeof(name), "efi_media_%x", dev_seq(dev));
device_set_name(dev, name);
*devp = dev;
return 0;
}
static efi_status_t setup_memory(struct efi_priv *priv)
{
struct efi_boot_services *boot = priv->boot;
efi_physical_addr_t addr;
efi_status_t ret;
int pages;
/*
* Use global_data_ptr instead of gd since it is an assignment. There
* are very few assignments to global_data in U-Boot and this makes
* it easier to find them.
*/
global_data_ptr = efi_malloc(priv, sizeof(struct global_data), &ret);
if (!global_data_ptr)
return ret;
memset(gd, '\0', sizeof(*gd));
gd->malloc_base = (ulong)efi_malloc(priv, CONFIG_VAL(SYS_MALLOC_F_LEN),
&ret);
if (!gd->malloc_base)
return ret;
pages = CONFIG_EFI_RAM_SIZE >> 12;
/*
* Don't allocate any memory above 4GB. U-Boot is a 32-bit application
* so we want it to load below 4GB.
*/
addr = 1ULL << 32;
ret = boot->allocate_pages(EFI_ALLOCATE_MAX_ADDRESS,
priv->image_data_type, pages, &addr);
if (ret) {
log_info("(using pool %lx) ", ret);
priv->ram_base = (ulong)efi_malloc(priv, CONFIG_EFI_RAM_SIZE,
&ret);
if (!priv->ram_base)
return ret;
priv->use_pool_for_malloc = true;
} else {
log_info("(using allocated RAM address %lx) ", (ulong)addr);
priv->ram_base = addr;
}
gd->ram_size = pages << 12;
return 0;
}
/**
* free_memory() - Free memory used by the U-Boot app
*
* This frees memory allocated in setup_memory(), in preparation for returning
* to UEFI. It also zeroes the global_data pointer.
*
* @priv: Private EFI data
*/
static void free_memory(struct efi_priv *priv)
{
struct efi_boot_services *boot = priv->boot;
if (priv->use_pool_for_malloc)
efi_free(priv, (void *)priv->ram_base);
else
boot->free_pages(priv->ram_base, gd->ram_size >> 12);
efi_free(priv, (void *)gd->malloc_base);
efi_free(priv, gd);
global_data_ptr = NULL;
}
/**
* devpath_is_partition() - Figure out if a device path is a partition
*
* Checks if a device path refers to a partition on some media device. This
* works by checking for a valid partition number in a hard-driver media device
* as the final component of the device path.
*
* @path: device path
* Return: true if a partition, false if not
* (e.g. it might be media which contains partitions)
*/
static bool devpath_is_partition(const struct efi_device_path *path)
{
const struct efi_device_path *p;
bool was_part;
for (p = path; p->type != DEVICE_PATH_TYPE_END;
p = (void *)p + p->length) {
was_part = false;
if (p->type == DEVICE_PATH_TYPE_MEDIA_DEVICE &&
p->sub_type == DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH) {
struct efi_device_path_hard_drive_path *hd =
(void *)path;
if (hd->partition_number)
was_part = true;
}
}
return was_part;
}
/**
* setup_block() - Find all block devices and setup EFI devices for them
*
* Partitions are ignored, since U-Boot has partition handling. Errors with
* particular devices produce a warning but execution continues to try to
* find others.
*
* Return: 0 if found, -ENOSYS if there is no boot-services table, -ENOTSUPP
* if a required protocol is not supported
*/
static int setup_block(void)
{
efi_guid_t efi_blkio_guid = EFI_BLOCK_IO_PROTOCOL_GUID;
efi_guid_t efi_devpath_guid = EFI_DEVICE_PATH_PROTOCOL_GUID;
efi_guid_t efi_pathutil_guid = EFI_DEVICE_PATH_UTILITIES_PROTOCOL_GUID;
efi_guid_t efi_pathtext_guid = EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID;
struct efi_boot_services *boot = efi_get_boot();
struct efi_device_path_utilities_protocol *util;
struct efi_device_path_to_text_protocol *text;
struct efi_device_path *path;
struct efi_block_io *blkio;
efi_uintn_t num_handles;
efi_handle_t *handle;
int ret, i;
if (!boot)
return log_msg_ret("sys", -ENOSYS);
/* Find all devices which support the block I/O protocol */
ret = boot->locate_handle_buffer(BY_PROTOCOL, &efi_blkio_guid, NULL,
&num_handles, &handle);
if (ret)
return log_msg_ret("loc", -ENOTSUPP);
log_debug("Found %d handles:\n", (int)num_handles);
/* We need to look up the path size and convert it to text */
ret = boot->locate_protocol(&efi_pathutil_guid, NULL, (void **)&util);
if (ret)
return log_msg_ret("util", -ENOTSUPP);
ret = boot->locate_protocol(&efi_pathtext_guid, NULL, (void **)&text);
if (ret)
return log_msg_ret("text", -ENOTSUPP);
for (i = 0; i < num_handles; i++) {
struct udevice *dev;
const u16 *name;
bool is_part;
int len;
ret = boot->handle_protocol(handle[i], &efi_devpath_guid,
(void **)&path);
if (ret) {
log_warning("- devpath %d failed (ret=%d)\n", i, ret);
continue;
}
ret = boot->handle_protocol(handle[i], &efi_blkio_guid,
(void **)&blkio);
if (ret) {
log_warning("- blkio %d failed (ret=%d)\n", i, ret);
continue;
}
name = text->convert_device_path_to_text(path, true, false);
is_part = devpath_is_partition(path);
if (!is_part) {
len = util->get_device_path_size(path);
ret = efi_bind_block(handle[i], blkio, path, len, &dev);
if (ret) {
log_warning("- blkio bind %d failed (ret=%d)\n",
i, ret);
continue;
}
} else {
dev = NULL;
}
/*
* Show the device name if we created one. Otherwise indicate
* that it is a partition.
*/
printf("%2d: %-12s %ls\n", i, dev ? dev->name : "<partition>",
name);
}
boot->free_pool(handle);
return 0;
}
/**
* dm_scan_other() - Scan for UEFI devices that should be available to U-Boot
*
* This sets up block devices within U-Boot for those found in UEFI. With this,
* U-Boot can access those devices
*
* @pre_reloc_only: true to only bind pre-relocation devices (ignored)
* Returns: 0 on success, -ve on error
*/
int dm_scan_other(bool pre_reloc_only)
{
if (gd->flags & GD_FLG_RELOC) {
int ret;
ret = setup_block();
if (ret)
return ret;
}
return 0;
}
/**
* efi_main() - Start an EFI image
*
* This function is called by our EFI start-up code. It handles running
* U-Boot. If it returns, EFI will continue. Another way to get back to EFI
* is via reset_cpu().
*/
efi_status_t EFIAPI efi_main(efi_handle_t image,
struct efi_system_table *sys_table)
{
struct efi_priv local_priv, *priv = &local_priv;
efi_status_t ret;
/* Set up access to EFI data structures */
ret = efi_init(priv, "App", image, sys_table);
if (ret) {
printf("Failed to set up U-Boot: err=%lx\n", ret);
return ret;
}
efi_set_priv(priv);
/*
* Set up the EFI debug UART so that printf() works. This is
* implemented in the EFI serial driver, serial_efi.c. The application
* can use printf() freely.
*/
debug_uart_init();
ret = setup_memory(priv);
if (ret) {
printf("Failed to set up memory: ret=%lx\n", ret);
return ret;
}
/*
* We could store the EFI memory map here, but it changes all the time,
* so this is only useful for debugging.
*
* ret = efi_store_memory_map(priv);
* if (ret)
* return ret;
*/
printf("starting\n");
board_init_f(GD_FLG_SKIP_RELOC);
board_init_r(NULL, 0);
free_memory(priv);
return EFI_SUCCESS;
}
static void efi_exit(void)
{
struct efi_priv *priv = efi_get_priv();
free_memory(priv);
printf("U-Boot EFI exiting\n");
priv->boot->exit(priv->parent_image, EFI_SUCCESS, 0, NULL);
}
static int efi_sysreset_request(struct udevice *dev, enum sysreset_t type)
{
efi_exit();
return -EINPROGRESS;
}
static const struct udevice_id efi_sysreset_ids[] = {
{ .compatible = "efi,reset" },
{ }
};
static struct sysreset_ops efi_sysreset_ops = {
.request = efi_sysreset_request,
};
U_BOOT_DRIVER(efi_sysreset) = {
.name = "efi-sysreset",
.id = UCLASS_SYSRESET,
.of_match = efi_sysreset_ids,
.ops = &efi_sysreset_ops,
};