u-boot/nand_spl/nand_boot_fsl_nfc.c
Benoît Thébaudeau 9c60e75e05 mxc nand: Homogenize IP revisions with Linux
Use the same IP revisions as in Linux in order to make the comparison more
clear.

Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Stefano Babic <sbabic@denx.de>
Signed-off-by: Scott Wood <scottwood@freescale.com>
2012-09-17 19:51:45 -05:00

308 lines
7.1 KiB
C

/*
* (C) Copyright 2009
* Magnus Lilja <lilja.magnus@gmail.com>
*
* (C) Copyright 2008
* Maxim Artamonov, <scn1874 at yandex.ru>
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr at denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <fsl_nfc.h>
static struct fsl_nfc_regs *const nfc = (void *)NFC_BASE_ADDR;
static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->config2) & NFC_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->config2);
}
static void nfc_nand_init(void)
{
#if defined(MXC_NFC_V2_1)
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int config1;
writew(CONFIG_SYS_NAND_SPARE_SIZE / 2, &nfc->spare_area_size);
/* unlocking RAM Buff */
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
config1 = readw(&nfc->config1) | NFC_ECC_EN | NFC_INT_MSK |
NFC_ONE_CYCLE | NFC_FP_INT;
/*
* if spare size is larger that 16 bytes per 512 byte hunk
* then use 8 symbol correction instead of 4
*/
if (CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16)
config1 &= ~NFC_4_8N_ECC;
else
config1 |= NFC_4_8N_ECC;
writew(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
/* unlocking RAM Buff */
writew(0x2, &nfc->config);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN | NFC_INT_MSK, &nfc->config1);
#endif
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->config2);
nfc_wait_ready();
}
static void nfc_nand_address(unsigned short address)
{
writew(address, &nfc->flash_addr);
writew(NFC_ADDR, &nfc->config2);
nfc_wait_ready();
}
static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
nfc_nand_address(0x00);
/* code only for large page flash */
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_address(0x00);
page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
nfc_nand_address(page_address & 0xff);
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
nfc_nand_address(0x00);
}
static void nfc_nand_data_output(void)
{
#ifdef NAND_MXC_2K_MULTI_CYCLE
int i;
#endif
writew(0, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
/*
* This NAND controller requires multiple input commands
* for pages larger than 512 bytes.
*/
for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
writew(i, &nfc->buf_addr);
writew(NFC_OUTPUT, &nfc->config2);
nfc_wait_ready();
}
#endif
}
static int nfc_nand_check_ecc(void)
{
#if defined(MXC_NFC_V1)
u16 ecc_status = readw(&nfc->ecc_status_result);
return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2;
#elif defined(MXC_NFC_V2_1)
u32 ecc_status = readl(&nfc->ecc_status_result);
int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
int err_limit = CONFIG_SYS_NAND_SPARE_SIZE / ecc_per_page > 16 ? 8 : 4;
int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512;
do {
if ((ecc_status & 0xf) > err_limit)
return 1;
ecc_status >>= 4;
} while (--subpages);
return 0;
#endif
}
static void nfc_nand_read_page(unsigned int page_address)
{
writew(0, &nfc->buf_addr); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
}
static int nfc_read_page(unsigned int page_address, unsigned char *buf)
{
int i;
u32 *src;
u32 *dst;
nfc_nand_read_page(page_address);
if (nfc_nand_check_ecc())
return -1;
src = (u32 *)&nfc->main_area[0][0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) {
writel(readl(src), dst);
src++;
dst++;
}
return 0;
}
static int is_badblock(int pagenumber)
{
int page = pagenumber;
u32 badblock;
u32 *src;
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
nfc_nand_read_page(page);
src = (u32 *)&nfc->spare_area[0][0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-
* standard layout for large page devices. This can
* affect the position of the bad block marker.
*/
/* Get the bad block marker */
badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
badblock &= 0xff;
/* bad block marker verify */
if (badblock != 0xff)
return 1; /* potential bad block */
}
return 0;
}
static int nand_load(unsigned int from, unsigned int size, unsigned char *buf)
{
int i;
unsigned int page;
unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
CONFIG_SYS_NAND_PAGE_SIZE;
nfc_nand_init();
/* Convert to page number */
page = from / CONFIG_SYS_NAND_PAGE_SIZE;
i = 0;
while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) {
if (nfc_read_page(page, buf) < 0)
return -1;
page++;
i++;
buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;
/*
* Check if we have crossed a block boundary, and if so
* check for bad block.
*/
if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) {
/*
* Yes, new block. See if this block is good. If not,
* loop until we find a good block.
*/
while (is_badblock(page)) {
page = page + CONFIG_SYS_NAND_PAGE_COUNT;
/* Check i we've reached the end of flash. */
if (page >= maxpages)
return -1;
}
}
}
return 0;
}
#if defined(CONFIG_ARM)
void board_init_f (ulong bootflag)
{
relocate_code (CONFIG_SYS_TEXT_BASE - TOTAL_MALLOC_LEN, NULL,
CONFIG_SYS_TEXT_BASE);
}
#endif
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
void nand_boot(void)
{
__attribute__((noreturn)) void (*uboot)(void);
/*
* CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must
* be aligned to full pages
*/
if (!nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) {
/* Copy from NAND successful, start U-boot */
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
uboot();
} else {
/* Unrecoverable error when copying from NAND */
hang();
}
}
/*
* Called in case of an exception.
*/
void hang(void)
{
/* Loop forever */
while (1) ;
}