u-boot/drivers/mmc/octeontx_hsmmc.c
Simon Glass f10643cf8a dm: core: Access device ofnode through functions
At present ofnode is present in the device even if it is never used. With
of-platdata this field is not used, so can be removed. In preparation for
this, change the access to go through inline functions.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-01-05 12:24:41 -07:00

3904 lines
117 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Marvell International Ltd.
*
* https://spdx.org/licenses
*/
//#define DEBUG
#include <cpu_func.h>
#include <dm.h>
#include <dm/lists.h>
#include <env.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <mmc.h>
#include <part.h>
#include <pci.h>
#include <pci_ids.h>
#include <time.h>
#include <watchdog.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/libfdt.h>
#include <asm/arch/board.h>
#include <asm/arch/clock.h>
#include <asm/arch/csrs/csrs-mio_emm.h>
#include <asm/io.h>
#include <dm/device-internal.h>
#include <power/regulator.h>
#include "octeontx_hsmmc.h"
#define MMC_TIMEOUT_SHORT 20 /* in ms */
#define MMC_TIMEOUT_LONG 1000
#define MMC_TIMEOUT_ERASE 10000
#define MMC_DEFAULT_DATA_IN_TAP 10
#define MMC_DEFAULT_CMD_IN_TAP 10
#define MMC_DEFAULT_CMD_OUT_TAP 39
#define MMC_DEFAULT_DATA_OUT_TAP 39
#define MMC_DEFAULT_HS200_CMD_IN_TAP 24
#define MMC_DEFAULT_HS200_DATA_IN_TAP 24
#define MMC_DEFAULT_HS200_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
#define MMC_DEFAULT_HS200_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
#define MMC_DEFAULT_HS400_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5)
#define MMC_DEFAULT_HS400_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 5 : 3)
#define MMC_DEFAULT_HS200_CMD_OUT_DLY 800 /* Delay in ps */
#define MMC_DEFAULT_HS200_DATA_OUT_DLY 800 /* Delay in ps */
#define MMC_DEFAULT_HS400_CMD_OUT_DLY 800 /* Delay in ps */
#define MMC_DEFAULT_HS400_DATA_OUT_DLY 400 /* Delay in ps */
#define MMC_DEFAULT_SD_UHS_SDR104_CMD_OUT_TAP MMC_DEFAULT_HS200_CMD_OUT_TAP
#define MMC_DEFAULT_SD_UHS_SDR104_DATA_OUT_TAP MMC_DEFAULT_HS200_DATA_OUT_TAP
#define MMC_LEGACY_DEFAULT_CMD_OUT_TAP 39
#define MMC_LEGACY_DEFAULT_DATA_OUT_TAP 39
#define MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP 63
#define MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP 63
#define MMC_HS_CMD_OUT_TAP 32
#define MMC_HS_DATA_OUT_TAP 32
#define MMC_SD_HS_CMD_OUT_TAP 26
#define MMC_SD_HS_DATA_OUT_TAP 26
#define MMC_SD_UHS_SDR25_CMD_OUT_TAP 26
#define MMC_SD_UHS_SDR25_DATA_OUT_TAP 26
#define MMC_SD_UHS_SDR50_CMD_OUT_TAP 26
#define MMC_SD_UHS_SDR50_DATA_OUT_TAP 26
#define MMC_DEFAULT_TAP_DELAY 4
#define TOTAL_NO_OF_TAPS 512
static void octeontx_mmc_switch_to(struct mmc *mmc);
static int octeontx_mmc_configure_delay(struct mmc *mmc);
static void octeontx_mmc_set_timing(struct mmc *mmc);
static void set_wdog(struct mmc *mmc, u64 us);
static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch);
static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data);
static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay);
static int octeontx_mmc_calibrate_delay(struct mmc *mmc);
static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc);
static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc);
static bool host_probed;
/**
* Get the slot data structure from a MMC data structure
*/
static inline struct octeontx_mmc_slot *mmc_to_slot(struct mmc *mmc)
{
return container_of(mmc, struct octeontx_mmc_slot, mmc);
}
static inline struct octeontx_mmc_host *mmc_to_host(struct mmc *mmc)
{
return mmc_to_slot(mmc)->host;
}
static inline struct octeontx_mmc_slot *dev_to_mmc_slot(struct udevice *dev)
{
return dev_get_priv(dev);
}
static inline struct mmc *dev_to_mmc(struct udevice *dev)
{
return &((struct octeontx_mmc_slot *)dev_get_priv(dev))->mmc;
}
#ifdef DEBUG
const char *mmc_reg_str(u64 reg)
{
if (reg == MIO_EMM_DMA_CFG())
return "MIO_EMM_DMA_CFG";
if (reg == MIO_EMM_DMA_ADR())
return "MIO_EMM_DMA_ADR";
if (reg == MIO_EMM_DMA_INT())
return "MIO_EMM_DMA_INT";
if (reg == MIO_EMM_CFG())
return "MIO_EMM_CFG";
if (reg == MIO_EMM_MODEX(0))
return "MIO_EMM_MODE0";
if (reg == MIO_EMM_MODEX(1))
return "MIO_EMM_MODE1";
if (reg == MIO_EMM_MODEX(2))
return "MIO_EMM_MODE2";
if (reg == MIO_EMM_MODEX(3))
return "MIO_EMM_MODE3";
if (reg == MIO_EMM_IO_CTL())
return "MIO_EMM_IO_CTL";
if (reg == MIO_EMM_SWITCH())
return "MIO_EMM_SWITCH";
if (reg == MIO_EMM_DMA())
return "MIO_EMM_DMA";
if (reg == MIO_EMM_CMD())
return "MIO_EMM_CMD";
if (reg == MIO_EMM_RSP_STS())
return "MIO_EMM_RSP_STS";
if (reg == MIO_EMM_RSP_LO())
return "MIO_EMM_RSP_LO";
if (reg == MIO_EMM_RSP_HI())
return "MIO_EMM_RSP_HI";
if (reg == MIO_EMM_INT())
return "MIO_EMM_INT";
if (reg == MIO_EMM_WDOG())
return "MIO_EMM_WDOG";
if (reg == MIO_EMM_DMA_ARG())
return "MIO_EMM_DMA_ARG";
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
if (reg == MIO_EMM_SAMPLE())
return "MIO_EMM_SAMPLE";
}
if (reg == MIO_EMM_STS_MASK())
return "MIO_EMM_STS_MASK";
if (reg == MIO_EMM_RCA())
return "MIO_EMM_RCA";
if (reg == MIO_EMM_BUF_IDX())
return "MIO_EMM_BUF_IDX";
if (reg == MIO_EMM_BUF_DAT())
return "MIO_EMM_BUF_DAT";
if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
if (reg == MIO_EMM_CALB())
return "MIO_EMM_CALB";
if (reg == MIO_EMM_TAP())
return "MIO_EMM_TAP";
if (reg == MIO_EMM_TIMING())
return "MIO_EMM_TIMING";
if (reg == MIO_EMM_DEBUG())
return "MIO_EMM_DEBUG";
}
return "UNKNOWN";
}
#endif
static void octeontx_print_rsp_sts(struct mmc *mmc)
{
#ifdef DEBUG
union mio_emm_rsp_sts emm_rsp_sts;
const struct octeontx_mmc_host *host = mmc_to_host(mmc);
static const char * const ctype_xor_str[] = {
"No data",
"Read data into Dbuf",
"Write data from Dbuf",
"Reserved"
};
static const char * const rtype_xor_str[] = {
"No response",
"R1, 48 bits",
"R2, 136 bits",
"R3, 48 bits",
"R4, 48 bits",
"R5, 48 bits",
"Reserved 6",
"Reserved 7"
};
emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS());
printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u);
printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id);
printf(" 59: cmd_val: %s\n",
emm_rsp_sts.s.cmd_val ? "yes" : "no");
printf(" 58: switch_val: %s\n",
emm_rsp_sts.s.switch_val ? "yes" : "no");
printf(" 57: dma_val: %s\n",
emm_rsp_sts.s.dma_val ? "yes" : "no");
printf(" 56: dma_pend: %s\n",
emm_rsp_sts.s.dma_pend ? "yes" : "no");
printf(" 28: dbuf_err: %s\n",
emm_rsp_sts.s.dbuf_err ? "yes" : "no");
printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf);
printf(" 22: blk_timeout: %s\n",
emm_rsp_sts.s.blk_timeout ? "yes" : "no");
printf(" 21: blk_crc_err: %s\n",
emm_rsp_sts.s.blk_crc_err ? "yes" : "no");
printf(" 20: rsp_busybit: %s\n",
emm_rsp_sts.s.rsp_busybit ? "yes" : "no");
printf(" 19: stp_timeout: %s\n",
emm_rsp_sts.s.stp_timeout ? "yes" : "no");
printf(" 18: stp_crc_err: %s\n",
emm_rsp_sts.s.stp_crc_err ? "yes" : "no");
printf(" 17: stp_bad_sts: %s\n",
emm_rsp_sts.s.stp_bad_sts ? "yes" : "no");
printf(" 16: stp_val: %s\n",
emm_rsp_sts.s.stp_val ? "yes" : "no");
printf(" 15: rsp_timeout: %s\n",
emm_rsp_sts.s.rsp_timeout ? "yes" : "no");
printf(" 14: rsp_crc_err: %s\n",
emm_rsp_sts.s.rsp_crc_err ? "yes" : "no");
printf(" 13: rsp_bad_sts: %s\n",
emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no");
printf(" 12: rsp_val: %s\n",
emm_rsp_sts.s.rsp_val ? "yes" : "no");
printf(" 9-11: rsp_type: %s\n",
rtype_xor_str[emm_rsp_sts.s.rsp_type]);
printf(" 7-8: cmd_type: %s\n",
ctype_xor_str[emm_rsp_sts.s.cmd_type]);
printf(" 1-6: cmd_idx: %u\n",
emm_rsp_sts.s.cmd_idx);
printf(" 0: cmd_done: %s\n",
emm_rsp_sts.s.cmd_done ? "yes" : "no");
#endif
}
static inline u64 read_csr(struct mmc *mmc, u64 reg)
{
const struct octeontx_mmc_host *host = mmc_to_host(mmc);
u64 value = readq(host->base_addr + reg);
#ifdef DEBUG_CSR
printf(" %s: %s(0x%p) => 0x%llx\n", __func__,
mmc_reg_str(reg), host->base_addr + reg,
value);
#endif
return value;
}
/**
* Writes to a CSR register
*
* @param[in] mmc pointer to mmc data structure
* @param reg register offset
* @param value value to write to register
*/
static inline void write_csr(struct mmc *mmc, u64 reg, u64 value)
{
const struct octeontx_mmc_host *host = mmc_to_host(mmc);
void *addr = host->base_addr + reg;
#ifdef DEBUG_CSR
printf(" %s: %s(0x%p) <= 0x%llx\n", __func__, mmc_reg_str(reg),
addr, value);
#endif
writeq(value, addr);
}
#ifdef DEBUG
static void mmc_print_status(u32 status)
{
#ifdef DEBUG_STATUS
static const char * const state[] = {
"Idle", /* 0 */
"Ready", /* 1 */
"Ident", /* 2 */
"Standby", /* 3 */
"Tran", /* 4 */
"Data", /* 5 */
"Receive", /* 6 */
"Program", /* 7 */
"Dis", /* 8 */
"Btst", /* 9 */
"Sleep", /* 10 */
"reserved", /* 11 */
"reserved", /* 12 */
"reserved", /* 13 */
"reserved", /* 14 */
"reserved" /* 15 */ };
if (status & R1_APP_CMD)
puts("MMC ACMD\n");
if (status & R1_SWITCH_ERROR)
puts("MMC switch error\n");
if (status & R1_READY_FOR_DATA)
puts("MMC ready for data\n");
printf("MMC %s state\n", state[R1_CURRENT_STATE(status)]);
if (status & R1_ERASE_RESET)
puts("MMC erase reset\n");
if (status & R1_WP_ERASE_SKIP)
puts("MMC partial erase due to write protected blocks\n");
if (status & R1_CID_CSD_OVERWRITE)
puts("MMC CID/CSD overwrite error\n");
if (status & R1_ERROR)
puts("MMC undefined device error\n");
if (status & R1_CC_ERROR)
puts("MMC device error\n");
if (status & R1_CARD_ECC_FAILED)
puts("MMC internal ECC failed to correct data\n");
if (status & R1_ILLEGAL_COMMAND)
puts("MMC illegal command\n");
if (status & R1_COM_CRC_ERROR)
puts("MMC CRC of previous command failed\n");
if (status & R1_LOCK_UNLOCK_FAILED)
puts("MMC sequence or password error in lock/unlock device command\n");
if (status & R1_CARD_IS_LOCKED)
puts("MMC device locked by host\n");
if (status & R1_WP_VIOLATION)
puts("MMC attempt to program write protected block\n");
if (status & R1_ERASE_PARAM)
puts("MMC invalid selection of erase groups for erase\n");
if (status & R1_ERASE_SEQ_ERROR)
puts("MMC error in sequence of erase commands\n");
if (status & R1_BLOCK_LEN_ERROR)
puts("MMC block length error\n");
if (status & R1_ADDRESS_ERROR)
puts("MMC address misalign error\n");
if (status & R1_OUT_OF_RANGE)
puts("MMC address out of range\n");
#endif
}
#endif
/**
* Print out all of the register values where mmc is optional
*
* @param mmc MMC device (can be NULL)
* @param host Pointer to host data structure (can be NULL if mmc is !NULL)
*/
static void octeontx_mmc_print_registers2(struct mmc *mmc,
struct octeontx_mmc_host *host)
{
struct octeontx_mmc_slot *slot = mmc ? mmc->priv : NULL;
union mio_emm_dma_cfg emm_dma_cfg;
union mio_emm_dma_adr emm_dma_adr;
union mio_emm_dma_int emm_dma_int;
union mio_emm_cfg emm_cfg;
union mio_emm_modex emm_mode;
union mio_emm_switch emm_switch;
union mio_emm_dma emm_dma;
union mio_emm_cmd emm_cmd;
union mio_emm_rsp_sts emm_rsp_sts;
union mio_emm_rsp_lo emm_rsp_lo;
union mio_emm_rsp_hi emm_rsp_hi;
union mio_emm_int emm_int;
union mio_emm_wdog emm_wdog;
union mio_emm_sample emm_sample;
union mio_emm_calb emm_calb;
union mio_emm_tap emm_tap;
union mio_emm_timing emm_timing;
union mio_emm_io_ctl io_ctl;
union mio_emm_debug emm_debug;
union mio_emm_sts_mask emm_sts_mask;
union mio_emm_rca emm_rca;
int bus;
static const char * const bus_width_str[] = {
"1-bit data bus (power on)",
"4-bit data bus",
"8-bit data bus",
"reserved (3)",
"reserved (4)",
"4-bit data bus (dual data rate)",
"8-bit data bus (dual data rate)",
"reserved (7)",
"reserved (8)",
"invalid (9)",
"invalid (10)",
"invalid (11)",
"invalid (12)",
"invalid (13)",
"invalid (14)",
"invalid (15)",
};
static const char * const ctype_xor_str[] = {
"No data",
"Read data into Dbuf",
"Write data from Dbuf",
"Reserved"
};
static const char * const rtype_xor_str[] = {
"No response",
"R1, 48 bits",
"R2, 136 bits",
"R3, 48 bits",
"R4, 48 bits",
"R5, 48 bits",
"Reserved 6",
"Reserved 7"
};
if (!host && mmc)
host = mmc_to_host(mmc);
if (mmc)
printf("%s: bus id: %u\n", __func__, slot->bus_id);
emm_dma_cfg.u = readq(host->base_addr + MIO_EMM_DMA_CFG());
printf("MIO_EMM_DMA_CFG: 0x%016llx\n",
emm_dma_cfg.u);
printf(" 63: en: %s\n",
emm_dma_cfg.s.en ? "enabled" : "disabled");
printf(" 62: rw: %s\n",
emm_dma_cfg.s.rw ? "write" : "read");
printf(" 61: clr: %s\n",
emm_dma_cfg.s.clr ? "clear" : "not clear");
printf(" 59: swap32: %s\n",
emm_dma_cfg.s.swap32 ? "yes" : "no");
printf(" 58: swap16: %s\n",
emm_dma_cfg.s.swap16 ? "yes" : "no");
printf(" 57: swap8: %s\n",
emm_dma_cfg.s.swap8 ? "yes" : "no");
printf(" 56: endian: %s\n",
emm_dma_cfg.s.endian ? "little" : "big");
printf(" 36-55: size: %u\n",
emm_dma_cfg.s.size);
emm_dma_adr.u = readq(host->base_addr + MIO_EMM_DMA_ADR());
printf("MIO_EMM_DMA_ADR: 0x%016llx\n", emm_dma_adr.u);
printf(" 0-49: adr: 0x%llx\n",
(u64)emm_dma_adr.s.adr);
emm_dma_int.u = readq(host->base_addr + MIO_EMM_DMA_INT());
printf("\nMIO_EMM_DMA_INT: 0x%016llx\n",
emm_dma_int.u);
printf(" 1: FIFO: %s\n",
emm_dma_int.s.fifo ? "yes" : "no");
printf(" 0: Done: %s\n",
emm_dma_int.s.done ? "yes" : "no");
emm_cfg.u = readq(host->base_addr + MIO_EMM_CFG());
printf("\nMIO_EMM_CFG: 0x%016llx\n",
emm_cfg.u);
printf(" 3: bus_ena3: %s\n",
emm_cfg.s.bus_ena & 0x08 ? "yes" : "no");
printf(" 2: bus_ena2: %s\n",
emm_cfg.s.bus_ena & 0x04 ? "yes" : "no");
printf(" 1: bus_ena1: %s\n",
emm_cfg.s.bus_ena & 0x02 ? "yes" : "no");
printf(" 0: bus_ena0: %s\n",
emm_cfg.s.bus_ena & 0x01 ? "yes" : "no");
for (bus = 0; bus < 4; bus++) {
emm_mode.u = readq(host->base_addr + MIO_EMM_MODEX(bus));
printf("\nMIO_EMM_MODE%u: 0x%016llx\n",
bus, emm_mode.u);
if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
printf(" 50: hs400_timing: %s\n",
emm_mode.s.hs400_timing ? "yes" : "no");
printf(" 49: hs200_timing: %s\n",
emm_mode.s.hs200_timing ? "yes" : "no");
}
printf(" 48: hs_timing: %s\n",
emm_mode.s.hs_timing ? "yes" : "no");
printf(" 40-42: bus_width: %s\n",
bus_width_str[emm_mode.s.bus_width]);
printf(" 32-35: power_class %u\n",
emm_mode.s.power_class);
printf(" 16-31: clk_hi: %u\n",
emm_mode.s.clk_hi);
printf(" 0-15: clk_lo: %u\n",
emm_mode.s.clk_lo);
}
emm_switch.u = readq(host->base_addr + MIO_EMM_SWITCH());
printf("\nMIO_EMM_SWITCH: 0x%016llx\n", emm_switch.u);
printf(" 60-61: bus_id: %u\n", emm_switch.s.bus_id);
printf(" 59: switch_exe: %s\n",
emm_switch.s.switch_exe ? "yes" : "no");
printf(" 58: switch_err0: %s\n",
emm_switch.s.switch_err0 ? "yes" : "no");
printf(" 57: switch_err1: %s\n",
emm_switch.s.switch_err1 ? "yes" : "no");
printf(" 56: switch_err2: %s\n",
emm_switch.s.switch_err2 ? "yes" : "no");
printf(" 48: hs_timing: %s\n",
emm_switch.s.hs_timing ? "yes" : "no");
printf(" 42-40: bus_width: %s\n",
bus_width_str[emm_switch.s.bus_width]);
printf(" 32-35: power_class: %u\n",
emm_switch.s.power_class);
printf(" 16-31: clk_hi: %u\n",
emm_switch.s.clk_hi);
printf(" 0-15: clk_lo: %u\n", emm_switch.s.clk_lo);
emm_dma.u = readq(host->base_addr + MIO_EMM_DMA());
printf("\nMIO_EMM_DMA: 0x%016llx\n", emm_dma.u);
printf(" 60-61: bus_id: %u\n", emm_dma.s.bus_id);
printf(" 59: dma_val: %s\n",
emm_dma.s.dma_val ? "yes" : "no");
printf(" 58: sector: %s mode\n",
emm_dma.s.sector ? "sector" : "byte");
printf(" 57: dat_null: %s\n",
emm_dma.s.dat_null ? "yes" : "no");
printf(" 51-56: thres: %u\n", emm_dma.s.thres);
printf(" 50: rel_wr: %s\n",
emm_dma.s.rel_wr ? "yes" : "no");
printf(" 49: rw: %s\n",
emm_dma.s.rw ? "write" : "read");
printf(" 48: multi: %s\n",
emm_dma.s.multi ? "yes" : "no");
printf(" 32-47: block_cnt: %u\n",
emm_dma.s.block_cnt);
printf(" 0-31: card_addr: 0x%x\n",
emm_dma.s.card_addr);
emm_cmd.u = readq(host->base_addr + MIO_EMM_CMD());
printf("\nMIO_EMM_CMD: 0x%016llx\n", emm_cmd.u);
printf("\n 62: skip_busy: %s\n",
emm_cmd.s.skip_busy ? "yes" : "no");
printf(" 60-61: bus_id: %u\n", emm_cmd.s.bus_id);
printf(" 59: cmd_val: %s\n",
emm_cmd.s.cmd_val ? "yes" : "no");
printf(" 55: dbuf: %u\n", emm_cmd.s.dbuf);
printf(" 49-54: offset: %u\n", emm_cmd.s.offset);
printf(" 41-42: ctype_xor: %s\n",
ctype_xor_str[emm_cmd.s.ctype_xor]);
printf(" 38-40: rtype_xor: %s\n",
rtype_xor_str[emm_cmd.s.rtype_xor]);
printf(" 32-37: cmd_idx: %u\n", emm_cmd.s.cmd_idx);
printf(" 0-31: arg: 0x%x\n", emm_cmd.s.arg);
emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS());
printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u);
printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id);
printf(" 59: cmd_val: %s\n",
emm_rsp_sts.s.cmd_val ? "yes" : "no");
printf(" 58: switch_val: %s\n",
emm_rsp_sts.s.switch_val ? "yes" : "no");
printf(" 57: dma_val: %s\n",
emm_rsp_sts.s.dma_val ? "yes" : "no");
printf(" 56: dma_pend: %s\n",
emm_rsp_sts.s.dma_pend ? "yes" : "no");
printf(" 28: dbuf_err: %s\n",
emm_rsp_sts.s.dbuf_err ? "yes" : "no");
printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf);
printf(" 22: blk_timeout: %s\n",
emm_rsp_sts.s.blk_timeout ? "yes" : "no");
printf(" 21: blk_crc_err: %s\n",
emm_rsp_sts.s.blk_crc_err ? "yes" : "no");
printf(" 20: rsp_busybit: %s\n",
emm_rsp_sts.s.rsp_busybit ? "yes" : "no");
printf(" 19: stp_timeout: %s\n",
emm_rsp_sts.s.stp_timeout ? "yes" : "no");
printf(" 18: stp_crc_err: %s\n",
emm_rsp_sts.s.stp_crc_err ? "yes" : "no");
printf(" 17: stp_bad_sts: %s\n",
emm_rsp_sts.s.stp_bad_sts ? "yes" : "no");
printf(" 16: stp_val: %s\n",
emm_rsp_sts.s.stp_val ? "yes" : "no");
printf(" 15: rsp_timeout: %s\n",
emm_rsp_sts.s.rsp_timeout ? "yes" : "no");
printf(" 14: rsp_crc_err: %s\n",
emm_rsp_sts.s.rsp_crc_err ? "yes" : "no");
printf(" 13: rsp_bad_sts: %s\n",
emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no");
printf(" 12: rsp_val: %s\n",
emm_rsp_sts.s.rsp_val ? "yes" : "no");
printf(" 9-11: rsp_type: %s\n",
rtype_xor_str[emm_rsp_sts.s.rsp_type]);
printf(" 7-8: cmd_type: %s\n",
ctype_xor_str[emm_rsp_sts.s.cmd_type]);
printf(" 1-6: cmd_idx: %u\n",
emm_rsp_sts.s.cmd_idx);
printf(" 0: cmd_done: %s\n",
emm_rsp_sts.s.cmd_done ? "yes" : "no");
emm_rsp_lo.u = readq(host->base_addr + MIO_EMM_RSP_LO());
printf("\nMIO_EMM_RSP_STS_LO: 0x%016llx\n", emm_rsp_lo.u);
emm_rsp_hi.u = readq(host->base_addr + MIO_EMM_RSP_HI());
printf("\nMIO_EMM_RSP_STS_HI: 0x%016llx\n", emm_rsp_hi.u);
emm_int.u = readq(host->base_addr + MIO_EMM_INT());
printf("\nMIO_EMM_INT: 0x%016llx\n", emm_int.u);
printf(" 6: switch_err: %s\n",
emm_int.s.switch_err ? "yes" : "no");
printf(" 5: switch_done: %s\n",
emm_int.s.switch_done ? "yes" : "no");
printf(" 4: dma_err: %s\n",
emm_int.s.dma_err ? "yes" : "no");
printf(" 3: cmd_err: %s\n",
emm_int.s.cmd_err ? "yes" : "no");
printf(" 2: dma_done: %s\n",
emm_int.s.dma_done ? "yes" : "no");
printf(" 1: cmd_done: %s\n",
emm_int.s.cmd_done ? "yes" : "no");
printf(" 0: buf_done: %s\n",
emm_int.s.buf_done ? "yes" : "no");
emm_wdog.u = readq(host->base_addr + MIO_EMM_WDOG());
printf("\nMIO_EMM_WDOG: 0x%016llx (%u)\n",
emm_wdog.u, emm_wdog.s.clk_cnt);
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
emm_sample.u = readq(host->base_addr + MIO_EMM_SAMPLE());
printf("\nMIO_EMM_SAMPLE: 0x%016llx\n",
emm_sample.u);
printf(" 16-25: cmd_cnt: %u\n",
emm_sample.s.cmd_cnt);
printf(" 0-9: dat_cnt: %u\n",
emm_sample.s.dat_cnt);
}
emm_sts_mask.u = readq(host->base_addr + MIO_EMM_STS_MASK());
printf("\nMIO_EMM_STS_MASK: 0x%016llx\n", emm_sts_mask.u);
emm_rca.u = readq(host->base_addr + MIO_EMM_RCA());
printf("\nMIO_EMM_RCA: 0x%016llx\n", emm_rca.u);
printf(" 0-15: card_rca: 0x%04x\n",
emm_rca.s.card_rca);
if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
emm_calb.u = readq(host->base_addr + MIO_EMM_CALB());
printf("\nMIO_EMM_CALB: 0x%016llx\n",
emm_calb.u);
printf(" 0: start: %u\n",
emm_calb.s.start);
emm_tap.u = readq(host->base_addr + MIO_EMM_TAP());
printf("\nMIO_EMM_TAP: 0x%016llx\n",
emm_tap.u);
printf(" 7-0: delay: %u\n", emm_tap.s.delay);
emm_timing.u = readq(host->base_addr + MIO_EMM_TIMING());
printf("\nMIO_EMM_TIMING: 0x%016llx\n",
emm_timing.u);
printf(" 53-48: cmd_in_tap: %u\n",
emm_timing.s.cmd_in_tap);
printf(" 37-32: cmd_out_tap: %u\n",
emm_timing.s.cmd_out_tap);
printf(" 21-16: data_in_tap: %u\n",
emm_timing.s.data_in_tap);
printf(" 5-0: data_out_tap: %u\n",
emm_timing.s.data_out_tap);
io_ctl.u = readq(host->base_addr + MIO_EMM_IO_CTL());
printf("\nMIO_IO_CTL: 0x%016llx\n", io_ctl.u);
printf(" 3-2: drive: %u (%u mA)\n",
io_ctl.s.drive, 2 << io_ctl.s.drive);
printf(" 0: slew: %u %s\n", io_ctl.s.slew,
io_ctl.s.slew ? "high" : "low");
emm_debug.u = readq(host->base_addr + MIO_EMM_DEBUG());
printf("\nMIO_EMM_DEBUG: 0x%016llx\n",
emm_debug.u);
printf(" 21: rdsync_rst 0x%x\n",
emm_debug.s.rdsync_rst);
printf(" 20: emmc_clk_disable 0x%x\n",
emm_debug.s.emmc_clk_disable);
printf(" 19-16: dma_sm: 0x%x\n",
emm_debug.s.dma_sm);
printf(" 15-12: data_sm: 0x%x\n",
emm_debug.s.data_sm);
printf(" 11-8: cmd_sm: 0x%x\n",
emm_debug.s.cmd_sm);
printf(" 0: clk_on: 0x%x\n",
emm_debug.s.clk_on);
}
puts("\n");
}
/**
* Print out all of the register values
*
* @param mmc MMC device
*/
static void octeontx_mmc_print_registers(struct mmc *mmc)
{
#ifdef DEBUG_REGISTERS
const int print = 1;
#else
const int print = 0;
#endif
if (print)
octeontx_mmc_print_registers2(mmc, mmc_to_host(mmc));
}
static const struct octeontx_sd_mods octeontx_cr_types[] = {
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD0 */
{ {0, 3}, {0, 3}, {0, 0} }, /* CMD1 */
{ {0, 2}, {0, 2}, {0, 0} }, /* CMD2 */
{ {0, 1}, {0, 3}, {0, 0} }, /* CMD3 SD_CMD_SEND_RELATIVE_ADDR 0, 2 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD4 */
{ {0, 1}, {0, 1}, {0, 0} }, /* CMD5 */
{ {0, 1}, {1, 1}, {0, 1} }, /*
* CMD6 SD_CMD_SWITCH_FUNC 1,0
* (ACMD) SD_APP_SET_BUS_WIDTH
*/
{ {0, 1}, {0, 1}, {0, 0} }, /* CMD7 */
{ {1, 1}, {0, 3}, {0, 0} }, /* CMD8 SD_CMD_SEND_IF_COND 1,2 */
{ {0, 2}, {0, 2}, {0, 0} }, /* CMD9 */
{ {0, 2}, {0, 2}, {0, 0} }, /* CMD10 */
{ {1, 1}, {0, 1}, {1, 1} }, /* CMD11 SD_CMD_SWITCH_UHS18V 1,0 */
{ {0, 1}, {0, 1}, {0, 0} }, /* CMD12 */
{ {0, 1}, {0, 1}, {1, 3} }, /* CMD13 (ACMD)) SD_CMD_APP_SD_STATUS 1,2 */
{ {1, 1}, {1, 1}, {0, 0} }, /* CMD14 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD15 */
{ {0, 1}, {0, 1}, {0, 0} }, /* CMD16 */
{ {1, 1}, {1, 1}, {0, 0} }, /* CMD17 */
{ {1, 1}, {1, 1}, {0, 0} }, /* CMD18 */
{ {3, 1}, {3, 1}, {0, 0} }, /* CMD19 */
{ {2, 1}, {0, 0}, {0, 0} }, /* CMD20 */ /* SD 2,0 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD21 */
{ {0, 0}, {0, 0}, {1, 1} }, /* CMD22 (ACMD) SD_APP_SEND_NUM_WR_BLKS 1,0 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD23 */ /* SD ACMD 1,0 */
{ {2, 1}, {2, 1}, {2, 1} }, /* CMD24 */
{ {2, 1}, {2, 1}, {2, 1} }, /* CMD25 */
{ {2, 1}, {2, 1}, {2, 1} }, /* CMD26 */
{ {2, 1}, {2, 1}, {2, 1} }, /* CMD27 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD28 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD29 */
{ {1, 1}, {1, 1}, {1, 1} }, /* CMD30 */
{ {1, 1}, {1, 1}, {1, 1} }, /* CMD31 */
{ {0, 0}, {0, 1}, {0, 0} }, /* CMD32 SD_CMD_ERASE_WR_BLK_START 0,1 */
{ {0, 0}, {0, 1}, {0, 0} }, /* CMD33 SD_CMD_ERASE_WR_BLK_END 0,1 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD34 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD35 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD36 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD37 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD38 */
{ {0, 4}, {0, 4}, {0, 4} }, /* CMD39 */
{ {0, 5}, {0, 5}, {0, 5} }, /* CMD40 */
{ {0, 0}, {0, 0}, {0, 3} }, /* CMD41 (ACMD) SD_CMD_APP_SEND_OP_COND 0,3 */
{ {2, 1}, {2, 1}, {2, 1} }, /* CMD42 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD43 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD44 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD45 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD46 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD47 */
{ {0, 0}, {1, 0}, {0, 0} }, /* CMD48 SD_CMD_READ_EXTR_SINGLE */
{ {0, 0}, {2, 0}, {0, 0} }, /* CMD49 SD_CMD_WRITE_EXTR_SINGLE */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD50 */
{ {0, 0}, {0, 0}, {1, 1} }, /* CMD51 (ACMD) SD_CMD_APP_SEND_SCR 1,1 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD52 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD53 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD54 */
{ {0, 1}, {0, 1}, {0, 1} }, /* CMD55 */
{ {0xff, 0xff}, {0xff, 0xff}, {0xff, 0xff} }, /* CMD56 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD57 */
{ {0, 0}, {0, 3}, {0, 3} }, /* CMD58 SD_CMD_SPI_READ_OCR 0,3 */
{ {0, 0}, {0, 1}, {0, 0} }, /* CMD59 SD_CMD_SPI_CRC_ON_OFF 0,1 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD60 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD61 */
{ {0, 0}, {0, 0}, {0, 0} }, /* CMD62 */
{ {0, 0}, {0, 0}, {0, 0} } /* CMD63 */
};
/**
* Returns XOR values needed for SD commands and other quirks
*
* @param mmc mmc device
* @param cmd command information
*
* @return octeontx_mmc_cr_mods data structure with various quirks and flags
*/
static struct octeontx_mmc_cr_mods
octeontx_mmc_get_cr_mods(struct mmc *mmc, const struct mmc_cmd *cmd,
const struct mmc_data *data)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_cr_mods cr = {0, 0};
const struct octeontx_sd_mods *sdm =
&octeontx_cr_types[cmd->cmdidx & 0x3f];
u8 c = sdm->mmc.c, r = sdm->mmc.r;
u8 desired_ctype = 0;
if (IS_MMC(mmc)) {
#ifdef MMC_SUPPORTS_TUNING
if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
if (cmd->resp_type == MMC_RSP_R1)
cr.rtype_xor = 1;
if (data && data->flags & MMC_DATA_READ)
cr.ctype_xor = 1;
}
#endif
return cr;
}
if (cmd->cmdidx == 56)
c = (cmd->cmdarg & 1) ? 1 : 2;
if (data) {
if (data->flags & MMC_DATA_READ)
desired_ctype = 1;
else if (data->flags & MMC_DATA_WRITE)
desired_ctype = 2;
}
cr.ctype_xor = c ^ desired_ctype;
if (slot->is_acmd)
cr.rtype_xor = r ^ sdm->sdacmd.r;
else
cr.rtype_xor = r ^ sdm->sd.r;
debug("%s(%s): mmc c: %d, mmc r: %d, desired c: %d, xor c: %d, xor r: %d\n",
__func__, mmc->dev->name, c, r, desired_ctype,
cr.ctype_xor, cr.rtype_xor);
return cr;
}
/**
* Keep track of switch commands internally
*/
static void octeontx_mmc_track_switch(struct mmc *mmc, u32 cmd_arg)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
u8 how = (cmd_arg >> 24) & 3;
u8 where = (u8)(cmd_arg >> 16);
u8 val = (u8)(cmd_arg >> 8);
slot->want_switch = slot->cached_switch;
if (slot->is_acmd)
return;
if (how != 3)
return;
switch (where) {
case EXT_CSD_BUS_WIDTH:
slot->want_switch.s.bus_width = val;
break;
case EXT_CSD_POWER_CLASS:
slot->want_switch.s.power_class = val;
break;
case EXT_CSD_HS_TIMING:
slot->want_switch.s.hs_timing = 0;
slot->want_switch.s.hs200_timing = 0;
slot->want_switch.s.hs400_timing = 0;
switch (val & 0xf) {
case 0:
break;
case 1:
slot->want_switch.s.hs_timing = 1;
break;
case 2:
if (!slot->is_asim && !slot->is_emul)
slot->want_switch.s.hs200_timing = 1;
break;
case 3:
if (!slot->is_asim && !slot->is_emul)
slot->want_switch.s.hs400_timing = 1;
break;
default:
pr_err("%s(%s): Unsupported timing mode 0x%x\n",
__func__, mmc->dev->name, val & 0xf);
break;
}
break;
default:
break;
}
}
static int octeontx_mmc_print_rsp_errors(struct mmc *mmc,
union mio_emm_rsp_sts rsp_sts)
{
bool err = false;
const char *name = mmc->dev->name;
if (rsp_sts.s.acc_timeout) {
pr_warn("%s(%s): acc_timeout\n", __func__, name);
err = true;
}
if (rsp_sts.s.dbuf_err) {
pr_warn("%s(%s): dbuf_err\n", __func__, name);
err = true;
}
if (rsp_sts.s.blk_timeout) {
pr_warn("%s(%s): blk_timeout\n", __func__, name);
err = true;
}
if (rsp_sts.s.blk_crc_err) {
pr_warn("%s(%s): blk_crc_err\n", __func__, name);
err = true;
}
if (rsp_sts.s.stp_timeout) {
pr_warn("%s(%s): stp_timeout\n", __func__, name);
err = true;
}
if (rsp_sts.s.stp_crc_err) {
pr_warn("%s(%s): stp_crc_err\n", __func__, name);
err = true;
}
if (rsp_sts.s.stp_bad_sts) {
pr_warn("%s(%s): stp_bad_sts\n", __func__, name);
err = true;
}
if (err)
pr_warn(" rsp_sts: 0x%llx\n", rsp_sts.u);
return err ? -1 : 0;
}
/**
* Starts a DMA operation for block read/write
*
* @param mmc mmc device
* @param write true if write operation
* @param clear true to clear DMA operation
* @param adr source or destination DMA address
* @param size size in blocks
* @param timeout timeout in ms
*/
static void octeontx_mmc_start_dma(struct mmc *mmc, bool write,
bool clear, u32 block, dma_addr_t adr,
u32 size, int timeout)
{
const struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_dma_cfg emm_dma_cfg;
union mio_emm_dma_adr emm_dma_adr;
union mio_emm_dma emm_dma;
/* Clear any interrupts */
write_csr(mmc, MIO_EMM_DMA_INT(),
read_csr(mmc, MIO_EMM_DMA_INT()));
emm_dma_cfg.u = 0;
emm_dma_cfg.s.en = 1;
emm_dma_cfg.s.rw = !!write;
emm_dma_cfg.s.clr = !!clear;
emm_dma_cfg.s.size = ((u64)(size * mmc->read_bl_len) / 8) - 1;
#if __BYTE_ORDER != __BIG_ENDIAN
emm_dma_cfg.s.endian = 1;
#endif
emm_dma_adr.u = 0;
emm_dma_adr.s.adr = adr;
write_csr(mmc, MIO_EMM_DMA_ADR(), emm_dma_adr.u);
write_csr(mmc, MIO_EMM_DMA_CFG(), emm_dma_cfg.u);
emm_dma.u = 0;
emm_dma.s.bus_id = slot->bus_id;
emm_dma.s.dma_val = 1;
emm_dma.s.rw = !!write;
emm_dma.s.sector = mmc->high_capacity ? 1 : 0;
if (size > 1 && ((IS_SD(mmc) && (mmc->scr[0] & 2)) || !IS_SD(mmc)))
emm_dma.s.multi = 1;
else
emm_dma.s.multi = 0;
emm_dma.s.block_cnt = size;
if (!mmc->high_capacity)
block *= mmc->read_bl_len;
emm_dma.s.card_addr = block;
debug("%s(%s): card address: 0x%x, size: %d, multi: %d\n",
__func__, mmc->dev->name, block, size, emm_dma.s.multi);
if (timeout > 0)
timeout = (timeout * 1000) - 1000;
set_wdog(mmc, timeout);
debug(" Writing 0x%llx to mio_emm_dma\n", emm_dma.u);
write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
}
/**
* Waits for a DMA operation to complete
*
* @param mmc mmc device
* @param timeout timeout in ms
*
* @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout
*/
/**
* Cleanup DMA engine after a failure
*
* @param mmc mmc device
* @param rsp_sts rsp status
*/
static void octeontx_mmc_cleanup_dma(struct mmc *mmc,
union mio_emm_rsp_sts rsp_sts)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_dma emm_dma;
ulong start;
int retries = 3;
do {
debug("%s(%s): rsp_sts: 0x%llx, rsp_lo: 0x%llx, dma_int: 0x%llx\n",
__func__, mmc->dev->name, rsp_sts.u,
read_csr(mmc, MIO_EMM_RSP_LO()),
read_csr(mmc, MIO_EMM_DMA_INT()));
emm_dma.u = read_csr(mmc, MIO_EMM_DMA());
emm_dma.s.dma_val = 1;
emm_dma.s.dat_null = 1;
emm_dma.s.bus_id = slot->bus_id;
write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
start = get_timer(0);
do {
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
WATCHDOG_RESET();
} while (get_timer(start) < 100 &&
(rsp_sts.s.dma_val || rsp_sts.s.dma_pend));
} while (retries-- >= 0 && rsp_sts.s.dma_pend);
if (rsp_sts.s.dma_val)
pr_err("%s(%s): Error: could not clean up DMA. RSP_STS: 0x%llx, RSP_LO: 0x%llx\n",
__func__, mmc->dev->name, rsp_sts.u,
read_csr(mmc, MIO_EMM_RSP_LO()));
debug(" rsp_sts after clearing up DMA: 0x%llx\n",
read_csr(mmc, MIO_EMM_RSP_STS()));
}
/**
* Waits for a DMA operation to complete
*
* @param mmc mmc device
* @param timeout timeout in ms
* @param verbose true to print out error information
*
* @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout
* or -EIO if IO error.
*/
static int octeontx_mmc_wait_dma(struct mmc *mmc, bool write, ulong timeout,
bool verbose)
{
struct octeontx_mmc_host *host = mmc_to_host(mmc);
ulong start_time = get_timer(0);
union mio_emm_dma_int emm_dma_int;
union mio_emm_rsp_sts rsp_sts;
union mio_emm_dma emm_dma;
bool timed_out = false;
bool err = false;
debug("%s(%s, %lu, %d), delay: %uus\n", __func__, mmc->dev->name,
timeout, verbose, host->dma_wait_delay);
udelay(host->dma_wait_delay);
do {
emm_dma_int.u = read_csr(mmc, MIO_EMM_DMA_INT());
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (write) {
if ((rsp_sts.s.dma_pend && !rsp_sts.s.dma_val) ||
rsp_sts.s.blk_timeout ||
rsp_sts.s.stp_timeout ||
rsp_sts.s.rsp_timeout) {
err = true;
#ifdef DEBUG
debug("%s: f1\n", __func__);
octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
#endif
break;
}
} else {
if (rsp_sts.s.blk_crc_err ||
(rsp_sts.s.dma_pend && !rsp_sts.s.dma_val)) {
err = true;
#if defined(DEBUG)
octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
#endif
break;
}
}
if (rsp_sts.s.dma_pend) {
/*
* If this is set then an error has occurred.
* Try and restart the DMA operation.
*/
emm_dma.u = read_csr(mmc, MIO_EMM_DMA());
if (verbose) {
pr_err("%s(%s): DMA pending error: rsp_sts: 0x%llx, dma_int: 0x%llx, emm_dma: 0x%llx\n",
__func__, mmc->dev->name, rsp_sts.u,
emm_dma_int.u, emm_dma.u);
octeontx_print_rsp_sts(mmc);
debug(" MIO_EMM_DEBUG: 0x%llx\n",
read_csr(mmc, MIO_EMM_DEBUG()));
pr_err("%s: Trying DMA resume...\n", __func__);
}
emm_dma.s.dma_val = 1;
emm_dma.s.dat_null = 1;
write_csr(mmc, MIO_EMM_DMA(), emm_dma.u);
udelay(10);
} else if (!rsp_sts.s.dma_val && emm_dma_int.s.done) {
break;
}
WATCHDOG_RESET();
timed_out = (get_timer(start_time) > timeout);
} while (!timed_out);
if (timed_out || err) {
if (verbose) {
pr_err("%s(%s): MMC DMA %s after %lu ms, rsp_sts: 0x%llx, dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
__func__, mmc->dev->name,
timed_out ? "timed out" : "error",
get_timer(start_time), rsp_sts.u,
emm_dma_int.u,
read_csr(mmc, MIO_EMM_RSP_LO()),
read_csr(mmc, MIO_EMM_DMA()));
octeontx_print_rsp_sts(mmc);
}
if (rsp_sts.s.dma_pend)
octeontx_mmc_cleanup_dma(mmc, rsp_sts);
} else {
write_csr(mmc, MIO_EMM_DMA_INT(),
read_csr(mmc, MIO_EMM_DMA_INT()));
}
return timed_out ? -ETIMEDOUT : (err ? -EIO : 0);
}
/**
* Read blocks from the MMC/SD device
*
* @param mmc mmc device
* @param cmd command
* @param data data for read
* @param verbose true to print out error information
*
* @return number of blocks read or 0 if error
*/
static int octeontx_mmc_read_blocks(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data, bool verbose)
{
struct octeontx_mmc_host *host = mmc_to_host(mmc);
union mio_emm_rsp_sts rsp_sts;
dma_addr_t dma_addr = (dma_addr_t)dm_pci_virt_to_mem(host->dev,
data->dest);
ulong count;
ulong blkcnt = data->blocks;
ulong start = cmd->cmdarg;
int timeout = 1000 + blkcnt * 20;
bool timed_out = false;
bool multi_xfer = cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK;
debug("%s(%s): dest: %p, dma address: 0x%llx, blkcnt: %lu, start: %lu\n",
__func__, mmc->dev->name, data->dest, dma_addr, blkcnt, start);
debug("%s: rsp_sts: 0x%llx\n", __func__,
read_csr(mmc, MIO_EMM_RSP_STS()));
/* use max timeout for multi-block transfers */
/* timeout = 0; */
/*
* If we have a valid SD card in the slot, we set the response bit
* mask to check for CRC errors and timeouts only.
* Otherwise, use the default power on reset value.
*/
write_csr(mmc, MIO_EMM_STS_MASK(),
IS_SD(mmc) ? 0x00b00000ull : 0xe4390080ull);
invalidate_dcache_range((u64)data->dest,
(u64)data->dest + blkcnt * data->blocksize);
if (multi_xfer) {
octeontx_mmc_start_dma(mmc, false, false, start, dma_addr,
blkcnt, timeout);
timed_out = !!octeontx_mmc_wait_dma(mmc, false, timeout,
verbose);
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) {
if (!verbose)
return 0;
pr_err("%s(%s): Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n",
__func__, mmc->dev->name, rsp_sts.u,
read_csr(mmc, MIO_EMM_INT()),
read_csr(mmc, MIO_EMM_DMA_INT()),
read_csr(mmc, MIO_EMM_RSP_LO()));
pr_err("%s: block count: %lu, start: 0x%lx\n",
__func__, blkcnt, start);
octeontx_mmc_print_registers(mmc);
return 0;
}
} else {
count = blkcnt;
timeout = 1000;
do {
octeontx_mmc_start_dma(mmc, false, false, start,
dma_addr, 1, timeout);
dma_addr += mmc->read_bl_len;
start++;
timed_out = !!octeontx_mmc_wait_dma(mmc, false,
timeout, verbose);
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (timed_out || rsp_sts.s.dma_val ||
rsp_sts.s.dma_pend) {
if (verbose) {
pr_err("%s: Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n",
__func__, rsp_sts.u,
read_csr(mmc, MIO_EMM_INT()),
read_csr(mmc, MIO_EMM_DMA_INT()),
read_csr(mmc, MIO_EMM_RSP_LO()));
pr_err("%s: block count: 1, start: 0x%lx\n",
__func__, start);
octeontx_mmc_print_registers(mmc);
}
return blkcnt - count;
}
WATCHDOG_RESET();
} while (--count);
}
#ifdef DEBUG
debug("%s(%s): Read %lu (0x%lx) blocks starting at block %u (0x%x) to address %p (dma address 0x%llx)\n",
__func__, mmc->dev->name, blkcnt, blkcnt,
cmd->cmdarg, cmd->cmdarg, data->dest,
dm_pci_virt_to_mem(host->dev, data->dest));
print_buffer(0, data->dest, 1, 0x200, 0);
#endif
return blkcnt;
}
static int octeontx_mmc_poll_ready(struct mmc *mmc, ulong timeout)
{
ulong start;
struct mmc_cmd cmd;
int err;
bool not_ready = false;
memset(&cmd, 0, sizeof(cmd));
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R1;
start = get_timer(0);
do {
err = octeontx_mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
pr_err("%s(%s): MMC command error: %d; Retry...\n",
__func__, mmc->dev->name, err);
not_ready = true;
} else if (cmd.response[0] & R1_READY_FOR_DATA) {
return 0;
}
WATCHDOG_RESET();
} while (get_timer(start) < timeout);
if (not_ready)
pr_err("%s(%s): MMC command error; Retry timeout\n",
__func__, mmc->dev->name);
return -ETIMEDOUT;
}
static ulong octeontx_mmc_write_blocks(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct octeontx_mmc_host *host = mmc_to_host(mmc);
ulong start = cmd->cmdarg;
ulong blkcnt = data->blocks;
dma_addr_t dma_addr;
union mio_emm_rsp_sts rsp_sts;
union mio_emm_sts_mask emm_sts_mask;
ulong timeout;
int count;
bool timed_out = false;
bool multi_xfer = (blkcnt > 1) &&
((IS_SD(mmc) && mmc->scr[0] & 2) || !IS_SD(mmc));
octeontx_mmc_switch_to(mmc);
emm_sts_mask.u = 0;
emm_sts_mask.s.sts_msk = R1_BLOCK_WRITE_MASK;
write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
if (octeontx_mmc_poll_ready(mmc, 10000)) {
pr_err("%s(%s): Ready timed out\n", __func__, mmc->dev->name);
return 0;
}
flush_dcache_range((u64)data->src,
(u64)data->src + blkcnt * mmc->write_bl_len);
dma_addr = (u64)dm_pci_virt_to_mem(host->dev, (void *)data->src);
if (multi_xfer) {
timeout = 5000 + 100 * blkcnt;
octeontx_mmc_start_dma(mmc, true, false, start, dma_addr,
blkcnt, timeout);
timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout, true);
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) {
pr_err("%s(%s): Error: multi-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
__func__, mmc->dev->name, timeout,
rsp_sts.u,
read_csr(mmc, MIO_EMM_INT()),
read_csr(mmc, MIO_EMM_DMA_INT()),
read_csr(mmc, MIO_EMM_RSP_LO()),
read_csr(mmc, MIO_EMM_DMA()));
return 0;
}
} else {
timeout = 5000;
count = blkcnt;
do {
octeontx_mmc_start_dma(mmc, true, false, start,
dma_addr, 1, timeout);
dma_addr += mmc->read_bl_len;
start++;
timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout,
true);
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (timed_out || rsp_sts.s.dma_val ||
rsp_sts.s.dma_pend) {
pr_err("%s(%s): Error: single-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n",
__func__, mmc->dev->name, timeout,
rsp_sts.u,
read_csr(mmc, MIO_EMM_RSP_STS()),
read_csr(mmc, MIO_EMM_DMA_INT()),
read_csr(mmc, MIO_EMM_RSP_LO()),
read_csr(mmc, MIO_EMM_DMA()));
return blkcnt - count;
}
WATCHDOG_RESET();
} while (--count);
}
return blkcnt;
}
/**
* Send a command to the eMMC/SD device
*
* @param mmc mmc device
* @param cmd cmd to send and response
* @param data additional data
* @param flags
* @return 0 for success, otherwise error
*/
static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
const char *name = slot->dev->name;
struct octeontx_mmc_cr_mods mods = {0, 0};
union mio_emm_rsp_sts rsp_sts;
union mio_emm_cmd emm_cmd;
union mio_emm_rsp_lo rsp_lo;
union mio_emm_buf_idx emm_buf_idx;
union mio_emm_buf_dat emm_buf_dat;
ulong start;
int i;
ulong blkcnt;
/**
* This constant has a 1 bit for each command which should have a short
* timeout and a 0 for each bit with a long timeout. Currently the
* following commands have a long timeout:
* CMD6, CMD17, CMD18, CMD24, CMD25, CMD32, CMD33, CMD35, CMD36 and
* CMD38.
*/
static const u64 timeout_short = 0xFFFFFFA4FCF9FFDFull;
uint timeout;
if (cmd->cmdidx == MMC_CMD_SEND_EXT_CSD) {
union mio_emm_rca emm_rca;
emm_rca.u = 0;
emm_rca.s.card_rca = mmc->rca;
write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
}
if (timeout_short & (1ull << cmd->cmdidx))
timeout = MMC_TIMEOUT_SHORT;
else if (cmd->cmdidx == MMC_CMD_SWITCH && IS_SD(mmc))
timeout = 2560;
else if (cmd->cmdidx == MMC_CMD_ERASE)
timeout = MMC_TIMEOUT_ERASE;
else
timeout = MMC_TIMEOUT_LONG;
debug("%s(%s): cmd idx: %u, arg: 0x%x, resp type: 0x%x, timeout: %u\n",
__func__, name, cmd->cmdidx, cmd->cmdarg, cmd->resp_type,
timeout);
if (data)
debug(" data: addr: %p, flags: 0x%x, blocks: %u, blocksize: %u\n",
data->dest, data->flags, data->blocks, data->blocksize);
octeontx_mmc_switch_to(mmc);
/* Clear any interrupts */
write_csr(mmc, MIO_EMM_INT(), read_csr(mmc, MIO_EMM_INT()));
/*
* We need to override the default command types and response types
* when dealing with SD cards.
*/
mods = octeontx_mmc_get_cr_mods(mmc, cmd, data);
/* Handle block read/write/stop operations */
switch (cmd->cmdidx) {
case MMC_CMD_GO_IDLE_STATE:
slot->tuned = false;
slot->hs200_tuned = false;
slot->hs400_tuned = false;
break;
case MMC_CMD_STOP_TRANSMISSION:
return 0;
case MMC_CMD_READ_MULTIPLE_BLOCK:
case MMC_CMD_READ_SINGLE_BLOCK:
pr_debug("%s(%s): Reading blocks\n", __func__, name);
blkcnt = octeontx_mmc_read_blocks(mmc, cmd, data, true);
return (blkcnt > 0) ? 0 : -1;
case MMC_CMD_WRITE_MULTIPLE_BLOCK:
case MMC_CMD_WRITE_SINGLE_BLOCK:
blkcnt = octeontx_mmc_write_blocks(mmc, cmd, data);
return (blkcnt > 0) ? 0 : -1;
case MMC_CMD_SELECT_CARD:
/* Set the RCA register (is it set automatically?) */
if (IS_SD(mmc)) {
union mio_emm_rca emm_rca;
emm_rca.u = 0;
emm_rca.s.card_rca = (cmd->cmdarg >> 16);
write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
debug("%s: Set SD relative address (RCA) to 0x%x\n",
__func__, emm_rca.s.card_rca);
}
break;
case MMC_CMD_SWITCH:
if (!data && !slot->is_acmd)
octeontx_mmc_track_switch(mmc, cmd->cmdarg);
break;
}
emm_cmd.u = 0;
emm_cmd.s.cmd_val = 1;
emm_cmd.s.bus_id = slot->bus_id;
emm_cmd.s.cmd_idx = cmd->cmdidx;
emm_cmd.s.arg = cmd->cmdarg;
emm_cmd.s.ctype_xor = mods.ctype_xor;
emm_cmd.s.rtype_xor = mods.rtype_xor;
if (data && data->blocks == 1 && data->blocksize != 512) {
emm_cmd.s.offset =
64 - ((data->blocks * data->blocksize) / 8);
debug("%s: offset set to %u\n", __func__, emm_cmd.s.offset);
}
if (data && data->flags & MMC_DATA_WRITE) {
u8 *src = (u8 *)data->src;
if (!src) {
pr_err("%s(%s): Error: data source for cmd 0x%x is NULL!\n",
__func__, name, cmd->cmdidx);
return -1;
}
if (data->blocksize > 512) {
pr_err("%s(%s): Error: data for cmd 0x%x exceeds 512 bytes\n",
__func__, name, cmd->cmdidx);
return -1;
}
#ifdef DEBUG
debug("%s: Sending %d bytes data\n", __func__, data->blocksize);
print_buffer(0, src, 1, data->blocksize, 0);
#endif
emm_buf_idx.u = 0;
emm_buf_idx.s.inc = 1;
write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u);
for (i = 0; i < (data->blocksize + 7) / 8; i++) {
memcpy(&emm_buf_dat.u, src, sizeof(emm_buf_dat.u));
write_csr(mmc, MIO_EMM_BUF_DAT(),
cpu_to_be64(emm_buf_dat.u));
src += sizeof(emm_buf_dat.u);
}
write_csr(mmc, MIO_EMM_BUF_IDX(), 0);
}
debug("%s(%s): Sending command %u (emm_cmd: 0x%llx)\n", __func__,
name, cmd->cmdidx, emm_cmd.u);
set_wdog(mmc, timeout * 1000);
write_csr(mmc, MIO_EMM_CMD(), emm_cmd.u);
/* Wait for command to finish or time out */
start = get_timer(0);
do {
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
WATCHDOG_RESET();
} while (!rsp_sts.s.cmd_done && !rsp_sts.s.rsp_timeout &&
(get_timer(start) < timeout + 10));
octeontx_mmc_print_rsp_errors(mmc, rsp_sts);
if (rsp_sts.s.rsp_timeout || !rsp_sts.s.cmd_done) {
debug("%s(%s): Error: command %u(0x%x) timed out. rsp_sts: 0x%llx\n",
__func__, name, cmd->cmdidx, cmd->cmdarg, rsp_sts.u);
octeontx_mmc_print_registers(mmc);
return -ETIMEDOUT;
}
if (rsp_sts.s.rsp_crc_err) {
debug("%s(%s): RSP CRC error, rsp_sts: 0x%llx, cmdidx: %u, arg: 0x%08x\n",
__func__, name, rsp_sts.u, cmd->cmdidx, cmd->cmdarg);
octeontx_mmc_print_registers(mmc);
return -1;
}
if (slot->bus_id != rsp_sts.s.bus_id) {
pr_warn("%s(%s): bus id mismatch, got %d, expected %d for command 0x%x(0x%x)\n",
__func__, name,
rsp_sts.s.bus_id, slot->bus_id,
cmd->cmdidx, cmd->cmdarg);
goto error;
}
if (rsp_sts.s.rsp_bad_sts) {
rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO());
debug("%s: Bad response for bus id %d, cmd id %d:\n"
" rsp_timeout: %d\n"
" rsp_bad_sts: %d\n"
" rsp_crc_err: %d\n",
__func__, slot->bus_id, cmd->cmdidx,
rsp_sts.s.rsp_timeout,
rsp_sts.s.rsp_bad_sts,
rsp_sts.s.rsp_crc_err);
if (rsp_sts.s.rsp_type == 1 && rsp_sts.s.rsp_bad_sts) {
debug(" Response status: 0x%llx\n",
(rsp_lo.u >> 8) & 0xffffffff);
#ifdef DEBUG
mmc_print_status((rsp_lo.u >> 8) & 0xffffffff);
#endif
}
goto error;
}
if (rsp_sts.s.cmd_idx != cmd->cmdidx) {
debug("%s(%s): Command response index %d does not match command index %d\n",
__func__, name, rsp_sts.s.cmd_idx, cmd->cmdidx);
octeontx_print_rsp_sts(mmc);
debug("%s: rsp_lo: 0x%llx\n", __func__,
read_csr(mmc, MIO_EMM_RSP_LO()));
goto error;
}
slot->is_acmd = (cmd->cmdidx == MMC_CMD_APP_CMD);
if (!cmd->resp_type & MMC_RSP_PRESENT)
debug(" Response type: 0x%x, no response expected\n",
cmd->resp_type);
/* Get the response if present */
if (rsp_sts.s.rsp_val && (cmd->resp_type & MMC_RSP_PRESENT)) {
union mio_emm_rsp_hi rsp_hi;
rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO());
switch (rsp_sts.s.rsp_type) {
case 1:
case 3:
case 4:
case 5:
cmd->response[0] = (rsp_lo.u >> 8) & 0xffffffffull;
debug(" response: 0x%08x\n",
cmd->response[0]);
cmd->response[1] = 0;
cmd->response[2] = 0;
cmd->response[3] = 0;
break;
case 2:
cmd->response[3] = rsp_lo.u & 0xffffffff;
cmd->response[2] = (rsp_lo.u >> 32) & 0xffffffff;
rsp_hi.u = read_csr(mmc, MIO_EMM_RSP_HI());
cmd->response[1] = rsp_hi.u & 0xffffffff;
cmd->response[0] = (rsp_hi.u >> 32) & 0xffffffff;
debug(" response: 0x%08x 0x%08x 0x%08x 0x%08x\n",
cmd->response[0], cmd->response[1],
cmd->response[2], cmd->response[3]);
break;
default:
pr_err("%s(%s): Unknown response type 0x%x for command %d, arg: 0x%x, rsp_sts: 0x%llx\n",
__func__, name, rsp_sts.s.rsp_type, cmd->cmdidx,
cmd->cmdarg, rsp_sts.u);
return -1;
}
} else {
debug(" Response not expected\n");
}
if (data && data->flags & MMC_DATA_READ) {
u8 *dest = (u8 *)data->dest;
if (!dest) {
pr_err("%s(%s): Error, destination buffer NULL!\n",
__func__, mmc->dev->name);
goto error;
}
if (data->blocksize > 512) {
printf("%s(%s): Error: data size %u exceeds 512\n",
__func__, mmc->dev->name,
data->blocksize);
goto error;
}
emm_buf_idx.u = 0;
emm_buf_idx.s.inc = 1;
write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u);
for (i = 0; i < (data->blocksize + 7) / 8; i++) {
emm_buf_dat.u = read_csr(mmc, MIO_EMM_BUF_DAT());
emm_buf_dat.u = be64_to_cpu(emm_buf_dat.u);
memcpy(dest, &emm_buf_dat.u, sizeof(emm_buf_dat.u));
dest += sizeof(emm_buf_dat.u);
}
write_csr(mmc, MIO_EMM_BUF_IDX(), 0);
#ifdef DEBUG
debug("%s: Received %d bytes data\n", __func__,
data->blocksize);
print_buffer(0, data->dest, 1, data->blocksize, 0);
#endif
}
return 0;
error:
#ifdef DEBUG
octeontx_mmc_print_registers(mmc);
#endif
return -1;
}
static int octeontx_mmc_dev_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
return octeontx_mmc_send_cmd(dev_to_mmc(dev), cmd, data);
}
#ifdef MMC_SUPPORTS_TUNING
static int octeontx_mmc_test_cmd(struct mmc *mmc, u32 opcode, int *statp)
{
struct mmc_cmd cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp);
cmd.cmdidx = opcode;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
err = octeontx_mmc_send_cmd(mmc, &cmd, NULL);
if (err)
debug("%s(%s, %u) returned %d\n", __func__,
mmc->dev->name, opcode, err);
if (statp)
*statp = cmd.response[0];
return err;
}
static int octeontx_mmc_test_get_ext_csd(struct mmc *mmc, u32 opcode,
int *statp)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
u8 ext_csd[MMC_MAX_BLOCK_LEN];
debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp);
memset(&cmd, 0, sizeof(cmd));
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = MMC_MAX_BLOCK_LEN;
data.flags = MMC_DATA_READ;
err = octeontx_mmc_send_cmd(mmc, &cmd, &data);
if (statp)
*statp = cmd.response[0];
return err;
}
/**
* Wrapper to set the MIO_EMM_TIMING register
*
* @param mmc pointer to mmc data structure
* @param emm_timing New emm_timing register value
*
* On some devices it is possible that changing the data out value can
* cause a glitch on an internal fifo. This works around this problem
* by performing a soft-reset immediately before setting the timing register.
*
* Note: this function should not be called from any function that
* performs DMA or block operations since not all registers are
* preserved.
*/
static void octeontx_mmc_set_emm_timing(struct mmc *mmc,
union mio_emm_timing emm_timing)
{
union mio_emm_cfg emm_cfg;
struct octeontx_mmc_slot *slot = mmc->priv;
union mio_emm_debug emm_debug;
debug("%s(%s, 0x%llx) din: %u\n", __func__, mmc->dev->name,
emm_timing.u, emm_timing.s.data_in_tap);
udelay(1);
if (slot->host->tap_requires_noclk) {
/* Turn off the clock */
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_debug.s.emmc_clk_disable = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.s.rdsync_rst = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
}
emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
emm_cfg.s.bus_ena = 1 << 3;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
udelay(1);
write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u);
udelay(1);
if (slot->host->tap_requires_noclk) {
/* Turn on the clock */
emm_debug.s.rdsync_rst = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.s.emmc_clk_disable = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
}
emm_cfg.s.bus_ena = 1 << mmc_to_slot(mmc)->bus_id;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
}
static const u8 octeontx_hs400_tuning_block[512] = {
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
0x00, 0xff, 0x00, 0xff, 0x55, 0xaa, 0x55, 0xaa,
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00,
0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff,
0x01, 0xfe, 0x01, 0xfe, 0xcc, 0xcc, 0xcc, 0xff,
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
};
/**
* Perform tuning in HS400 mode
*
* @param[in] mmc mmc data structure
*
* @ret 0 for success, otherwise error
*/
static int octeontx_tune_hs400(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct mmc_cmd cmd;
struct mmc_data data;
union mio_emm_timing emm_timing;
u8 buffer[mmc->read_bl_len];
int tap_adj;
int err = -1;
int tap;
int run = 0;
int start_run = -1;
int best_run = 0;
int best_start = -1;
bool prev_ok = false;
char env_name[64];
char how[MAX_NO_OF_TAPS + 1] = "";
if (slot->hs400_tuning_block == -1)
return 0;
/* The eMMC standard disables all tuning support when operating in
* DDR modes like HS400. The problem with this is that there are
* many cases where the HS200 tuning does not work for HS400 mode.
* In order to perform this tuning, while in HS200 a block is written
* to a block specified in the device tree (marvell,hs400-tuning-block)
* which is used for tuning in this function by repeatedly reading
* this block and comparing the data and return code. This function
* chooses the data input tap in the middle of the longest run of
* successful read operations.
*/
emm_timing = slot->hs200_taps;
debug("%s(%s): Start ci: %d, co: %d, di: %d, do: %d\n",
__func__, mmc->dev->name, emm_timing.s.cmd_in_tap,
emm_timing.s.cmd_out_tap, emm_timing.s.data_in_tap,
emm_timing.s.data_out_tap);
memset(buffer, 0xdb, sizeof(buffer));
snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_hs400",
slot->bus_id);
tap = env_get_ulong(env_name, 10, -1L);
if (tap >= 0 && tap < MAX_NO_OF_TAPS) {
printf("Overriding data input tap for HS400 mode to %d\n", tap);
emm_timing.s.data_in_tap = tap;
octeontx_mmc_set_emm_timing(mmc, emm_timing);
return 0;
}
for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) {
if (tap < MAX_NO_OF_TAPS) {
debug("%s: Testing data in tap %d\n", __func__, tap);
emm_timing.s.data_in_tap = tap;
octeontx_mmc_set_emm_timing(mmc, emm_timing);
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
cmd.cmdarg = slot->hs400_tuning_block;
cmd.resp_type = MMC_RSP_R1;
data.dest = (void *)buffer;
data.blocks = 1;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
err = !octeontx_mmc_read_blocks(mmc, &cmd, &data,
false);
if (err || memcmp(buffer, octeontx_hs400_tuning_block,
sizeof(buffer))) {
#ifdef DEBUG
if (!err) {
debug("%s: data mismatch. Read:\n",
__func__);
print_buffer(0, buffer, 1,
sizeof(buffer), 0);
debug("\nExpected:\n");
print_buffer(0,
octeontx_hs400_tuning_block, 1,
sizeof(octeontx_hs400_tuning_block),
0);
} else {
debug("%s: Error %d reading block\n",
__func__, err);
}
#endif
err = -EINVAL;
} else {
debug("%s: tap %d good\n", __func__, tap);
}
how[tap] = "-+"[!err];
} else {
err = -EINVAL;
}
if (!err) {
if (!prev_ok)
start_run = tap;
} else if (prev_ok) {
run = tap - 1 - start_run;
if (start_run >= 0 && run > best_run) {
best_start = start_run;
best_run = run;
}
}
}
how[tap - 1] = '\0';
if (best_start < 0) {
printf("%s(%s): %lldMHz tuning failed for HS400\n",
__func__, mmc->dev->name, slot->clock / 1000000);
return -EINVAL;
}
tap = best_start + best_run / 2;
snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_adj_hs400",
slot->bus_id);
tap_adj = env_get_ulong(env_name, 10, slot->hs400_tap_adj);
/*
* Keep it in range and if out of range force it back in with a small
* buffer.
*/
if (best_run > 3) {
tap = tap + tap_adj;
if (tap >= best_start + best_run)
tap = best_start + best_run - 2;
if (tap <= best_start)
tap = best_start + 2;
}
how[tap] = '@';
debug("Tuning: %s\n", how);
debug("%s(%s): HS400 tap: best run start: %d, length: %d, tap: %d\n",
__func__, mmc->dev->name, best_start, best_run, tap);
slot->hs400_taps = slot->hs200_taps;
slot->hs400_taps.s.data_in_tap = tap;
slot->hs400_tuned = true;
if (env_get_yesno("emmc_export_hs400_taps") > 0) {
debug("%s(%s): Exporting HS400 taps\n",
__func__, mmc->dev->name);
env_set_ulong("emmc_timing_tap", slot->host->timing_taps);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_in_tap_debug",
slot->bus_id);
env_set(env_name, how);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_in_tap_val",
slot->bus_id);
env_set_ulong(env_name, tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_in_tap_start",
slot->bus_id);
env_set_ulong(env_name, best_start);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_in_tap_end",
slot->bus_id);
env_set_ulong(env_name, best_start + best_run);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_cmd_in_tap",
slot->bus_id);
env_set_ulong(env_name, slot->hs400_taps.s.cmd_in_tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_cmd_out_tap",
slot->bus_id);
env_set_ulong(env_name, slot->hs400_taps.s.cmd_out_tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_cmd_out_delay",
slot->bus_id);
env_set_ulong(env_name, slot->cmd_out_hs400_delay);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_out_tap",
slot->bus_id);
env_set_ulong(env_name, slot->hs400_taps.s.data_out_tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs400_data_out_delay",
slot->bus_id);
env_set_ulong(env_name, slot->data_out_hs400_delay);
} else {
debug("%s(%s): HS400 environment export disabled\n",
__func__, mmc->dev->name);
}
octeontx_mmc_set_timing(mmc);
return 0;
}
struct adj {
const char *name;
u8 mask_shift;
int (*test)(struct mmc *mmc, u32 opcode, int *error);
u32 opcode;
bool ddr_only;
bool hs200_only;
bool not_hs200_only;
u8 num_runs;
};
struct adj adj[] = {
{ "CMD_IN", 48, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS,
false, false, false, 2, },
/* { "CMD_OUT", 32, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS, },*/
{ "DATA_IN(HS200)", 16, mmc_send_tuning,
MMC_CMD_SEND_TUNING_BLOCK_HS200, false, true, false, 2, },
{ "DATA_IN", 16, octeontx_mmc_test_get_ext_csd, 0, false, false,
true, 2, },
/* { "DATA_OUT", 0, octeontx_mmc_test_cmd, 0, true, false},*/
{ NULL, },
};
/**
* Perform tuning tests to find optimal timing
*
* @param mmc mmc device
* @param adj parameter to tune
* @param opcode command opcode to use
*
* @return 0 for success, -1 if tuning failed
*/
static int octeontx_mmc_adjust_tuning(struct mmc *mmc, struct adj *adj,
u32 opcode)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_timing timing;
union mio_emm_debug emm_debug;
int tap;
int err = -1;
int run = 0;
int count;
int start_run = -1;
int best_run = 0;
int best_start = -1;
bool prev_ok = false;
u64 tap_status = 0;
const int tap_adj = slot->hs200_tap_adj;
char how[MAX_NO_OF_TAPS + 1] = "";
bool is_hs200 = mmc->selected_mode == MMC_HS_200;
debug("%s(%s, %s, %d), hs200: %d\n", __func__, mmc->dev->name,
adj->name, opcode, is_hs200);
octeontx_mmc_set_emm_timing(mmc,
is_hs200 ? slot->hs200_taps : slot->taps);
#ifdef DEBUG
if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
printf("%s(%s): Before tuning %s, opcode: %d\n",
__func__, mmc->dev->name, adj->name, opcode);
octeontx_mmc_print_registers2(mmc, NULL);
}
#endif
/*
* The algorithm to find the optimal timing is to start
* at the end and work backwards and select the second
* value that passes. Each test is repeated twice.
*/
for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) {
if (tap < MAX_NO_OF_TAPS) {
if (slot->host->tap_requires_noclk) {
/* Turn off the clock */
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_debug.s.emmc_clk_disable = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.s.rdsync_rst = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
}
timing.u = read_csr(mmc, MIO_EMM_TIMING());
timing.u &= ~(0x3full << adj->mask_shift);
timing.u |= (u64)tap << adj->mask_shift;
write_csr(mmc, MIO_EMM_TIMING(), timing.u);
debug("%s(%s): Testing ci: %d, co: %d, di: %d, do: %d\n",
__func__, mmc->dev->name, timing.s.cmd_in_tap,
timing.s.cmd_out_tap, timing.s.data_in_tap,
timing.s.data_out_tap);
if (slot->host->tap_requires_noclk) {
/* Turn off the clock */
emm_debug.s.rdsync_rst = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_debug.s.emmc_clk_disable = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
}
for (count = 0; count < 2; count++) {
err = adj->test(mmc, opcode, NULL);
if (err) {
debug("%s(%s, %s): tap %d failed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n",
__func__, mmc->dev->name,
adj->name, tap, count,
read_csr(mmc,
MIO_EMM_RSP_STS()),
read_csr(mmc,
MIO_EMM_RSP_LO()));
debug("%s(%s, %s): tap: %d, do: %d, di: %d, co: %d, ci: %d\n",
__func__, mmc->dev->name,
adj->name, tap,
timing.s.data_out_tap,
timing.s.data_in_tap,
timing.s.cmd_out_tap,
timing.s.cmd_in_tap);
break;
}
debug("%s(%s, %s): tap %d passed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n",
__func__, mmc->dev->name, adj->name, tap,
count,
read_csr(mmc, MIO_EMM_RSP_STS()),
read_csr(mmc, MIO_EMM_RSP_LO()));
}
tap_status |= (u64)(!err) << tap;
how[tap] = "-+"[!err];
} else {
/*
* Putting the end+1 case in the loop simplifies
* logic, allowing 'prev_ok' to process a sweet
* spot in tuning which extends to the wall.
*/
err = -EINVAL;
}
if (!err) {
/*
* If no CRC/etc errors in the response, but previous
* failed, note the start of a new run.
*/
debug(" prev_ok: %d\n", prev_ok);
if (!prev_ok)
start_run = tap;
} else if (prev_ok) {
run = tap - 1 - start_run;
/* did we just exit a wider sweet spot? */
if (start_run >= 0 && run > best_run) {
best_start = start_run;
best_run = run;
}
}
}
how[tap - 1] = '\0';
if (best_start < 0) {
printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__,
mmc->dev->name, adj->name, slot->clock / 1000000,
adj->name);
return -EINVAL;
}
tap = best_start + best_run / 2;
debug(" tap %d is center, start: %d, run: %d\n", tap,
best_start, best_run);
if (is_hs200) {
slot->hs200_taps.u &= ~(0x3full << adj->mask_shift);
slot->hs200_taps.u |= (u64)tap << adj->mask_shift;
} else {
slot->taps.u &= ~(0x3full << adj->mask_shift);
slot->taps.u |= (u64)tap << adj->mask_shift;
}
if (best_start < 0) {
printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__,
mmc->dev->name, adj->name, slot->clock / 1000000,
adj->name);
return -EINVAL;
}
tap = best_start + best_run / 2;
if (is_hs200 && (tap + tap_adj >= 0) && (tap + tap_adj < 64) &&
tap_status & (1ULL << (tap + tap_adj))) {
debug("Adjusting tap from %d by %d to %d\n",
tap, tap_adj, tap + tap_adj);
tap += tap_adj;
}
how[tap] = '@';
debug("%s/%s %d/%d/%d %s\n", mmc->dev->name,
adj->name, best_start, tap, best_start + best_run, how);
if (is_hs200) {
slot->hs200_taps.u &= ~(0x3full << adj->mask_shift);
slot->hs200_taps.u |= (u64)tap << adj->mask_shift;
} else {
slot->taps.u &= ~(0x3full << adj->mask_shift);
slot->taps.u |= (u64)tap << adj->mask_shift;
}
#ifdef DEBUG
if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) {
debug("%s(%s, %s): After successful tuning\n",
__func__, mmc->dev->name, adj->name);
debug("%s(%s, %s): tap: %d, new do: %d, di: %d, co: %d, ci: %d\n",
__func__, mmc->dev->name, adj->name, tap,
slot->taps.s.data_out_tap,
slot->taps.s.data_in_tap,
slot->taps.s.cmd_out_tap,
slot->taps.s.cmd_in_tap);
debug("%s(%s, %s): tap: %d, new do HS200: %d, di: %d, co: %d, ci: %d\n",
__func__, mmc->dev->name, adj->name, tap,
slot->hs200_taps.s.data_out_tap,
slot->hs200_taps.s.data_in_tap,
slot->hs200_taps.s.cmd_out_tap,
slot->hs200_taps.s.cmd_in_tap);
}
#endif
octeontx_mmc_set_timing(mmc);
if (is_hs200 && env_get_yesno("emmc_export_hs200_taps")) {
char env_name[64];
env_set_ulong("emmc_timing_tap", slot->host->timing_taps);
switch (opcode) {
case MMC_CMD_SEND_TUNING_BLOCK:
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_data_in_tap_debug",
slot->bus_id);
env_set(env_name, how);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_data_in_tap_val", slot->bus_id);
env_set_ulong(env_name, tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_data_in_tap_start",
slot->bus_id);
env_set_ulong(env_name, best_start);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_data_in_tap_end",
slot->bus_id);
env_set_ulong(env_name, best_start + best_run);
break;
case MMC_CMD_SEND_STATUS:
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_cmd_in_tap_debug",
slot->bus_id);
env_set(env_name, how);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_cmd_in_tap_val", slot->bus_id);
env_set_ulong(env_name, tap);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_cmd_in_tap_start",
slot->bus_id);
env_set_ulong(env_name, best_start);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_cmd_in_tap_end",
slot->bus_id);
env_set_ulong(env_name, best_start + best_run);
break;
default:
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_data_out_tap", slot->bus_id);
env_set_ulong(env_name, slot->data_out_hs200_delay);
snprintf(env_name, sizeof(env_name),
"emmc%d_hs200_cmd_out_tap", slot->bus_id);
env_set_ulong(env_name, slot->cmd_out_hs200_delay);
break;
}
}
return 0;
}
static int octeontx_mmc_execute_tuning(struct udevice *dev, u32 opcode)
{
struct mmc *mmc = dev_to_mmc(dev);
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_timing emm_timing;
int err;
struct adj *a;
bool is_hs200;
char env_name[64];
pr_info("%s re-tuning, opcode 0x%x\n", dev->name, opcode);
if (slot->is_asim || slot->is_emul)
return 0;
is_hs200 = (mmc->selected_mode == MMC_HS_200);
if (is_hs200) {
slot->hs200_tuned = false;
slot->hs400_tuned = false;
} else {
slot->tuned = false;
}
octeontx_mmc_set_output_bus_timing(mmc);
octeontx_mmc_set_input_bus_timing(mmc);
emm_timing.u = read_csr(mmc, MIO_EMM_TIMING());
if (mmc->selected_mode == MMC_HS_200) {
slot->hs200_taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap;
slot->hs200_taps.s.data_out_tap = emm_timing.s.data_out_tap;
} else {
slot->taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap;
slot->taps.s.data_out_tap = emm_timing.s.data_out_tap;
}
octeontx_mmc_set_input_bus_timing(mmc);
octeontx_mmc_set_output_bus_timing(mmc);
for (a = adj; a->name; a++) {
ulong in_tap;
if (!strcmp(a->name, "CMD_IN")) {
snprintf(env_name, sizeof(env_name),
"emmc%d_cmd_in_tap", slot->bus_id);
in_tap = env_get_ulong(env_name, 10, (ulong)-1);
if (in_tap != (ulong)-1) {
if (mmc->selected_mode == MMC_HS_200 ||
a->hs200_only) {
slot->hs200_taps.s.cmd_in_tap = in_tap;
slot->hs400_taps.s.cmd_in_tap = in_tap;
} else {
slot->taps.s.cmd_in_tap = in_tap;
}
continue;
}
} else if (a->hs200_only &&
!strcmp(a->name, "DATA_IN(HS200)")) {
snprintf(env_name, sizeof(env_name),
"emmc%d_data_in_tap_hs200", slot->bus_id);
in_tap = env_get_ulong(env_name, 10, (ulong)-1);
if (in_tap != (ulong)-1) {
debug("%s(%s): Overriding HS200 data in tap to %d\n",
__func__, dev->name, (int)in_tap);
slot->hs200_taps.s.data_in_tap = in_tap;
continue;
}
} else if (!a->hs200_only && !strcmp(a->name, "DATA_IN")) {
snprintf(env_name, sizeof(env_name),
"emmc%d_data_in_tap", slot->bus_id);
in_tap = env_get_ulong(env_name, 10, (ulong)-1);
if (in_tap != (ulong)-1) {
debug("%s(%s): Overriding non-HS200 data in tap to %d\n",
__func__, dev->name, (int)in_tap);
slot->taps.s.data_in_tap = in_tap;
continue;
}
}
debug("%s(%s): Testing: %s, mode: %s, opcode: %u\n", __func__,
dev->name, a->name, mmc_mode_name(mmc->selected_mode),
opcode);
/* Skip DDR only test when not in DDR mode */
if (a->ddr_only && !mmc->ddr_mode) {
debug("%s(%s): Skipping %s due to non-DDR mode\n",
__func__, dev->name, a->name);
continue;
}
/* Skip hs200 tests in non-hs200 mode and
* non-hs200 tests in hs200 mode
*/
if (is_hs200) {
if (a->not_hs200_only) {
debug("%s(%s): Skipping %s\n", __func__,
dev->name, a->name);
continue;
}
} else {
if (a->hs200_only) {
debug("%s(%s): Skipping %s\n", __func__,
dev->name, a->name);
continue;
}
}
err = octeontx_mmc_adjust_tuning(mmc, a, a->opcode ?
a->opcode : opcode);
if (err) {
pr_err("%s(%s, %u): tuning %s failed\n", __func__,
dev->name, opcode, a->name);
return err;
}
}
octeontx_mmc_set_timing(mmc);
if (is_hs200)
slot->hs200_tuned = true;
else
slot->tuned = true;
if (slot->hs400_tuning_block != -1) {
struct mmc_cmd cmd;
struct mmc_data data;
u8 buffer[mmc->read_bl_len];
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
cmd.cmdarg = slot->hs400_tuning_block;
cmd.resp_type = MMC_RSP_R1;
data.dest = (void *)buffer;
data.blocks = 1;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
err = octeontx_mmc_read_blocks(mmc, &cmd, &data, true) != 1;
if (err) {
printf("%s: Cannot read HS400 tuning block %u\n",
dev->name, slot->hs400_tuning_block);
return err;
}
if (memcmp(buffer, octeontx_hs400_tuning_block,
sizeof(buffer))) {
debug("%s(%s): Writing new HS400 tuning block to block %d\n",
__func__, dev->name, slot->hs400_tuning_block);
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
data.src = (void *)octeontx_hs400_tuning_block;
data.flags = MMC_DATA_WRITE;
err = !octeontx_mmc_write_blocks(mmc, &cmd, &data);
if (err) {
printf("%s: Cannot write HS400 tuning block %u\n",
dev->name, slot->hs400_tuning_block);
return -EINVAL;
}
}
}
return 0;
}
#else /* MMC_SUPPORTS_TUNING */
static void octeontx_mmc_set_emm_timing(struct mmc *mmc,
union mio_emm_timing emm_timing)
{
}
#endif /* MMC_SUPPORTS_TUNING */
/**
* Calculate the clock period with rounding up
*
* @param mmc mmc device
* @return clock period in system clocks for clk_lo + clk_hi
*/
static u32 octeontx_mmc_calc_clk_period(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_host *host = slot->host;
return DIV_ROUND_UP(host->sys_freq, mmc->clock);
}
static int octeontx_mmc_set_ios(struct udevice *dev)
{
struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
struct mmc *mmc = &slot->mmc;
struct octeontx_mmc_host *host = slot->host;
union mio_emm_switch emm_switch;
union mio_emm_modex mode;
uint clock;
int bus_width = 0;
int clk_period = 0;
int power_class = 10;
int err = 0;
bool is_hs200 = false;
bool is_hs400 = false;
debug("%s(%s): Entry\n", __func__, dev->name);
debug(" clock: %u, bus width: %u, mode: %u\n", mmc->clock,
mmc->bus_width, mmc->selected_mode);
debug(" host caps: 0x%x, card caps: 0x%x\n", mmc->host_caps,
mmc->card_caps);
octeontx_mmc_switch_to(mmc);
clock = mmc->clock;
if (!clock)
clock = mmc->cfg->f_min;
switch (mmc->bus_width) {
case 8:
bus_width = 2;
break;
case 4:
bus_width = 1;
break;
case 1:
bus_width = 0;
break;
default:
pr_warn("%s(%s): Invalid bus width %d, defaulting to 1\n",
__func__, dev->name, mmc->bus_width);
bus_width = 0;
}
/* DDR is available for 4/8 bit bus width */
if (mmc->ddr_mode && bus_width)
bus_width |= 4;
debug("%s: sys_freq: %llu\n", __func__, host->sys_freq);
clk_period = octeontx_mmc_calc_clk_period(mmc);
emm_switch.u = 0;
emm_switch.s.bus_width = bus_width;
emm_switch.s.power_class = power_class;
emm_switch.s.clk_hi = clk_period / 2;
emm_switch.s.clk_lo = clk_period / 2;
debug("%s: last mode: %d, mode: %d, last clock: %u, clock: %u, ddr: %d\n",
__func__, slot->last_mode, mmc->selected_mode,
slot->last_clock, mmc->clock, mmc->ddr_mode);
switch (mmc->selected_mode) {
case MMC_LEGACY:
break;
case MMC_HS:
case SD_HS:
case MMC_HS_52:
emm_switch.s.hs_timing = 1;
break;
case MMC_HS_200:
is_hs200 = true;
fallthrough;
case UHS_SDR12:
case UHS_SDR25:
case UHS_SDR50:
case UHS_SDR104:
emm_switch.s.hs200_timing = 1;
break;
case MMC_HS_400:
is_hs400 = true;
fallthrough;
case UHS_DDR50:
case MMC_DDR_52:
emm_switch.s.hs400_timing = 1;
break;
default:
pr_err("%s(%s): Unsupported mode 0x%x\n", __func__, dev->name,
mmc->selected_mode);
return -1;
}
emm_switch.s.bus_id = slot->bus_id;
if (!is_hs200 && !is_hs400 &&
(mmc->selected_mode != slot->last_mode ||
mmc->clock != slot->last_clock) &&
!mmc->ddr_mode) {
slot->tuned = false;
slot->last_mode = mmc->selected_mode;
slot->last_clock = mmc->clock;
}
if (CONFIG_IS_ENABLED(MMC_VERBOSE)) {
debug("%s(%s): Setting bus mode to %s\n", __func__, dev->name,
mmc_mode_name(mmc->selected_mode));
} else {
debug("%s(%s): Setting bus mode to 0x%x\n", __func__, dev->name,
mmc->selected_mode);
}
debug(" Trying switch 0x%llx w%d hs:%d hs200:%d hs400:%d\n",
emm_switch.u, emm_switch.s.bus_width, emm_switch.s.hs_timing,
emm_switch.s.hs200_timing, emm_switch.s.hs400_timing);
set_wdog(mmc, 1000);
do_switch(mmc, emm_switch);
mdelay(100);
mode.u = read_csr(mmc, MIO_EMM_MODEX(slot->bus_id));
debug("%s(%s): mode: 0x%llx w:%d, hs:%d, hs200:%d, hs400:%d\n",
__func__, dev->name, mode.u, mode.s.bus_width,
mode.s.hs_timing, mode.s.hs200_timing, mode.s.hs400_timing);
err = octeontx_mmc_configure_delay(mmc);
#ifdef MMC_SUPPORTS_TUNING
if (!err && mmc->selected_mode == MMC_HS_400 && !slot->hs400_tuned) {
debug("%s: Tuning HS400 mode\n", __func__);
err = octeontx_tune_hs400(mmc);
}
#endif
return err;
}
/**
* Gets the status of the card detect pin
*/
static int octeontx_mmc_get_cd(struct udevice *dev)
{
struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
int val = 1;
if (dm_gpio_is_valid(&slot->cd_gpio)) {
val = dm_gpio_get_value(&slot->cd_gpio);
val ^= slot->cd_inverted;
}
debug("%s(%s): cd: %d\n", __func__, dev->name, val);
return val;
}
/**
* Gets the status of the write protect pin
*/
static int octeontx_mmc_get_wp(struct udevice *dev)
{
struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
int val = 0;
if (dm_gpio_is_valid(&slot->wp_gpio)) {
val = dm_gpio_get_value(&slot->wp_gpio);
val ^= slot->wp_inverted;
}
debug("%s(%s): wp: %d\n", __func__, dev->name, val);
return val;
}
static void octeontx_mmc_set_timing(struct mmc *mmc)
{
union mio_emm_timing timing;
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
switch (mmc->selected_mode) {
case MMC_HS_200:
timing = slot->hs200_taps;
break;
case MMC_HS_400:
timing = slot->hs400_tuned ?
slot->hs400_taps : slot->hs200_taps;
break;
default:
timing = slot->taps;
break;
}
debug("%s(%s):\n cmd_in_tap: %u\n cmd_out_tap: %u\n data_in_tap: %u\n data_out_tap: %u\n",
__func__, mmc->dev->name, timing.s.cmd_in_tap,
timing.s.cmd_out_tap, timing.s.data_in_tap,
timing.s.data_out_tap);
octeontx_mmc_set_emm_timing(mmc, timing);
}
static int octeontx_mmc_configure_delay(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_host *host __maybe_unused = slot->host;
bool __maybe_unused is_hs200;
bool __maybe_unused is_hs400;
debug("%s(%s)\n", __func__, mmc->dev->name);
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
union mio_emm_sample emm_sample;
emm_sample.u = 0;
emm_sample.s.cmd_cnt = slot->cmd_cnt;
emm_sample.s.dat_cnt = slot->dat_cnt;
write_csr(mmc, MIO_EMM_SAMPLE(), emm_sample.u);
} else {
is_hs200 = (mmc->selected_mode == MMC_HS_200);
is_hs400 = (mmc->selected_mode == MMC_HS_400);
if ((is_hs200 && slot->hs200_tuned) ||
(is_hs400 && slot->hs400_tuned) ||
(!is_hs200 && !is_hs400 && slot->tuned)) {
octeontx_mmc_set_output_bus_timing(mmc);
} else {
int half = MAX_NO_OF_TAPS / 2;
int dout, cout;
switch (mmc->selected_mode) {
case MMC_LEGACY:
if (IS_SD(mmc)) {
cout = MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP;
dout = MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP;
} else {
cout = MMC_LEGACY_DEFAULT_CMD_OUT_TAP;
dout = MMC_LEGACY_DEFAULT_DATA_OUT_TAP;
}
break;
case MMC_HS:
cout = MMC_HS_CMD_OUT_TAP;
dout = MMC_HS_DATA_OUT_TAP;
break;
case SD_HS:
case UHS_SDR12:
case UHS_SDR25:
case UHS_SDR50:
cout = MMC_SD_HS_CMD_OUT_TAP;
dout = MMC_SD_HS_DATA_OUT_TAP;
break;
case UHS_SDR104:
case UHS_DDR50:
case MMC_HS_52:
case MMC_DDR_52:
cout = MMC_DEFAULT_CMD_OUT_TAP;
dout = MMC_DEFAULT_DATA_OUT_TAP;
break;
case MMC_HS_200:
cout = -1;
dout = -1;
if (host->timing_calibrated) {
cout = octeontx2_mmc_calc_delay(
mmc, slot->cmd_out_hs200_delay);
dout = octeontx2_mmc_calc_delay(
mmc,
slot->data_out_hs200_delay);
debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n",
__func__, mmc->dev->name,
slot->cmd_out_hs200_delay, cout,
slot->data_out_hs200_delay, dout);
} else {
cout = MMC_DEFAULT_HS200_CMD_OUT_TAP;
dout = MMC_DEFAULT_HS200_DATA_OUT_TAP;
}
is_hs200 = true;
break;
case MMC_HS_400:
cout = -1;
dout = -1;
if (host->timing_calibrated) {
if (slot->cmd_out_hs400_delay)
cout = octeontx2_mmc_calc_delay(
mmc,
slot->cmd_out_hs400_delay);
if (slot->data_out_hs400_delay)
dout = octeontx2_mmc_calc_delay(
mmc,
slot->data_out_hs400_delay);
debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n",
__func__, mmc->dev->name,
slot->cmd_out_hs400_delay, cout,
slot->data_out_hs400_delay, dout);
} else {
cout = MMC_DEFAULT_HS400_CMD_OUT_TAP;
dout = MMC_DEFAULT_HS400_DATA_OUT_TAP;
}
is_hs400 = true;
break;
default:
pr_err("%s(%s): Invalid mode %d\n", __func__,
mmc->dev->name, mmc->selected_mode);
return -1;
}
debug("%s(%s): Not tuned, hs200: %d, hs200 tuned: %d, hs400: %d, hs400 tuned: %d, tuned: %d\n",
__func__, mmc->dev->name, is_hs200,
slot->hs200_tuned,
is_hs400, slot->hs400_tuned, slot->tuned);
/* Set some defaults */
if (is_hs200) {
slot->hs200_taps.u = 0;
slot->hs200_taps.s.cmd_out_tap = cout;
slot->hs200_taps.s.data_out_tap = dout;
slot->hs200_taps.s.cmd_in_tap = half;
slot->hs200_taps.s.data_in_tap = half;
} else if (is_hs400) {
slot->hs400_taps.u = 0;
slot->hs400_taps.s.cmd_out_tap = cout;
slot->hs400_taps.s.data_out_tap = dout;
slot->hs400_taps.s.cmd_in_tap = half;
slot->hs400_taps.s.data_in_tap = half;
} else {
slot->taps.u = 0;
slot->taps.s.cmd_out_tap = cout;
slot->taps.s.data_out_tap = dout;
slot->taps.s.cmd_in_tap = half;
slot->taps.s.data_in_tap = half;
}
}
if (is_hs200)
debug("%s(%s): hs200 taps: ci: %u, co: %u, di: %u, do: %u\n",
__func__, mmc->dev->name,
slot->hs200_taps.s.cmd_in_tap,
slot->hs200_taps.s.cmd_out_tap,
slot->hs200_taps.s.data_in_tap,
slot->hs200_taps.s.data_out_tap);
else if (is_hs400)
debug("%s(%s): hs400 taps: ci: %u, co: %u, di: %u, do: %u\n",
__func__, mmc->dev->name,
slot->hs400_taps.s.cmd_in_tap,
slot->hs400_taps.s.cmd_out_tap,
slot->hs400_taps.s.data_in_tap,
slot->hs400_taps.s.data_out_tap);
else
debug("%s(%s): taps: ci: %u, co: %u, di: %u, do: %u\n",
__func__, mmc->dev->name, slot->taps.s.cmd_in_tap,
slot->taps.s.cmd_out_tap,
slot->taps.s.data_in_tap,
slot->taps.s.data_out_tap);
octeontx_mmc_set_timing(mmc);
debug("%s: Done\n", __func__);
}
return 0;
}
/**
* Sets the MMC watchdog timer in microseconds
*
* @param mmc mmc device
* @param us timeout in microseconds, 0 for maximum timeout
*/
static void set_wdog(struct mmc *mmc, u64 us)
{
union mio_emm_wdog wdog;
u64 val;
val = (us * mmc->clock) / 1000000;
if (val >= (1 << 26) || !us) {
if (us)
pr_debug("%s: warning: timeout %llu exceeds max value %llu, truncating\n",
__func__, us,
(u64)(((1ULL << 26) - 1) * 1000000ULL) /
mmc->clock);
val = (1 << 26) - 1;
}
wdog.u = 0;
wdog.s.clk_cnt = val;
write_csr(mmc, MIO_EMM_WDOG(), wdog.u);
}
/**
* Set the IO drive strength and slew
*
* @param mmc mmc device
*/
static void octeontx_mmc_io_drive_setup(struct mmc *mmc)
{
if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_io_ctl io_ctl;
if (slot->drive < 0 || slot->slew < 0)
return;
io_ctl.u = 0;
io_ctl.s.drive = slot->drive;
io_ctl.s.slew = slot->slew;
write_csr(mmc, MIO_EMM_IO_CTL(), io_ctl.u);
}
}
/**
* Print switch errors
*
* @param mmc mmc device
*/
static void check_switch_errors(struct mmc *mmc)
{
union mio_emm_switch emm_switch;
emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
if (emm_switch.s.switch_err0)
pr_err("%s: Switch power class error\n", mmc->cfg->name);
if (emm_switch.s.switch_err1)
pr_err("%s: Switch HS timing error\n", mmc->cfg->name);
if (emm_switch.s.switch_err2)
pr_err("%s: Switch bus width error\n", mmc->cfg->name);
}
static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch)
{
union mio_emm_rsp_sts rsp_sts;
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
int bus_id = emm_switch.s.bus_id;
ulong start;
if (emm_switch.s.bus_id != 0) {
emm_switch.s.bus_id = 0;
write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
udelay(100);
emm_switch.s.bus_id = bus_id;
}
debug("%s(%s, 0x%llx)\n", __func__, mmc->dev->name, emm_switch.u);
write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
start = get_timer(0);
do {
rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS());
if (!rsp_sts.s.switch_val)
break;
udelay(100);
} while (get_timer(start) < 10);
if (rsp_sts.s.switch_val) {
pr_warn("%s(%s): Warning: writing 0x%llx to emm_switch timed out, status: 0x%llx\n",
__func__, mmc->dev->name, emm_switch.u, rsp_sts.u);
}
slot->cached_switch = emm_switch;
check_switch_errors(mmc);
slot->cached_switch.u = emm_switch.u;
debug("%s: emm_switch: 0x%llx, rsp_lo: 0x%llx\n",
__func__, read_csr(mmc, MIO_EMM_SWITCH()),
read_csr(mmc, MIO_EMM_RSP_LO()));
}
/**
* Given a delay in ps, return the tap delay count
*
* @param mmc mmc data structure
* @param delay delay in picoseconds
*
* @return Number of tap cycles or error if -1
*/
static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay)
{
struct octeontx_mmc_host *host = mmc_to_host(mmc);
if (host->is_asim || host->is_emul)
return 63;
if (!host->timing_taps) {
pr_err("%s(%s): Error: host timing not calibrated\n",
__func__, mmc->dev->name);
return -1;
}
debug("%s(%s, %d) timing taps: %llu\n", __func__, mmc->dev->name,
delay, host->timing_taps);
return min_t(int, DIV_ROUND_UP(delay, host->timing_taps), 63);
}
/**
* Calibrates the delay based on the internal clock
*
* @param mmc Pointer to mmc data structure
*
* @return 0 for success or -ETIMEDOUT on error
*
* NOTE: On error a default value will be calculated.
*/
static int octeontx_mmc_calibrate_delay(struct mmc *mmc)
{
union mio_emm_calb emm_calb;
union mio_emm_tap emm_tap;
union mio_emm_cfg emm_cfg;
union mio_emm_io_ctl emm_io_ctl;
union mio_emm_switch emm_switch;
union mio_emm_wdog emm_wdog;
union mio_emm_sts_mask emm_sts_mask;
union mio_emm_debug emm_debug;
union mio_emm_timing emm_timing;
struct octeontx_mmc_host *host = mmc_to_host(mmc);
ulong start;
u8 bus_id, bus_ena;
debug("%s: Calibrating delay\n", __func__);
if (host->is_asim || host->is_emul) {
debug(" No calibration for ASIM\n");
return 0;
}
emm_tap.u = 0;
if (host->calibrate_glitch) {
emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY;
} else {
/* Save registers */
emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
emm_io_ctl.u = read_csr(mmc, MIO_EMM_IO_CTL());
emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
emm_wdog.u = read_csr(mmc, MIO_EMM_WDOG());
emm_sts_mask.u = read_csr(mmc, MIO_EMM_STS_MASK());
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_timing.u = read_csr(mmc, MIO_EMM_TIMING());
bus_ena = emm_cfg.s.bus_ena;
bus_id = emm_switch.s.bus_id;
emm_cfg.s.bus_ena = 0;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
udelay(1);
emm_cfg.s.bus_ena = 1ULL << 3;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
mdelay(1);
emm_calb.u = 0;
write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
emm_calb.s.start = 1;
write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
start = get_timer(0);
/* This should only take 3 microseconds */
do {
udelay(5);
emm_tap.u = read_csr(mmc, MIO_EMM_TAP());
} while (!emm_tap.s.delay && get_timer(start) < 10);
emm_calb.s.start = 0;
write_csr(mmc, MIO_EMM_CALB(), emm_calb.u);
emm_cfg.s.bus_ena = 0;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
udelay(1);
/* Restore registers */
emm_cfg.s.bus_ena = bus_ena;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
if (host->tap_requires_noclk) {
/* Turn off the clock */
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_debug.s.emmc_clk_disable = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.s.rdsync_rst = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
}
write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u);
if (host->tap_requires_noclk) {
/* Turn the clock back on */
udelay(1);
emm_debug.s.rdsync_rst = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
udelay(1);
emm_debug.s.emmc_clk_disable = 0;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
}
udelay(1);
write_csr(mmc, MIO_EMM_IO_CTL(), emm_io_ctl.u);
bus_id = emm_switch.s.bus_id;
emm_switch.s.bus_id = 0;
write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
emm_switch.s.bus_id = bus_id;
write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u);
write_csr(mmc, MIO_EMM_WDOG(), emm_wdog.u);
write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
write_csr(mmc, MIO_EMM_RCA(), mmc->rca);
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
if (!emm_tap.s.delay) {
pr_err("%s: Error: delay calibration failed, timed out.\n",
__func__);
/* Set to default value if timed out */
emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY;
return -ETIMEDOUT;
}
}
/* Round up */
host->timing_taps = (10 * 1000 * emm_tap.s.delay) / TOTAL_NO_OF_TAPS;
debug("%s(%s): timing taps: %llu, delay: %u\n",
__func__, mmc->dev->name, host->timing_taps, emm_tap.s.delay);
host->timing_calibrated = true;
return 0;
}
static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) {
union mio_emm_sample sample;
sample.u = 0;
sample.s.cmd_cnt = slot->cmd_clk_skew;
sample.s.dat_cnt = slot->dat_clk_skew;
write_csr(mmc, MIO_EMM_SAMPLE(), sample.u);
} else {
union mio_emm_timing timing;
timing.u = read_csr(mmc, MIO_EMM_TIMING());
if (mmc->selected_mode == MMC_HS_200) {
if (slot->hs200_tuned) {
timing.s.cmd_in_tap =
slot->hs200_taps.s.cmd_in_tap;
timing.s.data_in_tap =
slot->hs200_taps.s.data_in_tap;
} else {
pr_warn("%s(%s): Warning: hs200 timing not tuned\n",
__func__, mmc->dev->name);
timing.s.cmd_in_tap =
MMC_DEFAULT_HS200_CMD_IN_TAP;
timing.s.data_in_tap =
MMC_DEFAULT_HS200_DATA_IN_TAP;
}
} else if (mmc->selected_mode == MMC_HS_400) {
if (slot->hs400_tuned) {
timing.s.cmd_in_tap =
slot->hs400_taps.s.cmd_in_tap;
timing.s.data_in_tap =
slot->hs400_taps.s.data_in_tap;
} else if (slot->hs200_tuned) {
timing.s.cmd_in_tap =
slot->hs200_taps.s.cmd_in_tap;
timing.s.data_in_tap =
slot->hs200_taps.s.data_in_tap;
} else {
pr_warn("%s(%s): Warning: hs400 timing not tuned\n",
__func__, mmc->dev->name);
timing.s.cmd_in_tap =
MMC_DEFAULT_HS200_CMD_IN_TAP;
timing.s.data_in_tap =
MMC_DEFAULT_HS200_DATA_IN_TAP;
}
} else if (slot->tuned) {
timing.s.cmd_in_tap = slot->taps.s.cmd_in_tap;
timing.s.data_in_tap = slot->taps.s.data_in_tap;
} else {
timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP;
timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP;
}
octeontx_mmc_set_emm_timing(mmc, timing);
}
return 0;
}
/**
* Sets the default bus timing for the current mode.
*
* @param mmc mmc data structure
*
* @return 0 for success, error otherwise
*/
static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
union mio_emm_timing timing;
int cout_bdelay, dout_bdelay;
unsigned int cout_delay, dout_delay;
char env_name[32];
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX))
return 0;
debug("%s(%s)\n", __func__, mmc->dev->name);
if (slot->is_asim || slot->is_emul)
return 0;
octeontx_mmc_calibrate_delay(mmc);
if (mmc->clock < 26000000) {
cout_delay = 5000;
dout_delay = 5000;
} else if (mmc->clock <= 52000000) {
cout_delay = 2500;
dout_delay = 2500;
} else if (!mmc_is_mode_ddr(mmc->selected_mode)) {
cout_delay = slot->cmd_out_hs200_delay;
dout_delay = slot->data_out_hs200_delay;
} else {
cout_delay = slot->cmd_out_hs400_delay;
dout_delay = slot->data_out_hs400_delay;
}
snprintf(env_name, sizeof(env_name), "mmc%d_hs200_dout_delay_ps",
slot->bus_id);
dout_delay = env_get_ulong(env_name, 10, dout_delay);
debug("%s: dout_delay: %u\n", __func__, dout_delay);
cout_bdelay = octeontx2_mmc_calc_delay(mmc, cout_delay);
dout_bdelay = octeontx2_mmc_calc_delay(mmc, dout_delay);
debug("%s: cmd output delay: %u, data output delay: %u, cmd bdelay: %d, data bdelay: %d, clock: %d\n",
__func__, cout_delay, dout_delay, cout_bdelay, dout_bdelay,
mmc->clock);
if (cout_bdelay < 0 || dout_bdelay < 0) {
pr_err("%s: Error: could not calculate command and/or data clock skew\n",
__func__);
return -1;
}
timing.u = read_csr(mmc, MIO_EMM_TIMING());
timing.s.cmd_out_tap = cout_bdelay;
timing.s.data_out_tap = dout_bdelay;
if (mmc->selected_mode == MMC_HS_200) {
slot->hs200_taps.s.cmd_out_tap = cout_bdelay;
slot->hs200_taps.s.data_out_tap = dout_bdelay;
} else if (mmc->selected_mode == MMC_HS_400) {
slot->hs400_taps.s.cmd_out_tap = cout_bdelay;
slot->hs400_taps.s.data_out_tap = dout_bdelay;
} else {
slot->taps.s.cmd_out_tap = cout_bdelay;
slot->taps.s.data_out_tap = dout_bdelay;
}
octeontx_mmc_set_emm_timing(mmc, timing);
debug("%s(%s): bdelay: %d/%d, clock: %d, ddr: %s, timing taps: %llu, do: %d, di: %d, co: %d, ci: %d\n",
__func__, mmc->dev->name, cout_bdelay, dout_bdelay, mmc->clock,
mmc->ddr_mode ? "yes" : "no",
mmc_to_host(mmc)->timing_taps,
timing.s.data_out_tap,
timing.s.data_in_tap,
timing.s.cmd_out_tap,
timing.s.cmd_in_tap);
return 0;
}
static void octeontx_mmc_set_clock(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
uint clock;
clock = min(mmc->cfg->f_max, (uint)slot->clock);
clock = max(mmc->cfg->f_min, clock);
debug("%s(%s): f_min: %u, f_max: %u, clock: %u\n", __func__,
mmc->dev->name, mmc->cfg->f_min, mmc->cfg->f_max, clock);
slot->clock = clock;
mmc->clock = clock;
}
/**
* This switches I/O power as needed when switching between slots.
*
* @param mmc mmc data structure
*/
static void octeontx_mmc_switch_io(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_host *host = slot->host;
struct mmc *last_mmc = host->last_mmc;
static struct udevice *last_reg;
union mio_emm_cfg emm_cfg;
int bus;
static bool initialized;
/* First time? */
if (!initialized || mmc != host->last_mmc) {
struct mmc *ommc;
/* Switch to bus 3 which is unused */
emm_cfg.u = read_csr(mmc, MIO_EMM_CFG());
emm_cfg.s.bus_ena = 1 << 3;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
/* Turn off all other I/O interfaces with first initialization
* if at least one supply was found.
*/
for (bus = 0; bus <= OCTEONTX_MAX_MMC_SLOT; bus++) {
ommc = &host->slots[bus].mmc;
/* Handle self case later */
if (ommc == mmc || !ommc->vqmmc_supply)
continue;
/* Skip if we're not switching regulators */
if (last_reg == mmc->vqmmc_supply)
continue;
/* Turn off other regulators */
if (ommc->vqmmc_supply != mmc->vqmmc_supply)
regulator_set_enable(ommc->vqmmc_supply, false);
}
/* Turn ourself on */
if (mmc->vqmmc_supply && last_reg != mmc->vqmmc_supply)
regulator_set_enable(mmc->vqmmc_supply, true);
mdelay(1); /* Settle time */
/* Switch to new bus */
emm_cfg.s.bus_ena = 1 << slot->bus_id;
write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u);
last_reg = mmc->vqmmc_supply;
initialized = true;
return;
}
/* No change in device */
if (last_mmc == mmc)
return;
if (!last_mmc) {
pr_warn("%s(%s): No previous slot detected in IO slot switch!\n",
__func__, mmc->dev->name);
return;
}
debug("%s(%s): last: %s, supply: %p\n", __func__, mmc->dev->name,
last_mmc->dev->name, mmc->vqmmc_supply);
/* The supply is the same so we do nothing */
if (last_mmc->vqmmc_supply == mmc->vqmmc_supply)
return;
/* Turn off the old slot I/O supply */
if (last_mmc->vqmmc_supply) {
debug("%s(%s): Turning off IO to %s, supply: %s\n",
__func__, mmc->dev->name, last_mmc->dev->name,
last_mmc->vqmmc_supply->name);
regulator_set_enable(last_mmc->vqmmc_supply, false);
}
/* Turn on the new slot I/O supply */
if (mmc->vqmmc_supply) {
debug("%s(%s): Turning on IO to slot %d, supply: %s\n",
__func__, mmc->dev->name, slot->bus_id,
mmc->vqmmc_supply->name);
regulator_set_enable(mmc->vqmmc_supply, true);
}
/* Allow power to settle */
mdelay(1);
}
/**
* Called to switch between mmc devices
*
* @param mmc new mmc device
*/
static void octeontx_mmc_switch_to(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_slot *old_slot;
struct octeontx_mmc_host *host = slot->host;
union mio_emm_switch emm_switch;
union mio_emm_sts_mask emm_sts_mask;
union mio_emm_rca emm_rca;
if (slot->bus_id == host->last_slotid)
return;
debug("%s(%s) switching from slot %d to slot %d\n", __func__,
mmc->dev->name, host->last_slotid, slot->bus_id);
octeontx_mmc_switch_io(mmc);
if (host->last_slotid >= 0 && slot->valid) {
old_slot = &host->slots[host->last_slotid];
old_slot->cached_switch.u = read_csr(mmc, MIO_EMM_SWITCH());
old_slot->cached_rca.u = read_csr(mmc, MIO_EMM_RCA());
}
if (mmc->rca)
write_csr(mmc, MIO_EMM_RCA(), mmc->rca);
emm_switch = slot->cached_switch;
do_switch(mmc, emm_switch);
emm_rca.u = 0;
emm_rca.s.card_rca = mmc->rca;
write_csr(mmc, MIO_EMM_RCA(), emm_rca.u);
mdelay(100);
set_wdog(mmc, 100000);
if (octeontx_mmc_set_output_bus_timing(mmc) ||
octeontx_mmc_set_input_bus_timing(mmc))
pr_err("%s(%s): Error setting bus timing\n", __func__,
mmc->dev->name);
octeontx_mmc_io_drive_setup(mmc);
emm_sts_mask.u = 0;
emm_sts_mask.s.sts_msk = 1 << 7 | 1 << 22 | 1 << 23 | 1 << 19;
write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u);
host->last_slotid = slot->bus_id;
host->last_mmc = mmc;
mdelay(10);
}
/**
* Perform initial timing configuration
*
* @param mmc mmc device
*
* @return 0 for success
*
* NOTE: This will need to be updated when new silicon comes out
*/
static int octeontx_mmc_init_timing(struct mmc *mmc)
{
union mio_emm_timing timing;
if (mmc_to_slot(mmc)->is_asim || mmc_to_slot(mmc)->is_emul)
return 0;
debug("%s(%s)\n", __func__, mmc->dev->name);
timing.u = 0;
timing.s.cmd_out_tap = MMC_DEFAULT_CMD_OUT_TAP;
timing.s.data_out_tap = MMC_DEFAULT_DATA_OUT_TAP;
timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP;
timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP;
octeontx_mmc_set_emm_timing(mmc, timing);
return 0;
}
/**
* Perform low-level initialization
*
* @param mmc mmc device
*
* @return 0 for success, error otherwise
*/
static int octeontx_mmc_init_lowlevel(struct mmc *mmc)
{
struct octeontx_mmc_slot *slot = mmc_to_slot(mmc);
struct octeontx_mmc_host *host = slot->host;
union mio_emm_switch emm_switch;
u32 clk_period;
debug("%s(%s): lowlevel init for slot %d\n", __func__,
mmc->dev->name, slot->bus_id);
host->emm_cfg.s.bus_ena &= ~(1 << slot->bus_id);
write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u);
udelay(100);
host->emm_cfg.s.bus_ena |= 1 << slot->bus_id;
write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u);
udelay(10);
slot->clock = mmc->cfg->f_min;
octeontx_mmc_set_clock(&slot->mmc);
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
if (host->cond_clock_glitch) {
union mio_emm_debug emm_debug;
emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG());
emm_debug.s.clk_on = 1;
write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u);
}
octeontx_mmc_calibrate_delay(&slot->mmc);
}
clk_period = octeontx_mmc_calc_clk_period(mmc);
emm_switch.u = 0;
emm_switch.s.power_class = 10;
emm_switch.s.clk_lo = clk_period / 2;
emm_switch.s.clk_hi = clk_period / 2;
emm_switch.s.bus_id = slot->bus_id;
debug("%s: Performing switch\n", __func__);
do_switch(mmc, emm_switch);
slot->cached_switch.u = emm_switch.u;
if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX))
octeontx_mmc_init_timing(mmc);
set_wdog(mmc, 1000000); /* Set to 1 second */
write_csr(mmc, MIO_EMM_STS_MASK(), 0xe4390080ull);
write_csr(mmc, MIO_EMM_RCA(), 1);
mdelay(10);
debug("%s: done\n", __func__);
return 0;
}
/**
* Translates a voltage number to bits in MMC register
*
* @param voltage voltage in microvolts
*
* @return MMC register value for voltage
*/
static u32 xlate_voltage(u32 voltage)
{
u32 volt = 0;
/* Convert to millivolts */
voltage /= 1000;
if (voltage >= 1650 && voltage <= 1950)
volt |= MMC_VDD_165_195;
if (voltage >= 2000 && voltage <= 2100)
volt |= MMC_VDD_20_21;
if (voltage >= 2100 && voltage <= 2200)
volt |= MMC_VDD_21_22;
if (voltage >= 2200 && voltage <= 2300)
volt |= MMC_VDD_22_23;
if (voltage >= 2300 && voltage <= 2400)
volt |= MMC_VDD_23_24;
if (voltage >= 2400 && voltage <= 2500)
volt |= MMC_VDD_24_25;
if (voltage >= 2500 && voltage <= 2600)
volt |= MMC_VDD_25_26;
if (voltage >= 2600 && voltage <= 2700)
volt |= MMC_VDD_26_27;
if (voltage >= 2700 && voltage <= 2800)
volt |= MMC_VDD_27_28;
if (voltage >= 2800 && voltage <= 2900)
volt |= MMC_VDD_28_29;
if (voltage >= 2900 && voltage <= 3000)
volt |= MMC_VDD_29_30;
if (voltage >= 3000 && voltage <= 3100)
volt |= MMC_VDD_30_31;
if (voltage >= 3100 && voltage <= 3200)
volt |= MMC_VDD_31_32;
if (voltage >= 3200 && voltage <= 3300)
volt |= MMC_VDD_32_33;
if (voltage >= 3300 && voltage <= 3400)
volt |= MMC_VDD_33_34;
if (voltage >= 3400 && voltage <= 3500)
volt |= MMC_VDD_34_35;
if (voltage >= 3500 && voltage <= 3600)
volt |= MMC_VDD_35_36;
return volt;
}
/**
* Check if a slot is valid in the device tree
*
* @param dev slot device to check
*
* @return true if status reports "ok" or "okay" or if no status,
* false otherwise.
*/
static bool octeontx_mmc_get_valid(struct udevice *dev)
{
const char *stat = ofnode_read_string(dev_ofnode(dev), "status");
if (!stat || !strncmp(stat, "ok", 2))
return true;
else
return false;
}
/**
* Reads slot configuration from the device tree
*
* @param dev slot device
*
* @return 0 on success, otherwise error
*/
static int octeontx_mmc_get_config(struct udevice *dev)
{
struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev);
uint voltages[2];
uint low, high;
char env_name[32];
int err;
ofnode node = dev_ofnode(dev);
int bus_width = 1;
ulong new_max_freq;
debug("%s(%s)", __func__, dev->name);
slot->cfg.name = dev->name;
slot->cfg.f_max = ofnode_read_s32_default(dev_ofnode(dev),
"max-frequency",
26000000);
snprintf(env_name, sizeof(env_name), "mmc_max_frequency%d",
slot->bus_id);
new_max_freq = env_get_ulong(env_name, 10, slot->cfg.f_max);
debug("Reading %s, got %lu\n", env_name, new_max_freq);
if (new_max_freq != slot->cfg.f_max) {
printf("Overriding device tree MMC maximum frequency %u to %lu\n",
slot->cfg.f_max, new_max_freq);
slot->cfg.f_max = new_max_freq;
}
slot->cfg.f_min = 400000;
slot->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
slot->hs400_tuning_block =
ofnode_read_s32_default(dev_ofnode(dev),
"marvell,hs400-tuning-block",
-1);
debug("%s(%s): mmc HS400 tuning block: %d\n", __func__,
dev->name, slot->hs400_tuning_block);
slot->hs200_tap_adj =
ofnode_read_s32_default(dev_ofnode(dev),
"marvell,hs200-tap-adjust", 0);
debug("%s(%s): hs200-tap-adjust: %d\n", __func__, dev->name,
slot->hs200_tap_adj);
slot->hs400_tap_adj =
ofnode_read_s32_default(dev_ofnode(dev),
"marvell,hs400-tap-adjust", 0);
debug("%s(%s): hs400-tap-adjust: %d\n", __func__, dev->name,
slot->hs400_tap_adj);
}
err = ofnode_read_u32_array(dev_ofnode(dev), "voltage-ranges",
voltages, 2);
if (err) {
slot->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
} else {
low = xlate_voltage(voltages[0]);
high = xlate_voltage(voltages[1]);
debug(" low voltage: 0x%x (%u), high: 0x%x (%u)\n",
low, voltages[0], high, voltages[1]);
if (low > high || !low || !high) {
pr_err("Invalid MMC voltage range [%u-%u] specified for %s\n",
low, high, dev->name);
return -1;
}
slot->cfg.voltages = 0;
do {
slot->cfg.voltages |= low;
low <<= 1;
} while (low <= high);
}
debug("%s: config voltages: 0x%x\n", __func__, slot->cfg.voltages);
slot->slew = ofnode_read_s32_default(node, "cavium,clk-slew", -1);
slot->drive = ofnode_read_s32_default(node, "cavium,drv-strength", -1);
gpio_request_by_name(dev, "cd-gpios", 0, &slot->cd_gpio, GPIOD_IS_IN);
slot->cd_inverted = ofnode_read_bool(node, "cd-inverted");
gpio_request_by_name(dev, "wp-gpios", 0, &slot->wp_gpio, GPIOD_IS_IN);
slot->wp_inverted = ofnode_read_bool(node, "wp-inverted");
if (slot->cfg.voltages & MMC_VDD_165_195) {
slot->is_1_8v = true;
slot->is_3_3v = false;
} else if (slot->cfg.voltages & (MMC_VDD_30_31 | MMC_VDD_31_32 |
MMC_VDD_33_34 | MMC_VDD_34_35 |
MMC_VDD_35_36)) {
slot->is_1_8v = false;
slot->is_3_3v = true;
}
bus_width = ofnode_read_u32_default(node, "bus-width", 1);
/* Note fall-through */
switch (bus_width) {
case 8:
slot->cfg.host_caps |= MMC_MODE_8BIT;
case 4:
slot->cfg.host_caps |= MMC_MODE_4BIT;
case 1:
slot->cfg.host_caps |= MMC_MODE_1BIT;
break;
}
if (ofnode_read_bool(node, "no-1-8-v")) {
slot->is_3_3v = true;
slot->is_1_8v = false;
if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34)))
pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n",
__func__, dev->name);
}
if (ofnode_read_bool(node, "mmc-ddr-3-3v")) {
slot->is_3_3v = true;
slot->is_1_8v = false;
if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34)))
pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n",
__func__, dev->name);
}
if (ofnode_read_bool(node, "cap-sd-highspeed") ||
ofnode_read_bool(node, "cap-mmc-highspeed") ||
ofnode_read_bool(node, "sd-uhs-sdr25"))
slot->cfg.host_caps |= MMC_MODE_HS;
if (slot->cfg.f_max >= 50000000 &&
slot->cfg.host_caps & MMC_MODE_HS)
slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
if (ofnode_read_bool(node, "sd-uhs-sdr50"))
slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
if (ofnode_read_bool(node, "sd-uhs-ddr50"))
slot->cfg.host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz |
MMC_MODE_DDR_52MHz;
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
if (!slot->is_asim && !slot->is_emul) {
if (ofnode_read_bool(node, "mmc-hs200-1_8v"))
slot->cfg.host_caps |= MMC_MODE_HS200 |
MMC_MODE_HS_52MHz;
if (ofnode_read_bool(node, "mmc-hs400-1_8v"))
slot->cfg.host_caps |= MMC_MODE_HS400 |
MMC_MODE_HS_52MHz |
MMC_MODE_HS200 |
MMC_MODE_DDR_52MHz;
slot->cmd_out_hs200_delay =
ofnode_read_u32_default(node,
"marvell,cmd-out-hs200-dly",
MMC_DEFAULT_HS200_CMD_OUT_DLY);
debug("%s(%s): HS200 cmd out delay: %d\n",
__func__, dev->name, slot->cmd_out_hs200_delay);
slot->data_out_hs200_delay =
ofnode_read_u32_default(node,
"marvell,data-out-hs200-dly",
MMC_DEFAULT_HS200_DATA_OUT_DLY);
debug("%s(%s): HS200 data out delay: %d\n",
__func__, dev->name, slot->data_out_hs200_delay);
slot->cmd_out_hs400_delay =
ofnode_read_u32_default(node,
"marvell,cmd-out-hs400-dly",
MMC_DEFAULT_HS400_CMD_OUT_DLY);
debug("%s(%s): HS400 cmd out delay: %d\n",
__func__, dev->name, slot->cmd_out_hs400_delay);
slot->data_out_hs400_delay =
ofnode_read_u32_default(node,
"marvell,data-out-hs400-dly",
MMC_DEFAULT_HS400_DATA_OUT_DLY);
debug("%s(%s): HS400 data out delay: %d\n",
__func__, dev->name, slot->data_out_hs400_delay);
}
}
slot->disable_ddr = ofnode_read_bool(node, "marvell,disable-ddr");
slot->non_removable = ofnode_read_bool(node, "non-removable");
slot->cmd_clk_skew = ofnode_read_u32_default(node,
"cavium,cmd-clk-skew", 0);
slot->dat_clk_skew = ofnode_read_u32_default(node,
"cavium,dat-clk-skew", 0);
debug("%s(%s): host caps: 0x%x\n", __func__,
dev->name, slot->cfg.host_caps);
return 0;
}
/**
* Probes a MMC slot
*
* @param dev mmc device
*
* @return 0 for success, error otherwise
*/
static int octeontx_mmc_slot_probe(struct udevice *dev)
{
struct octeontx_mmc_slot *slot;
struct mmc *mmc;
int err;
debug("%s(%s)\n", __func__, dev->name);
if (!host_probed) {
pr_err("%s(%s): Error: host not probed yet\n",
__func__, dev->name);
}
slot = dev_to_mmc_slot(dev);
mmc = &slot->mmc;
mmc->dev = dev;
slot->valid = false;
if (!octeontx_mmc_get_valid(dev)) {
debug("%s(%s): slot is invalid\n", __func__, dev->name);
return -ENODEV;
}
debug("%s(%s): Getting config\n", __func__, dev->name);
err = octeontx_mmc_get_config(dev);
if (err) {
pr_err("probe(%s): Error getting config\n", dev->name);
return err;
}
debug("%s(%s): mmc bind, mmc: %p\n", __func__, dev->name, &slot->mmc);
err = mmc_bind(dev, &slot->mmc, &slot->cfg);
if (err) {
pr_err("%s(%s): Error binding mmc\n", __func__, dev->name);
return -1;
}
/* For some reason, mmc_bind always assigns priv to the device */
slot->mmc.priv = slot;
debug("%s(%s): lowlevel init\n", __func__, dev->name);
err = octeontx_mmc_init_lowlevel(mmc);
if (err) {
pr_err("probe(%s): Low-level init failed\n", dev->name);
return err;
}
slot->valid = true;
debug("%s(%s):\n"
" base address : %p\n"
" bus id : %d\n", __func__, dev->name,
slot->base_addr, slot->bus_id);
return err;
}
/**
* MMC slot driver operations
*/
static const struct dm_mmc_ops octeontx_hsmmc_ops = {
.send_cmd = octeontx_mmc_dev_send_cmd,
.set_ios = octeontx_mmc_set_ios,
.get_cd = octeontx_mmc_get_cd,
.get_wp = octeontx_mmc_get_wp,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = octeontx_mmc_execute_tuning,
#endif
};
static const struct udevice_id octeontx_hsmmc_ids[] = {
{ .compatible = "mmc-slot" },
{ }
};
U_BOOT_DRIVER(octeontx_hsmmc_slot) = {
.name = "octeontx_hsmmc_slot",
.id = UCLASS_MMC,
.of_match = of_match_ptr(octeontx_hsmmc_ids),
.probe = octeontx_mmc_slot_probe,
.ops = &octeontx_hsmmc_ops,
};
/*****************************************************************
* PCI host driver
*
* The PCI host driver contains the resources used by all of the
* slot drivers.
*
* The slot drivers are pseudo drivers.
*/
/**
* Probe the MMC host controller
*
* @param dev mmc host controller device
*
* @return 0 for success, -1 on error
*/
static int octeontx_mmc_host_probe(struct udevice *dev)
{
struct octeontx_mmc_host *host = dev_get_priv(dev);
union mio_emm_int emm_int;
u8 rev;
debug("%s(%s): Entry host: %p\n", __func__, dev->name, host);
if (!octeontx_mmc_get_valid(dev)) {
debug("%s(%s): mmc host not valid\n", __func__, dev->name);
return -ENODEV;
}
memset(host, 0, sizeof(*host));
host->base_addr = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0,
PCI_REGION_MEM);
if (!host->base_addr) {
pr_err("%s: Error: MMC base address not found\n", __func__);
return -1;
}
host->dev = dev;
debug("%s(%s): Base address: %p\n", __func__, dev->name,
host->base_addr);
if (!dev_has_ofnode(dev)) {
pr_err("%s: No device tree information found\n", __func__);
return -1;
}
host->node = dev_ofnode(dev);
host->last_slotid = -1;
if (otx_is_platform(PLATFORM_ASIM))
host->is_asim = true;
if (otx_is_platform(PLATFORM_EMULATOR))
host->is_emul = true;
host->dma_wait_delay =
ofnode_read_u32_default(dev_ofnode(dev),
"marvell,dma-wait-delay", 1);
/* Force reset of eMMC */
writeq(0, host->base_addr + MIO_EMM_CFG());
debug("%s: Clearing MIO_EMM_CFG\n", __func__);
udelay(100);
emm_int.u = readq(host->base_addr + MIO_EMM_INT());
debug("%s: Writing 0x%llx to MIO_EMM_INT\n", __func__, emm_int.u);
writeq(emm_int.u, host->base_addr + MIO_EMM_INT());
debug("%s(%s): Getting I/O clock\n", __func__, dev->name);
host->sys_freq = octeontx_get_io_clock();
debug("%s(%s): I/O clock %llu\n", __func__, dev->name, host->sys_freq);
if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) {
/* Flags for issues to work around */
dm_pci_read_config8(dev, PCI_REVISION_ID, &rev);
if (otx_is_soc(CN96XX)) {
debug("%s: CN96XX revision %d\n", __func__, rev);
switch (rev) {
case 0:
host->calibrate_glitch = true;
host->cond_clock_glitch = true;
break;
case 1:
break;
case 2:
break;
case 0x10: /* C0 */
host->hs400_skew_needed = true;
debug("HS400 skew support enabled\n");
fallthrough;
default:
debug("CN96XX rev C0+ detected\n");
host->tap_requires_noclk = true;
break;
}
} else if (otx_is_soc(CN95XX)) {
if (!rev)
host->cond_clock_glitch = true;
}
}
host_probed = true;
return 0;
}
/**
* This performs some initial setup before a probe occurs.
*
* @param dev: MMC slot device
*
* @return 0 for success, -1 on failure
*
* Do some pre-initialization before probing a slot.
*/
static int octeontx_mmc_host_child_pre_probe(struct udevice *dev)
{
struct octeontx_mmc_host *host = dev_get_priv(dev_get_parent(dev));
struct octeontx_mmc_slot *slot;
struct mmc_uclass_priv *upriv;
ofnode node = dev_ofnode(dev);
u32 bus_id;
char name[16];
int err;
debug("%s(%s) Pre-Probe\n", __func__, dev->name);
if (ofnode_read_u32(node, "reg", &bus_id)) {
pr_err("%s(%s): Error: \"reg\" not found in device tree\n",
__func__, dev->name);
return -1;
}
if (bus_id > OCTEONTX_MAX_MMC_SLOT) {
pr_err("%s(%s): Error: \"reg\" out of range of 0..%d\n",
__func__, dev->name, OCTEONTX_MAX_MMC_SLOT);
return -1;
}
slot = &host->slots[bus_id];
dev_set_priv(dev, slot);
slot->host = host;
slot->bus_id = bus_id;
slot->dev = dev;
slot->base_addr = host->base_addr;
slot->is_asim = host->is_asim;
slot->is_emul = host->is_emul;
snprintf(name, sizeof(name), "octeontx-mmc%d", bus_id);
err = device_set_name(dev, name);
/* FIXME: This code should not be needed */
if (!dev_get_uclass_priv(dev)) {
debug("%s(%s): Allocating uclass priv\n", __func__,
dev->name);
upriv = calloc(1, sizeof(struct mmc_uclass_priv));
if (!upriv)
return -ENOMEM;
/*
* FIXME: This is not allowed
* dev_set_uclass_priv(dev, upriv);
* uclass_set_priv(dev->uclass, upriv);
*/
} else {
upriv = dev_get_uclass_priv(dev);
}
upriv->mmc = &slot->mmc;
debug("%s: uclass priv: %p, mmc: %p\n", dev->name, upriv, upriv->mmc);
debug("%s: ret: %d\n", __func__, err);
return err;
}
static const struct udevice_id octeontx_hsmmc_host_ids[] = {
{ .compatible = "cavium,thunder-8890-mmc" },
{ }
};
U_BOOT_DRIVER(octeontx_hsmmc_host) = {
.name = "octeontx_hsmmc_host",
/* FIXME: Why is this not UCLASS_MMC? */
.id = UCLASS_MISC,
.of_match = of_match_ptr(octeontx_hsmmc_host_ids),
.probe = octeontx_mmc_host_probe,
.priv_auto = sizeof(struct octeontx_mmc_host),
.child_pre_probe = octeontx_mmc_host_child_pre_probe,
.flags = DM_FLAG_PRE_RELOC,
};
static struct pci_device_id octeontx_mmc_supported[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_EMMC) },
{ },
};
U_BOOT_PCI_DEVICE(octeontx_hsmmc_host, octeontx_mmc_supported);