u-boot/board/freescale/common/vid.c
Stephen Carlson b5ee48c099 arm: fsl: common: Improve NXP VID driver PMBus support
This patch adds support for more PMBus compatible devices to the NXP
drivers for its QorIQ family devices. At runtime, the voltage regulator is
queried over I2C, and the required voltage multiplier determined. This
change supports the DIRECT and LINEAR PMBus voltage reporting modes.

Previously, the driver only supported a few specific devices such as the
IR36021 and LTC3882, so this change allows the QorIQ series to be used
with a much larger variety of core voltage regulator devices.

checkpatch warning "Use if (IS_DEFINED (...))" was ignored to maintain
consistency with the existing code.

Signed-off-by: Stephen Carlson <stcarlso@linux.microsoft.com>
Signed-off-by: Wasim Khan <wasim.khan@nxp.com>
Tested-by: Wasim Khan <wasim.khan@nxp.com>
[Rebased]
Signed-off-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-05 10:25:41 +05:30

827 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2014 Freescale Semiconductor, Inc.
* Copyright 2020 NXP
* Copyright 2020 Stephen Carlson <stcarlso@linux.microsoft.com>
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <i2c.h>
#include <irq_func.h>
#include <log.h>
#include <asm/io.h>
#ifdef CONFIG_FSL_LSCH2
#include <asm/arch/immap_lsch2.h>
#elif defined(CONFIG_FSL_LSCH3)
#include <asm/arch/immap_lsch3.h>
#else
#include <asm/immap_85xx.h>
#endif
#include <linux/delay.h>
#include "vid.h"
/* Voltages are generally handled in mV to keep them as integers */
#define MV_PER_V 1000
/*
* Select the channel on the I2C mux (on some NXP boards) that contains
* the voltage regulator to use for VID. Return 0 for success or nonzero
* for failure.
*/
int __weak i2c_multiplexer_select_vid_channel(u8 channel)
{
return 0;
}
/*
* Compensate for a board specific voltage drop between regulator and SoC.
* Returns the voltage offset in mV.
*/
int __weak board_vdd_drop_compensation(void)
{
return 0;
}
/*
* Performs any board specific adjustments after the VID voltage has been
* set. Return 0 for success or nonzero for failure.
*/
int __weak board_adjust_vdd(int vdd)
{
return 0;
}
/*
* Processor specific method of converting the fuse value read from VID
* registers into the core voltage to supply. Return the voltage in mV.
*/
u16 __weak soc_get_fuse_vid(int vid_index)
{
/* Default VDD for Layerscape Chassis 1 devices */
static const u16 vdd[32] = {
0, /* unused */
9875, /* 0.9875V */
9750,
9625,
9500,
9375,
9250,
9125,
9000,
8875,
8750,
8625,
8500,
8375,
8250,
8125,
10000, /* 1.0000V */
10125,
10250,
10375,
10500,
10625,
10750,
10875,
11000,
0, /* reserved */
};
return vdd[vid_index];
}
#ifndef I2C_VOL_MONITOR_ADDR
#define I2C_VOL_MONITOR_ADDR 0
#endif
#if CONFIG_IS_ENABLED(DM_I2C)
#define DEVICE_HANDLE_T struct udevice *
#ifndef I2C_VOL_MONITOR_BUS
#define I2C_VOL_MONITOR_BUS 0
#endif
/* If DM is in use, retrieve the udevice chip for the specified bus number */
static int vid_get_device(int address, DEVICE_HANDLE_T *dev)
{
int ret = i2c_get_chip_for_busnum(I2C_VOL_MONITOR_BUS, address, 1, dev);
if (ret)
printf("VID: Bus %d has no device with address 0x%02X\n",
I2C_VOL_MONITOR_BUS, address);
return ret;
}
#define I2C_READ(dev, register, data, length) \
dm_i2c_read(dev, register, data, length)
#define I2C_WRITE(dev, register, data, length) \
dm_i2c_write(dev, register, data, length)
#else
#define DEVICE_HANDLE_T int
/* If DM is not in use, I2C addresses are passed directly */
static int vid_get_device(int address, DEVICE_HANDLE_T *dev)
{
*dev = address;
return 0;
}
#define I2C_READ(dev, register, data, length) \
i2c_read(dev, register, 1, data, length)
#define I2C_WRITE(dev, register, data, length) \
i2c_write(dev, register, 1, data, length)
#endif
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
/*
* Get the i2c address configuration for the IR regulator chip
*
* There are some variance in the RDB HW regarding the I2C address configuration
* for the IR regulator chip, which is likely a problem of external resistor
* accuracy. So we just check each address in a hopefully non-intrusive mode
* and use the first one that seems to work
*
* The IR chip can show up under the following addresses:
* 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA)
* 0x09 (Verified on T1040RDB-PA)
* 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB)
*/
static int find_ir_chip_on_i2c(void)
{
int i2caddress, ret, i;
u8 mfrID;
const int ir_i2c_addr[] = {0x38, 0x08, 0x09};
DEVICE_HANDLE_T dev;
/* Check all the address */
for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) {
i2caddress = ir_i2c_addr[i];
ret = vid_get_device(i2caddress, &dev);
if (!ret) {
ret = I2C_READ(dev, IR36021_MFR_ID_OFFSET,
(void *)&mfrID, sizeof(mfrID));
/* If manufacturer ID matches the IR36021 */
if (!ret && mfrID == IR36021_MFR_ID)
return i2caddress;
}
}
return -1;
}
#endif
/* Maximum loop count waiting for new voltage to take effect */
#define MAX_LOOP_WAIT_NEW_VOL 100
/* Maximum loop count waiting for the voltage to be stable */
#define MAX_LOOP_WAIT_VOL_STABLE 100
/*
* read_voltage from sensor on I2C bus
* We use average of 4 readings, waiting for WAIT_FOR_ADC before
* another reading
*/
#define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */
/* If an INA220 chip is available, we can use it to read back the voltage
* as it may have a higher accuracy than the IR chip for the same purpose
*/
#ifdef CONFIG_VOL_MONITOR_INA220
#define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#else
#define WAIT_FOR_ADC 138 /* wait for 138 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#endif
#ifdef CONFIG_VOL_MONITOR_INA220
static int read_voltage_from_INA220(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf[2];
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
for (i = 0; i < NUM_READINGS; i++) {
ret = I2C_READ(dev, I2C_VOL_MONITOR_BUS_V_OFFSET,
(void *)&buf[0], sizeof(buf));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
vol_mon = (buf[0] << 8) | buf[1];
if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%04x\n", vol_mon);
/* LSB = 4mv */
voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
udelay(WAIT_FOR_ADC);
}
/* calculate the average */
voltage_read /= NUM_READINGS;
return voltage_read;
}
#endif
#ifdef CONFIG_VOL_MONITOR_IR36021_READ
/* read voltage from IR */
static int read_voltage_from_IR(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
for (i = 0; i < NUM_READINGS; i++) {
ret = I2C_READ(dev, IR36021_LOOP1_VOUT_OFFSET, (void *)&buf,
sizeof(buf));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
vol_mon = buf;
if (!vol_mon) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%02x\n", vol_mon);
/* Resolution is 1/128V. We scale up here to get 1/128mV
* and divide at the end
*/
voltage_read += vol_mon * MV_PER_V;
udelay(WAIT_FOR_ADC);
}
/* Scale down to the real mV as IR resolution is 1/128V, rounding up */
voltage_read = DIV_ROUND_UP(voltage_read, 128);
/* calculate the average */
voltage_read /= NUM_READINGS;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
voltage_read -= board_vdd_drop_compensation();
return voltage_read;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ) || \
defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
/*
* The message displayed if the VOUT exponent causes a resolution
* worse than 1.0 V (if exponent is >= 0).
*/
#define VOUT_WARNING "VID: VOUT_MODE exponent has resolution worse than 1 V!\n"
/* Checks the PMBus voltage monitor for the format used for voltage values */
static int get_pmbus_multiplier(DEVICE_HANDLE_T dev)
{
u8 mode;
int exponent, multiplier, ret;
ret = I2C_READ(dev, PMBUS_CMD_VOUT_MODE, &mode, sizeof(mode));
if (ret) {
printf("VID: unable to determine voltage multiplier\n");
return 1;
}
/* Upper 3 bits is mode, lower 5 bits is exponent */
exponent = (int)mode & 0x1F;
mode >>= 5;
switch (mode) {
case 0:
/* Linear, 5 bit twos component exponent */
if (exponent & 0x10) {
multiplier = 1 << (16 - (exponent & 0xF));
} else {
/* If exponent is >= 0, then resolution is 1 V! */
printf(VOUT_WARNING);
multiplier = 1;
}
break;
case 1:
/* VID code identifier */
printf("VID: custom VID codes are not supported\n");
multiplier = MV_PER_V;
break;
default:
/* Direct, in mV */
multiplier = MV_PER_V;
break;
}
debug("VID: calculated multiplier is %d\n", multiplier);
return multiplier;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ)
static int read_voltage_from_pmbus(int i2caddress)
{
int ret, multiplier, vout;
u8 channel = PWM_CHANNEL0;
u16 vcode;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
/* Select the right page */
ret = I2C_WRITE(dev, PMBUS_CMD_PAGE, &channel, sizeof(channel));
if (ret) {
printf("VID: failed to select VDD page %d\n", channel);
return ret;
}
/* VOUT is little endian */
ret = I2C_READ(dev, PMBUS_CMD_READ_VOUT, (void *)&vcode, sizeof(vcode));
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
/* Scale down to the real mV */
multiplier = get_pmbus_multiplier(dev);
vout = (int)vcode;
/* Multiplier 1000 (direct mode) requires no change to convert */
if (multiplier != MV_PER_V)
vout = DIV_ROUND_UP(vout * MV_PER_V, multiplier);
return vout - board_vdd_drop_compensation();
}
#endif
static int read_voltage(int i2caddress)
{
int voltage_read;
#ifdef CONFIG_VOL_MONITOR_INA220
voltage_read = read_voltage_from_INA220(I2C_VOL_MONITOR_ADDR);
#elif defined CONFIG_VOL_MONITOR_IR36021_READ
voltage_read = read_voltage_from_IR(i2caddress);
#elif defined(CONFIG_VOL_MONITOR_ISL68233_READ) || \
defined(CONFIG_VOL_MONITOR_LTC3882_READ)
voltage_read = read_voltage_from_pmbus(i2caddress);
#else
voltage_read = -1;
#endif
return voltage_read;
}
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
/*
* We need to calculate how long before the voltage stops to drop
* or increase. It returns with the loop count. Each loop takes
* several readings (WAIT_FOR_ADC)
*/
static int wait_for_new_voltage(int vdd, int i2caddress)
{
int timeout, vdd_current;
vdd_current = read_voltage(i2caddress);
/* wait until voltage starts to reach the target. Voltage slew
* rates by typical regulators will always lead to stable readings
* within each fairly long ADC interval in comparison to the
* intended voltage delta change until the target voltage is
* reached. The fairly small voltage delta change to any target
* VID voltage also means that this function will always complete
* within few iterations. If the timeout was ever reached, it would
* point to a serious failure in the regulator system.
*/
for (timeout = 0;
abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) &&
timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) {
vdd_current = read_voltage(i2caddress);
}
if (timeout >= MAX_LOOP_WAIT_NEW_VOL) {
printf("VID: Voltage adjustment timeout\n");
return -1;
}
return timeout;
}
/*
* Blocks and reads the VID voltage until it stabilizes, or the
* timeout expires
*/
static int wait_for_voltage_stable(int i2caddress)
{
int timeout, vdd_current, vdd;
vdd = read_voltage(i2caddress);
udelay(NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage(i2caddress);
/*
* The maximum timeout is
* MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC
*/
for (timeout = MAX_LOOP_WAIT_VOL_STABLE;
abs(vdd - vdd_current) > ADC_MIN_ACCURACY &&
timeout > 0; timeout--) {
vdd = vdd_current;
udelay(NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage(i2caddress);
}
if (timeout == 0)
return -1;
return vdd_current;
}
/* Sets the VID voltage using the IR36021 */
static int set_voltage_to_IR(int i2caddress, int vdd)
{
int wait, vdd_last;
int ret;
u8 vid;
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
vdd += board_vdd_drop_compensation();
#ifdef CONFIG_FSL_LSCH2
vid = DIV_ROUND_UP(vdd - 265, 5);
#else
vid = DIV_ROUND_UP(vdd - 245, 5);
#endif
ret = I2C_WRITE(dev, IR36021_LOOP1_MANUAL_ID_OFFSET, (void *)&vid,
sizeof(vid));
if (ret) {
printf("VID: failed to write new voltage\n");
return -1;
}
wait = wait_for_new_voltage(vdd, i2caddress);
if (wait < 0)
return -1;
debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
vdd_last = wait_for_voltage_stable(i2caddress);
if (vdd_last < 0)
return -1;
debug("VID: Current voltage is %d mV\n", vdd_last);
return vdd_last;
}
#endif
#if defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
static int set_voltage_to_pmbus(int i2caddress, int vdd)
{
int ret, vdd_last, vdd_target = vdd;
int count = MAX_LOOP_WAIT_NEW_VOL, temp = 0, multiplier;
unsigned char value;
/* The data to be sent with the PMBus command PAGE_PLUS_WRITE */
u8 buffer[5] = { 0x04, PWM_CHANNEL0, PMBUS_CMD_VOUT_COMMAND, 0, 0 };
DEVICE_HANDLE_T dev;
/* Open device handle */
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
/* Scale up to the proper value for the VOUT command, little endian */
multiplier = get_pmbus_multiplier(dev);
vdd += board_vdd_drop_compensation();
if (multiplier != MV_PER_V)
vdd = DIV_ROUND_UP(vdd * multiplier, MV_PER_V);
buffer[3] = vdd & 0xFF;
buffer[4] = (vdd & 0xFF00) >> 8;
/* Check write protect state */
ret = I2C_READ(dev, PMBUS_CMD_WRITE_PROTECT, (void *)&value,
sizeof(value));
if (ret)
goto exit;
if (value != EN_WRITE_ALL_CMD) {
value = EN_WRITE_ALL_CMD;
ret = I2C_WRITE(dev, PMBUS_CMD_WRITE_PROTECT,
(void *)&value, sizeof(value));
if (ret)
goto exit;
}
/* Write the desired voltage code to the regulator */
ret = I2C_WRITE(dev, PMBUS_CMD_PAGE_PLUS_WRITE, (void *)&buffer[0],
sizeof(buffer));
if (ret) {
printf("VID: I2C failed to write to the voltage regulator\n");
return -1;
}
exit:
/* Wait for the voltage to get to the desired value */
do {
vdd_last = read_voltage_from_pmbus(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjust\n");
return -1;
}
count--;
temp = vdd_last - vdd_target;
} while ((abs(temp) > 2) && (count > 0));
return vdd_last;
}
#endif
static int set_voltage(int i2caddress, int vdd)
{
int vdd_last = -1;
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
vdd_last = set_voltage_to_IR(i2caddress, vdd);
#elif defined(CONFIG_VOL_MONITOR_ISL68233_SET) || \
defined(CONFIG_VOL_MONITOR_LTC3882_SET)
vdd_last = set_voltage_to_pmbus(i2caddress, vdd);
#else
#error Specific voltage monitor must be defined
#endif
return vdd_last;
}
int adjust_vdd(ulong vdd_override)
{
int re_enable = disable_interrupts();
#if defined(CONFIG_FSL_LSCH2) || defined(CONFIG_FSL_LSCH3)
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
#else
ccsr_gur_t __iomem *gur =
(void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
#endif
u8 vid;
u32 fusesr;
int vdd_current, vdd_last, vdd_target;
int ret, i2caddress = I2C_VOL_MONITOR_ADDR;
unsigned long vdd_string_override;
char *vdd_string;
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
u8 buf;
DEVICE_HANDLE_T dev;
#endif
/*
* VID is used according to the table below
* ---------------------------------------
* | DA_V |
* |-------------------------------------|
* | 5b00000 | 5b00001-5b11110 | 5b11111 |
* ---------------+---------+-----------------+---------|
* | D | 5b00000 | NO VID | VID = DA_V | NO VID |
* | A |----------+---------+-----------------+---------|
* | _ | 5b00001 |VID = | VID = |VID = |
* | V | ~ | DA_V_ALT| DA_V_ALT | DA_A_VLT|
* | _ | 5b11110 | | | |
* | A |----------+---------+-----------------+---------|
* | L | 5b11111 | No VID | VID = DA_V | NO VID |
* | T | | | | |
* ------------------------------------------------------
*/
#if defined(CONFIG_FSL_LSCH3)
fusesr = in_le32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CHASSIS3_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CHASSIS3_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS3_DCFG_FUSESR_VID_MASK;
}
#elif defined(CONFIG_FSL_LSCH2)
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_VID_MASK;
}
#else
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
if (vid == 0 || vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK) {
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_VID_MASK;
}
#endif
vdd_target = soc_get_fuse_vid((int)vid);
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID: I2C failed to switch channel\n");
ret = -1;
goto exit;
}
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
ret = -1;
goto exit;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
ret = vid_get_device(i2caddress, &dev);
if (ret)
return ret;
/* check IR chip work on Intel mode */
ret = I2C_READ(dev, IR36021_INTEL_MODE_OFFSET, (void *)&buf,
sizeof(buf));
if (ret) {
printf("VID: failed to read IR chip mode.\n");
ret = -1;
goto exit;
}
if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) {
printf("VID: IR Chip is not used in Intel mode.\n");
ret = -1;
goto exit;
}
#endif
/* check override variable for overriding VDD */
vdd_string = env_get(CONFIG_VID_FLS_ENV);
debug("VID: Initial VDD value is %d mV\n",
DIV_ROUND_UP(vdd_target, 10));
if (vdd_override == 0 && vdd_string &&
!strict_strtoul(vdd_string, 10, &vdd_string_override))
vdd_override = vdd_string_override;
if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) {
vdd_target = vdd_override * 10; /* convert to 1/10 mV */
debug("VID: VDD override is %lu\n", vdd_override);
} else if (vdd_override != 0) {
printf("VID: Invalid VDD value.\n");
}
if (vdd_target == 0) {
debug("VID: VID not used\n");
ret = 0;
goto exit;
} else {
/* divide and round up by 10 to get a value in mV */
vdd_target = DIV_ROUND_UP(vdd_target, 10);
debug("VID: vid = %d mV\n", vdd_target);
}
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
ret = -1;
goto exit;
}
vdd_current = vdd_last;
debug("VID: Core voltage is currently at %d mV\n", vdd_last);
#if defined(CONFIG_VOL_MONITOR_LTC3882_SET) || \
defined(CONFIG_VOL_MONITOR_ISL68233_SET)
/* Set the target voltage */
vdd_current = set_voltage(i2caddress, vdd_target);
vdd_last = vdd_current;
#else
/*
* Adjust voltage to at or one step above target.
* As measurements are less precise than setting the values
* we may run through dummy steps that cancel each other
* when stepping up and then down.
*/
while (vdd_last > 0 &&
vdd_last < vdd_target) {
vdd_current += IR_VDD_STEP_UP;
vdd_last = set_voltage(i2caddress, vdd_current);
}
while (vdd_last > 0 &&
vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) {
vdd_current -= IR_VDD_STEP_DOWN;
vdd_last = set_voltage(i2caddress, vdd_current);
}
#endif
/* Board specific adjustments */
if (board_adjust_vdd(vdd_target) < 0) {
ret = -1;
goto exit;
}
if (vdd_last > 0)
printf("VID: Core voltage after adjustment is at %d mV\n",
vdd_last);
else
ret = -1;
exit:
if (re_enable)
enable_interrupts();
i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
return ret;
}
static int print_vdd(void)
{
int vdd_last, ret, i2caddress = I2C_VOL_MONITOR_ADDR;
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID : I2c failed to switch channel\n");
return -1;
}
#if defined(CONFIG_VOL_MONITOR_IR36021_SET) || \
defined(CONFIG_VOL_MONITOR_IR36021_READ)
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
goto exit;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
#endif
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
goto exit;
}
printf("VID: Core voltage is at %d mV\n", vdd_last);
exit:
i2c_multiplexer_select_vid_channel(I2C_MUX_CH_DEFAULT);
return ret < 0 ? -1 : 0;
}
static int do_vdd_override(struct cmd_tbl *cmdtp,
int flag, int argc,
char *const argv[])
{
ulong override;
if (argc < 2)
return CMD_RET_USAGE;
if (!strict_strtoul(argv[1], 10, &override))
adjust_vdd(override); /* the value is checked by callee */
else
return CMD_RET_USAGE;
return 0;
}
static int do_vdd_read(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
if (argc < 1)
return CMD_RET_USAGE;
print_vdd();
return 0;
}
U_BOOT_CMD(
vdd_override, 2, 0, do_vdd_override,
"override VDD",
" - override with the voltage specified in mV, eg. 1050"
);
U_BOOT_CMD(
vdd_read, 1, 0, do_vdd_read,
"read VDD",
" - Read the voltage specified in mV"
)