mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-18 10:48:51 +00:00
c72231d272
Signed-off-by: Wolfgang Denk <wd@denx.de>
1332 lines
35 KiB
C
1332 lines
35 KiB
C
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
|
|
/*
|
|
* Copied from kernel/include/uapi/linux/btrfs_btree.h.
|
|
*
|
|
* Only modified the header.
|
|
*/
|
|
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
|
|
#ifndef __BTRFS_TREE_H__
|
|
#define __BTRFS_TREE_H__
|
|
|
|
#include <linux/types.h>
|
|
|
|
#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
|
|
|
|
/*
|
|
* The max metadata block size (node size).
|
|
*
|
|
* This limit is somewhat artificial. The memmove and tree block locking cost
|
|
* go up with larger node size.
|
|
*/
|
|
#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
|
|
|
|
/*
|
|
* We can actually store much bigger names, but lets not confuse the rest
|
|
* of linux.
|
|
*
|
|
* btrfs_dir_item::name_len follows this limitation.
|
|
*/
|
|
#define BTRFS_NAME_LEN 255
|
|
|
|
/*
|
|
* Objectids start from here.
|
|
*
|
|
* Check btrfs_disk_key for the meaning of objectids.
|
|
*/
|
|
|
|
/*
|
|
* Root tree holds pointers to all of the tree roots.
|
|
* Without special mention, the root tree contains the root bytenr of all other
|
|
* trees, except the chunk tree and the log tree.
|
|
*
|
|
* The super block contains the root bytenr of this tree.
|
|
*/
|
|
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
|
|
|
|
/*
|
|
* Extent tree stores information about which extents are in use, and backrefs
|
|
* for each extent.
|
|
*/
|
|
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
|
|
|
|
/*
|
|
* Chunk tree stores btrfs logical address -> physical address mapping.
|
|
*
|
|
* The super block contains part of chunk tree for bootstrap, and contains
|
|
* the root bytenr of this tree.
|
|
*/
|
|
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
|
|
|
|
/*
|
|
* Device tree stores info about which areas of a given device are in use,
|
|
* and physical address -> btrfs logical address mapping.
|
|
*/
|
|
#define BTRFS_DEV_TREE_OBJECTID 4ULL
|
|
|
|
/* The fs tree is the first subvolume tree, storing files and directories. */
|
|
#define BTRFS_FS_TREE_OBJECTID 5ULL
|
|
|
|
/* Shows the directory objectid inside the root tree. */
|
|
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
|
|
|
|
/* Csum tree holds checksums of all the data extents. */
|
|
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
|
|
|
|
/* Quota tree holds quota configuration and tracking. */
|
|
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
|
|
|
|
/* UUID tree stores items that use the BTRFS_UUID_KEY* types. */
|
|
#define BTRFS_UUID_TREE_OBJECTID 9ULL
|
|
|
|
/* Free space cache tree (v2 space cache) tracks free space in block groups. */
|
|
#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
|
|
|
|
/* Indicates device stats in the device tree. */
|
|
#define BTRFS_DEV_STATS_OBJECTID 0ULL
|
|
|
|
/* For storing balance parameters in the root tree. */
|
|
#define BTRFS_BALANCE_OBJECTID -4ULL
|
|
|
|
/* Orhpan objectid for tracking unlinked/truncated files. */
|
|
#define BTRFS_ORPHAN_OBJECTID -5ULL
|
|
|
|
/* Does write ahead logging to speed up fsyncs. */
|
|
#define BTRFS_TREE_LOG_OBJECTID -6ULL
|
|
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
|
|
|
|
/* For space balancing. */
|
|
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
|
|
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
|
|
|
|
/* Extent checksums, shared between the csum tree and log trees. */
|
|
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
|
|
|
|
/* For storing free space cache (v1 space cache). */
|
|
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
|
|
|
|
/* The inode number assigned to the special inode for storing free ino cache. */
|
|
#define BTRFS_FREE_INO_OBJECTID -12ULL
|
|
|
|
/* Dummy objectid represents multiple objectids. */
|
|
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
|
|
|
|
/* All files have objectids in this range. */
|
|
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
|
|
#define BTRFS_LAST_FREE_OBJECTID -256ULL
|
|
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
|
|
|
|
|
|
/*
|
|
* The device items go into the chunk tree.
|
|
*
|
|
* The key is in the form
|
|
* (BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY, <device_id>)
|
|
*/
|
|
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
|
|
|
|
#define BTRFS_BTREE_INODE_OBJECTID 1
|
|
|
|
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
|
|
|
|
#define BTRFS_DEV_REPLACE_DEVID 0ULL
|
|
|
|
/*
|
|
* Types start from here.
|
|
*
|
|
* Check btrfs_disk_key for details about types.
|
|
*/
|
|
|
|
/*
|
|
* Inode items have the data typically returned from stat and store other
|
|
* info about object characteristics.
|
|
*
|
|
* There is one for every file and dir in the FS.
|
|
*/
|
|
#define BTRFS_INODE_ITEM_KEY 1
|
|
/* reserve 2-11 close to the inode for later flexibility */
|
|
#define BTRFS_INODE_REF_KEY 12
|
|
#define BTRFS_INODE_EXTREF_KEY 13
|
|
#define BTRFS_XATTR_ITEM_KEY 24
|
|
#define BTRFS_ORPHAN_ITEM_KEY 48
|
|
|
|
/*
|
|
* Dir items are the name -> inode pointers in a directory.
|
|
*
|
|
* There is one for every name in a directory.
|
|
*/
|
|
#define BTRFS_DIR_LOG_ITEM_KEY 60
|
|
#define BTRFS_DIR_LOG_INDEX_KEY 72
|
|
#define BTRFS_DIR_ITEM_KEY 84
|
|
#define BTRFS_DIR_INDEX_KEY 96
|
|
|
|
/* Stores info (position, size ...) about a data extent of a file */
|
|
#define BTRFS_EXTENT_DATA_KEY 108
|
|
|
|
/*
|
|
* Extent csums are stored in a separate tree and hold csums for
|
|
* an entire extent on disk.
|
|
*/
|
|
#define BTRFS_EXTENT_CSUM_KEY 128
|
|
|
|
/*
|
|
* Root items point to tree roots.
|
|
*
|
|
* They are typically in the root tree used by the super block to find all the
|
|
* other trees.
|
|
*/
|
|
#define BTRFS_ROOT_ITEM_KEY 132
|
|
|
|
/*
|
|
* Root backrefs tie subvols and snapshots to the directory entries that
|
|
* reference them.
|
|
*/
|
|
#define BTRFS_ROOT_BACKREF_KEY 144
|
|
|
|
/*
|
|
* Root refs make a fast index for listing all of the snapshots and
|
|
* subvolumes referenced by a given root. They point directly to the
|
|
* directory item in the root that references the subvol.
|
|
*/
|
|
#define BTRFS_ROOT_REF_KEY 156
|
|
|
|
/*
|
|
* Extent items are in the extent tree.
|
|
*
|
|
* These record which blocks are used, and how many references there are.
|
|
*/
|
|
#define BTRFS_EXTENT_ITEM_KEY 168
|
|
|
|
/*
|
|
* The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
|
|
* the length, so we save the level in key->offset instead of the length.
|
|
*/
|
|
#define BTRFS_METADATA_ITEM_KEY 169
|
|
|
|
#define BTRFS_TREE_BLOCK_REF_KEY 176
|
|
|
|
#define BTRFS_EXTENT_DATA_REF_KEY 178
|
|
|
|
#define BTRFS_EXTENT_REF_V0_KEY 180
|
|
|
|
#define BTRFS_SHARED_BLOCK_REF_KEY 182
|
|
|
|
#define BTRFS_SHARED_DATA_REF_KEY 184
|
|
|
|
/*
|
|
* Block groups give us hints into the extent allocation trees.
|
|
*
|
|
* Stores how many free space there is in a block group.
|
|
*/
|
|
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
|
|
|
|
/*
|
|
* Every block group is represented in the free space tree by a free space info
|
|
* item, which stores some accounting information. It is keyed on
|
|
* (block_group_start, FREE_SPACE_INFO, block_group_length).
|
|
*/
|
|
#define BTRFS_FREE_SPACE_INFO_KEY 198
|
|
|
|
/*
|
|
* A free space extent tracks an extent of space that is free in a block group.
|
|
* It is keyed on (start, FREE_SPACE_EXTENT, length).
|
|
*/
|
|
#define BTRFS_FREE_SPACE_EXTENT_KEY 199
|
|
|
|
/*
|
|
* When a block group becomes very fragmented, we convert it to use bitmaps
|
|
* instead of extents.
|
|
*
|
|
* A free space bitmap is keyed on (start, FREE_SPACE_BITMAP, length).
|
|
* The corresponding item is a bitmap with (length / sectorsize) bits.
|
|
*/
|
|
#define BTRFS_FREE_SPACE_BITMAP_KEY 200
|
|
|
|
#define BTRFS_DEV_EXTENT_KEY 204
|
|
#define BTRFS_DEV_ITEM_KEY 216
|
|
#define BTRFS_CHUNK_ITEM_KEY 228
|
|
|
|
/*
|
|
* Records the overall state of the qgroups.
|
|
*
|
|
* There's only one instance of this key present,
|
|
* (0, BTRFS_QGROUP_STATUS_KEY, 0)
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_KEY 240
|
|
/*
|
|
* Records the currently used space of the qgroup.
|
|
*
|
|
* One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
|
|
*/
|
|
#define BTRFS_QGROUP_INFO_KEY 242
|
|
|
|
/*
|
|
* Contains the user configured limits for the qgroup.
|
|
*
|
|
* One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
|
|
*/
|
|
#define BTRFS_QGROUP_LIMIT_KEY 244
|
|
|
|
/*
|
|
* Records the child-parent relationship of qgroups. For
|
|
* each relation, 2 keys are present:
|
|
* (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
|
|
* (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
|
|
*/
|
|
#define BTRFS_QGROUP_RELATION_KEY 246
|
|
|
|
/* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */
|
|
#define BTRFS_BALANCE_ITEM_KEY 248
|
|
|
|
/*
|
|
* The key type for tree items that are stored persistently, but do not need to
|
|
* exist for extended period of time. The items can exist in any tree.
|
|
*
|
|
* [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
|
|
*
|
|
* Existing items:
|
|
*
|
|
* - balance status item
|
|
* (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
|
|
*/
|
|
#define BTRFS_TEMPORARY_ITEM_KEY 248
|
|
|
|
/* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */
|
|
#define BTRFS_DEV_STATS_KEY 249
|
|
|
|
/*
|
|
* The key type for tree items that are stored persistently and usually exist
|
|
* for a long period, eg. filesystem lifetime. The item kinds can be status
|
|
* information, stats or preference values. The item can exist in any tree.
|
|
*
|
|
* [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
|
|
*
|
|
* Existing items:
|
|
*
|
|
* - device statistics, store IO stats in the device tree, one key for all
|
|
* stats
|
|
* (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
|
|
*/
|
|
#define BTRFS_PERSISTENT_ITEM_KEY 249
|
|
|
|
/*
|
|
* Persistently stores the device replace state in the device tree.
|
|
*
|
|
* The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
|
|
*/
|
|
#define BTRFS_DEV_REPLACE_KEY 250
|
|
|
|
/*
|
|
* Stores items that allow to quickly map UUIDs to something else.
|
|
*
|
|
* These items are part of the filesystem UUID tree.
|
|
* The key is built like this:
|
|
* (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
|
|
*/
|
|
#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
|
|
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
|
|
* received subvols */
|
|
|
|
/*
|
|
* String items are for debugging.
|
|
*
|
|
* They just store a short string of data in the FS.
|
|
*/
|
|
#define BTRFS_STRING_ITEM_KEY 253
|
|
|
|
|
|
/* 32 bytes in various csum fields */
|
|
#define BTRFS_CSUM_SIZE 32
|
|
|
|
/* Csum types */
|
|
enum btrfs_csum_type {
|
|
BTRFS_CSUM_TYPE_CRC32 = 0,
|
|
BTRFS_CSUM_TYPE_XXHASH = 1,
|
|
BTRFS_CSUM_TYPE_SHA256 = 2,
|
|
BTRFS_CSUM_TYPE_BLAKE2 = 3,
|
|
};
|
|
|
|
/*
|
|
* Flags definitions for directory entry item type.
|
|
*
|
|
* Used by:
|
|
* struct btrfs_dir_item.type
|
|
*
|
|
* Values 0..7 must match common file type values in fs_types.h.
|
|
*/
|
|
#define BTRFS_FT_UNKNOWN 0
|
|
#define BTRFS_FT_REG_FILE 1
|
|
#define BTRFS_FT_DIR 2
|
|
#define BTRFS_FT_CHRDEV 3
|
|
#define BTRFS_FT_BLKDEV 4
|
|
#define BTRFS_FT_FIFO 5
|
|
#define BTRFS_FT_SOCK 6
|
|
#define BTRFS_FT_SYMLINK 7
|
|
#define BTRFS_FT_XATTR 8
|
|
#define BTRFS_FT_MAX 9
|
|
|
|
#define BTRFS_FSID_SIZE 16
|
|
#define BTRFS_UUID_SIZE 16
|
|
|
|
/*
|
|
* The key defines the order in the tree, and so it also defines (optimal)
|
|
* block layout.
|
|
*
|
|
* Objectid and offset are interpreted based on type.
|
|
* While normally for objectid, it either represents a root number, or an
|
|
* inode number.
|
|
*
|
|
* Type tells us things about the object, and is a kind of stream selector.
|
|
* Check the following URL for full references about btrfs_disk_key/btrfs_key:
|
|
* https://btrfs.wiki.kernel.org/index.php/Btree_Items
|
|
*
|
|
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
|
|
* in cpu native order. Otherwise they are identical and their sizes
|
|
* should be the same (ie both packed)
|
|
*/
|
|
struct btrfs_disk_key {
|
|
__le64 objectid;
|
|
__u8 type;
|
|
__le64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_key {
|
|
__u64 objectid;
|
|
__u8 type;
|
|
__u64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dev_item {
|
|
/* The internal btrfs device id */
|
|
__le64 devid;
|
|
|
|
/* Size of the device */
|
|
__le64 total_bytes;
|
|
|
|
/* Bytes used */
|
|
__le64 bytes_used;
|
|
|
|
/* Optimal io alignment for this device */
|
|
__le32 io_align;
|
|
|
|
/* Optimal io width for this device */
|
|
__le32 io_width;
|
|
|
|
/* Minimal io size for this device */
|
|
__le32 sector_size;
|
|
|
|
/* Type and info about this device */
|
|
__le64 type;
|
|
|
|
/* Expected generation for this device */
|
|
__le64 generation;
|
|
|
|
/*
|
|
* Starting byte of this partition on the device,
|
|
* to allow for stripe alignment in the future.
|
|
*/
|
|
__le64 start_offset;
|
|
|
|
/* Grouping information for allocation decisions */
|
|
__le32 dev_group;
|
|
|
|
/* Optimal seek speed 0-100 where 100 is fastest */
|
|
__u8 seek_speed;
|
|
|
|
/* Optimal bandwidth 0-100 where 100 is fastest */
|
|
__u8 bandwidth;
|
|
|
|
/* Btrfs generated uuid for this device */
|
|
__u8 uuid[BTRFS_UUID_SIZE];
|
|
|
|
/* UUID of FS who owns this device */
|
|
__u8 fsid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_stripe {
|
|
__le64 devid;
|
|
__le64 offset;
|
|
__u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_chunk {
|
|
/* Size of this chunk in bytes */
|
|
__le64 length;
|
|
|
|
/* Objectid of the root referencing this chunk */
|
|
__le64 owner;
|
|
|
|
__le64 stripe_len;
|
|
__le64 type;
|
|
|
|
/* Optimal io alignment for this chunk */
|
|
__le32 io_align;
|
|
|
|
/* Optimal io width for this chunk */
|
|
__le32 io_width;
|
|
|
|
/* Minimal io size for this chunk */
|
|
__le32 sector_size;
|
|
|
|
/*
|
|
* 2^16 stripes is quite a lot, a second limit is the size of a single
|
|
* item in the btree.
|
|
*/
|
|
__le16 num_stripes;
|
|
|
|
/* Sub stripes only matter for raid10 */
|
|
__le16 sub_stripes;
|
|
struct btrfs_stripe stripe;
|
|
/* additional stripes go here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_FREE_SPACE_EXTENT 1
|
|
#define BTRFS_FREE_SPACE_BITMAP 2
|
|
|
|
struct btrfs_free_space_entry {
|
|
__le64 offset;
|
|
__le64 bytes;
|
|
__u8 type;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_free_space_header {
|
|
struct btrfs_disk_key location;
|
|
__le64 generation;
|
|
__le64 num_entries;
|
|
__le64 num_bitmaps;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
|
|
#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
|
|
|
|
/* Super block flags */
|
|
/* Errors detected */
|
|
#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
|
|
|
|
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
|
|
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
|
|
#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
|
|
#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
|
|
#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
|
|
|
|
|
|
/*
|
|
* Items in the extent tree are used to record the objectid of the
|
|
* owner of the block and the number of references.
|
|
*/
|
|
struct btrfs_extent_item {
|
|
__le64 refs;
|
|
__le64 generation;
|
|
__le64 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_item_v0 {
|
|
__le32 refs;
|
|
} __attribute__ ((__packed__));
|
|
|
|
|
|
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
|
|
#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
|
|
|
|
/* Use full backrefs for extent pointers in the block */
|
|
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
|
|
|
|
/*
|
|
* This flag is only used internally by scrub and may be changed at any time
|
|
* it is only declared here to avoid collisions.
|
|
*/
|
|
#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
|
|
|
|
struct btrfs_tree_block_info {
|
|
struct btrfs_disk_key key;
|
|
__u8 level;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_data_ref {
|
|
__le64 root;
|
|
__le64 objectid;
|
|
__le64 offset;
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_shared_data_ref {
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_inline_ref {
|
|
__u8 type;
|
|
__le64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* Old style backrefs item */
|
|
struct btrfs_extent_ref_v0 {
|
|
__le64 root;
|
|
__le64 generation;
|
|
__le64 objectid;
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
|
|
/* Dev extents record used space on individual devices.
|
|
*
|
|
* The owner field points back to the chunk allocation mapping tree that
|
|
* allocated the extent.
|
|
* The chunk tree uuid field is a way to double check the owner.
|
|
*/
|
|
struct btrfs_dev_extent {
|
|
__le64 chunk_tree;
|
|
__le64 chunk_objectid;
|
|
__le64 chunk_offset;
|
|
__le64 length;
|
|
__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_inode_ref {
|
|
__le64 index;
|
|
__le16 name_len;
|
|
/* Name goes here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_inode_extref {
|
|
__le64 parent_objectid;
|
|
__le64 index;
|
|
__le16 name_len;
|
|
__u8 name[0];
|
|
/* Name goes here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_timespec {
|
|
__le64 sec;
|
|
__le32 nsec;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* Inode flags */
|
|
#define BTRFS_INODE_NODATASUM (1 << 0)
|
|
#define BTRFS_INODE_NODATACOW (1 << 1)
|
|
#define BTRFS_INODE_READONLY (1 << 2)
|
|
#define BTRFS_INODE_NOCOMPRESS (1 << 3)
|
|
#define BTRFS_INODE_PREALLOC (1 << 4)
|
|
#define BTRFS_INODE_SYNC (1 << 5)
|
|
#define BTRFS_INODE_IMMUTABLE (1 << 6)
|
|
#define BTRFS_INODE_APPEND (1 << 7)
|
|
#define BTRFS_INODE_NODUMP (1 << 8)
|
|
#define BTRFS_INODE_NOATIME (1 << 9)
|
|
#define BTRFS_INODE_DIRSYNC (1 << 10)
|
|
#define BTRFS_INODE_COMPRESS (1 << 11)
|
|
|
|
#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
|
|
|
|
#define BTRFS_INODE_FLAG_MASK \
|
|
(BTRFS_INODE_NODATASUM | \
|
|
BTRFS_INODE_NODATACOW | \
|
|
BTRFS_INODE_READONLY | \
|
|
BTRFS_INODE_NOCOMPRESS | \
|
|
BTRFS_INODE_PREALLOC | \
|
|
BTRFS_INODE_SYNC | \
|
|
BTRFS_INODE_IMMUTABLE | \
|
|
BTRFS_INODE_APPEND | \
|
|
BTRFS_INODE_NODUMP | \
|
|
BTRFS_INODE_NOATIME | \
|
|
BTRFS_INODE_DIRSYNC | \
|
|
BTRFS_INODE_COMPRESS | \
|
|
BTRFS_INODE_ROOT_ITEM_INIT)
|
|
|
|
struct btrfs_inode_item {
|
|
/* Nfs style generation number */
|
|
__le64 generation;
|
|
/* Transid that last touched this inode */
|
|
__le64 transid;
|
|
__le64 size;
|
|
__le64 nbytes;
|
|
__le64 block_group;
|
|
__le32 nlink;
|
|
__le32 uid;
|
|
__le32 gid;
|
|
__le32 mode;
|
|
__le64 rdev;
|
|
__le64 flags;
|
|
|
|
/* Modification sequence number for NFS */
|
|
__le64 sequence;
|
|
|
|
/*
|
|
* A little future expansion, for more than this we can just grow the
|
|
* inode item and version it
|
|
*/
|
|
__le64 reserved[4];
|
|
struct btrfs_timespec atime;
|
|
struct btrfs_timespec ctime;
|
|
struct btrfs_timespec mtime;
|
|
struct btrfs_timespec otime;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dir_log_item {
|
|
__le64 end;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dir_item {
|
|
struct btrfs_disk_key location;
|
|
__le64 transid;
|
|
__le16 data_len;
|
|
__le16 name_len;
|
|
__u8 type;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
|
|
|
|
/*
|
|
* Internal in-memory flag that a subvolume has been marked for deletion but
|
|
* still visible as a directory
|
|
*/
|
|
#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
|
|
|
|
struct btrfs_root_item {
|
|
struct btrfs_inode_item inode;
|
|
__le64 generation;
|
|
__le64 root_dirid;
|
|
__le64 bytenr;
|
|
__le64 byte_limit;
|
|
__le64 bytes_used;
|
|
__le64 last_snapshot;
|
|
__le64 flags;
|
|
__le32 refs;
|
|
struct btrfs_disk_key drop_progress;
|
|
__u8 drop_level;
|
|
__u8 level;
|
|
|
|
/*
|
|
* The following fields appear after subvol_uuids+subvol_times
|
|
* were introduced.
|
|
*/
|
|
|
|
/*
|
|
* This generation number is used to test if the new fields are valid
|
|
* and up to date while reading the root item. Every time the root item
|
|
* is written out, the "generation" field is copied into this field. If
|
|
* anyone ever mounted the fs with an older kernel, we will have
|
|
* mismatching generation values here and thus must invalidate the
|
|
* new fields. See btrfs_update_root and btrfs_find_last_root for
|
|
* details.
|
|
* The offset of generation_v2 is also used as the start for the memset
|
|
* when invalidating the fields.
|
|
*/
|
|
__le64 generation_v2;
|
|
__u8 uuid[BTRFS_UUID_SIZE];
|
|
__u8 parent_uuid[BTRFS_UUID_SIZE];
|
|
__u8 received_uuid[BTRFS_UUID_SIZE];
|
|
__le64 ctransid; /* Updated when an inode changes */
|
|
__le64 otransid; /* Trans when created */
|
|
__le64 stransid; /* Trans when sent. Non-zero for received subvol. */
|
|
__le64 rtransid; /* Trans when received. Non-zero for received subvol.*/
|
|
struct btrfs_timespec ctime;
|
|
struct btrfs_timespec otime;
|
|
struct btrfs_timespec stime;
|
|
struct btrfs_timespec rtime;
|
|
__le64 reserved[8]; /* For future */
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* This is used for both forward and backward root refs */
|
|
struct btrfs_root_ref {
|
|
__le64 dirid;
|
|
__le64 sequence;
|
|
__le16 name_len;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_disk_balance_args {
|
|
/*
|
|
* Profiles to operate on.
|
|
*
|
|
* SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
|
|
*/
|
|
__le64 profiles;
|
|
|
|
/*
|
|
* Usage filter
|
|
* BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
|
|
* BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
|
|
*/
|
|
union {
|
|
__le64 usage;
|
|
struct {
|
|
__le32 usage_min;
|
|
__le32 usage_max;
|
|
};
|
|
};
|
|
|
|
/* Devid filter */
|
|
__le64 devid;
|
|
|
|
/* Devid subset filter [pstart..pend) */
|
|
__le64 pstart;
|
|
__le64 pend;
|
|
|
|
/* Btrfs virtual address space subset filter [vstart..vend) */
|
|
__le64 vstart;
|
|
__le64 vend;
|
|
|
|
/*
|
|
* Profile to convert to.
|
|
*
|
|
* SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
|
|
*/
|
|
__le64 target;
|
|
|
|
/* BTRFS_BALANCE_ARGS_* */
|
|
__le64 flags;
|
|
|
|
/*
|
|
* BTRFS_BALANCE_ARGS_LIMIT with value 'limit'.
|
|
* BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
|
|
* and maximum.
|
|
*/
|
|
union {
|
|
__le64 limit;
|
|
struct {
|
|
__le32 limit_min;
|
|
__le32 limit_max;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* Process chunks that cross stripes_min..stripes_max devices,
|
|
* BTRFS_BALANCE_ARGS_STRIPES_RANGE.
|
|
*/
|
|
__le32 stripes_min;
|
|
__le32 stripes_max;
|
|
|
|
__le64 unused[6];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* Stores balance parameters to disk so that balance can be properly
|
|
* resumed after crash or unmount.
|
|
*/
|
|
struct btrfs_balance_item {
|
|
/* BTRFS_BALANCE_* */
|
|
__le64 flags;
|
|
|
|
struct btrfs_disk_balance_args data;
|
|
struct btrfs_disk_balance_args meta;
|
|
struct btrfs_disk_balance_args sys;
|
|
|
|
__le64 unused[4];
|
|
} __attribute__ ((__packed__));
|
|
|
|
enum {
|
|
BTRFS_FILE_EXTENT_INLINE = 0,
|
|
BTRFS_FILE_EXTENT_REG = 1,
|
|
BTRFS_FILE_EXTENT_PREALLOC = 2,
|
|
BTRFS_NR_FILE_EXTENT_TYPES = 3,
|
|
};
|
|
|
|
enum btrfs_compression_type {
|
|
BTRFS_COMPRESS_NONE = 0,
|
|
BTRFS_COMPRESS_ZLIB = 1,
|
|
BTRFS_COMPRESS_LZO = 2,
|
|
BTRFS_COMPRESS_ZSTD = 3,
|
|
BTRFS_NR_COMPRESS_TYPES = 4,
|
|
};
|
|
|
|
struct btrfs_file_extent_item {
|
|
/* Transaction id that created this extent */
|
|
__le64 generation;
|
|
/*
|
|
* Max number of bytes to hold this extent in ram.
|
|
*
|
|
* When we split a compressed extent we can't know how big each of the
|
|
* resulting pieces will be. So, this is an upper limit on the size of
|
|
* the extent in ram instead of an exact limit.
|
|
*/
|
|
__le64 ram_bytes;
|
|
|
|
/*
|
|
* 32 bits for the various ways we might encode the data,
|
|
* including compression and encryption. If any of these
|
|
* are set to something a given disk format doesn't understand
|
|
* it is treated like an incompat flag for reading and writing,
|
|
* but not for stat.
|
|
*/
|
|
__u8 compression;
|
|
__u8 encryption;
|
|
__le16 other_encoding; /* Spare for later use */
|
|
|
|
/* Are we inline data or a real extent? */
|
|
__u8 type;
|
|
|
|
/*
|
|
* Disk space consumed by the extent, checksum blocks are not included
|
|
* in these numbers
|
|
*
|
|
* At this offset in the structure, the inline extent data start.
|
|
*/
|
|
__le64 disk_bytenr;
|
|
__le64 disk_num_bytes;
|
|
|
|
/*
|
|
* The logical offset inside the file extent.
|
|
*
|
|
* This allows a file extent to point into the middle of an existing
|
|
* extent on disk, sharing it between two snapshots (useful if some
|
|
* bytes in the middle of the extent have changed).
|
|
*/
|
|
__le64 offset;
|
|
|
|
/*
|
|
* The logical number of bytes this file extent is referencing (no
|
|
* csums included).
|
|
*
|
|
* This always reflects the size uncompressed and without encoding.
|
|
*/
|
|
__le64 num_bytes;
|
|
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_csum_item {
|
|
__u8 csum;
|
|
} __attribute__ ((__packed__));
|
|
|
|
enum btrfs_dev_stat_values {
|
|
/* Disk I/O failure stats */
|
|
BTRFS_DEV_STAT_WRITE_ERRS, /* EIO or EREMOTEIO from lower layers */
|
|
BTRFS_DEV_STAT_READ_ERRS, /* EIO or EREMOTEIO from lower layers */
|
|
BTRFS_DEV_STAT_FLUSH_ERRS, /* EIO or EREMOTEIO from lower layers */
|
|
|
|
/* Stats for indirect indications for I/O failures */
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS, /* Checksum error, bytenr error or
|
|
* contents is illegal: this is an
|
|
* indication that the block was damaged
|
|
* during read or write, or written to
|
|
* wrong location or read from wrong
|
|
* location */
|
|
BTRFS_DEV_STAT_GENERATION_ERRS, /* An indication that blocks have not
|
|
* been written */
|
|
|
|
BTRFS_DEV_STAT_VALUES_MAX
|
|
};
|
|
|
|
struct btrfs_dev_stats_item {
|
|
/*
|
|
* Grow this item struct at the end for future enhancements and keep
|
|
* the existing values unchanged.
|
|
*/
|
|
__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
|
|
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
|
|
|
|
struct btrfs_dev_replace_item {
|
|
/*
|
|
* Grow this item struct at the end for future enhancements and keep
|
|
* the existing values unchanged.
|
|
*/
|
|
__le64 src_devid;
|
|
__le64 cursor_left;
|
|
__le64 cursor_right;
|
|
__le64 cont_reading_from_srcdev_mode;
|
|
|
|
__le64 replace_state;
|
|
__le64 time_started;
|
|
__le64 time_stopped;
|
|
__le64 num_write_errors;
|
|
__le64 num_uncorrectable_read_errors;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* Different types of block groups (and chunks) */
|
|
#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
|
|
#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
|
|
#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
|
|
#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
|
|
#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
|
|
#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
|
|
#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
|
|
#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
|
|
#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
|
|
#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
|
|
#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
|
|
#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
|
|
BTRFS_SPACE_INFO_GLOBAL_RSV)
|
|
|
|
enum btrfs_raid_types {
|
|
BTRFS_RAID_RAID10,
|
|
BTRFS_RAID_RAID1,
|
|
BTRFS_RAID_DUP,
|
|
BTRFS_RAID_RAID0,
|
|
BTRFS_RAID_SINGLE,
|
|
BTRFS_RAID_RAID5,
|
|
BTRFS_RAID_RAID6,
|
|
BTRFS_RAID_RAID1C3,
|
|
BTRFS_RAID_RAID1C4,
|
|
BTRFS_NR_RAID_TYPES
|
|
};
|
|
|
|
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
|
|
BTRFS_BLOCK_GROUP_SYSTEM | \
|
|
BTRFS_BLOCK_GROUP_METADATA)
|
|
|
|
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
|
|
BTRFS_BLOCK_GROUP_RAID1 | \
|
|
BTRFS_BLOCK_GROUP_RAID1C3 | \
|
|
BTRFS_BLOCK_GROUP_RAID1C4 | \
|
|
BTRFS_BLOCK_GROUP_RAID5 | \
|
|
BTRFS_BLOCK_GROUP_RAID6 | \
|
|
BTRFS_BLOCK_GROUP_DUP | \
|
|
BTRFS_BLOCK_GROUP_RAID10)
|
|
#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
|
|
BTRFS_BLOCK_GROUP_RAID6)
|
|
|
|
#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
|
|
BTRFS_BLOCK_GROUP_RAID1C3 | \
|
|
BTRFS_BLOCK_GROUP_RAID1C4)
|
|
|
|
/*
|
|
* We need a bit for restriper to be able to tell when chunks of type
|
|
* SINGLE are available. This "extended" profile format is used in
|
|
* fs_info->avail_*_alloc_bits (in-memory) and balance item fields
|
|
* (on-disk). The corresponding on-disk bit in chunk.type is reserved
|
|
* to avoid remappings between two formats in future.
|
|
*/
|
|
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
|
|
|
|
/*
|
|
* A fake block group type that is used to communicate global block reserve
|
|
* size to userspace via the SPACE_INFO ioctl.
|
|
*/
|
|
#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
|
|
|
|
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
|
|
BTRFS_AVAIL_ALLOC_BIT_SINGLE)
|
|
|
|
static inline __u64 chunk_to_extended(__u64 flags)
|
|
{
|
|
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
|
|
flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
|
|
return flags;
|
|
}
|
|
static inline __u64 extended_to_chunk(__u64 flags)
|
|
{
|
|
return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
}
|
|
|
|
struct btrfs_block_group_item {
|
|
__le64 used;
|
|
__le64 chunk_objectid;
|
|
__le64 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_free_space_info {
|
|
__le32 extent_count;
|
|
__le32 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
|
|
|
|
#define BTRFS_QGROUP_LEVEL_SHIFT 48
|
|
static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
|
|
{
|
|
return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
|
|
}
|
|
|
|
/* Is subvolume quota turned on? */
|
|
#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
|
|
|
|
/* Is qgroup rescan running? */
|
|
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
|
|
|
|
/*
|
|
* Some qgroup entries are known to be out of date, either because the
|
|
* configuration has changed in a way that makes a rescan necessary, or
|
|
* because the fs has been mounted with a non-qgroup-aware version.
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
|
|
|
|
#define BTRFS_QGROUP_STATUS_VERSION 1
|
|
|
|
struct btrfs_qgroup_status_item {
|
|
__le64 version;
|
|
/*
|
|
* The generation is updated during every commit. As older
|
|
* versions of btrfs are not aware of qgroups, it will be
|
|
* possible to detect inconsistencies by checking the
|
|
* generation on mount time.
|
|
*/
|
|
__le64 generation;
|
|
|
|
/* Flag definitions see above */
|
|
__le64 flags;
|
|
|
|
/*
|
|
* Only used during scanning to record the progress of the scan.
|
|
* It contains a logical address.
|
|
*/
|
|
__le64 rescan;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_qgroup_info_item {
|
|
__le64 generation;
|
|
__le64 rfer;
|
|
__le64 rfer_cmpr;
|
|
__le64 excl;
|
|
__le64 excl_cmpr;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* Flags definition for qgroup limits
|
|
*
|
|
* Used by:
|
|
* struct btrfs_qgroup_limit.flags
|
|
* struct btrfs_qgroup_limit_item.flags
|
|
*/
|
|
#define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0)
|
|
#define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1)
|
|
#define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2)
|
|
#define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3)
|
|
#define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4)
|
|
#define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5)
|
|
|
|
struct btrfs_qgroup_limit_item {
|
|
/* Only updated when any of the other values change. */
|
|
__le64 flags;
|
|
__le64 max_rfer;
|
|
__le64 max_excl;
|
|
__le64 rsv_rfer;
|
|
__le64 rsv_excl;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* Just in case we somehow lose the roots and are not able to mount,
|
|
* we store an array of the roots from previous transactions in the super.
|
|
*/
|
|
#define BTRFS_NUM_BACKUP_ROOTS 4
|
|
struct btrfs_root_backup {
|
|
__le64 tree_root;
|
|
__le64 tree_root_gen;
|
|
|
|
__le64 chunk_root;
|
|
__le64 chunk_root_gen;
|
|
|
|
__le64 extent_root;
|
|
__le64 extent_root_gen;
|
|
|
|
__le64 fs_root;
|
|
__le64 fs_root_gen;
|
|
|
|
__le64 dev_root;
|
|
__le64 dev_root_gen;
|
|
|
|
__le64 csum_root;
|
|
__le64 csum_root_gen;
|
|
|
|
__le64 total_bytes;
|
|
__le64 bytes_used;
|
|
__le64 num_devices;
|
|
/* future */
|
|
__le64 unused_64[4];
|
|
|
|
u8 tree_root_level;
|
|
u8 chunk_root_level;
|
|
u8 extent_root_level;
|
|
u8 fs_root_level;
|
|
u8 dev_root_level;
|
|
u8 csum_root_level;
|
|
/* future and to align */
|
|
u8 unused_8[10];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* This is a very generous portion of the super block, giving us room to
|
|
* translate 14 chunks with 3 stripes each.
|
|
*/
|
|
#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
|
|
|
|
#define BTRFS_LABEL_SIZE 256
|
|
|
|
/* The super block basically lists the main trees of the FS. */
|
|
struct btrfs_super_block {
|
|
/* The first 4 fields must match struct btrfs_header */
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
/* FS specific UUID, visible to user */
|
|
u8 fsid[BTRFS_FSID_SIZE];
|
|
__le64 bytenr; /* this block number */
|
|
__le64 flags;
|
|
|
|
/* Allowed to be different from the btrfs_header from here own down. */
|
|
__le64 magic;
|
|
__le64 generation;
|
|
__le64 root;
|
|
__le64 chunk_root;
|
|
__le64 log_root;
|
|
|
|
/* This will help find the new super based on the log root. */
|
|
__le64 log_root_transid;
|
|
__le64 total_bytes;
|
|
__le64 bytes_used;
|
|
__le64 root_dir_objectid;
|
|
__le64 num_devices;
|
|
__le32 sectorsize;
|
|
__le32 nodesize;
|
|
__le32 __unused_leafsize;
|
|
__le32 stripesize;
|
|
__le32 sys_chunk_array_size;
|
|
__le64 chunk_root_generation;
|
|
__le64 compat_flags;
|
|
__le64 compat_ro_flags;
|
|
__le64 incompat_flags;
|
|
__le16 csum_type;
|
|
u8 root_level;
|
|
u8 chunk_root_level;
|
|
u8 log_root_level;
|
|
struct btrfs_dev_item dev_item;
|
|
|
|
char label[BTRFS_LABEL_SIZE];
|
|
|
|
__le64 cache_generation;
|
|
__le64 uuid_tree_generation;
|
|
|
|
/* The UUID written into btree blocks */
|
|
u8 metadata_uuid[BTRFS_FSID_SIZE];
|
|
|
|
/* Future expansion */
|
|
__le64 reserved[28];
|
|
u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
|
|
struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* Feature flags
|
|
*
|
|
* Used by:
|
|
* struct btrfs_super_block::(compat|compat_ro|incompat)_flags
|
|
* struct btrfs_ioctl_feature_flags
|
|
*/
|
|
#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE (1ULL << 0)
|
|
|
|
/*
|
|
* Older kernels (< 4.9) on big-endian systems produced broken free space tree
|
|
* bitmaps, and btrfs-progs also used to corrupt the free space tree (versions
|
|
* < 4.7.3). If this bit is clear, then the free space tree cannot be trusted.
|
|
* btrfs-progs can also intentionally clear this bit to ask the kernel to
|
|
* rebuild the free space tree, however this might not work on older kernels
|
|
* that do not know about this bit. If not sure, clear the cache manually on
|
|
* first mount when booting older kernel versions.
|
|
*/
|
|
#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID (1ULL << 1)
|
|
|
|
#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0)
|
|
#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1)
|
|
#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2)
|
|
#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3)
|
|
#define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD (1ULL << 4)
|
|
|
|
/*
|
|
* Older kernels tried to do bigger metadata blocks, but the
|
|
* code was pretty buggy. Lets not let them try anymore.
|
|
*/
|
|
#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
|
|
|
|
#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
|
|
#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
|
|
#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8)
|
|
#define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9)
|
|
#define BTRFS_FEATURE_INCOMPAT_METADATA_UUID (1ULL << 10)
|
|
#define BTRFS_FEATURE_INCOMPAT_RAID1C34 (1ULL << 11)
|
|
|
|
/*
|
|
* Compat flags that we support.
|
|
*
|
|
* If any incompat flags are set other than the ones specified below then we
|
|
* will fail to mount.
|
|
*/
|
|
#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
|
|
#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
|
|
#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
|
|
|
|
#define BTRFS_FEATURE_COMPAT_RO_SUPP \
|
|
(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
|
|
BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
|
|
|
|
#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
|
|
#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
|
|
|
|
#define BTRFS_FEATURE_INCOMPAT_SUPP \
|
|
(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
|
|
BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
|
|
BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
|
|
BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
|
|
BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
|
|
BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
|
|
BTRFS_FEATURE_INCOMPAT_RAID56 | \
|
|
BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
|
|
BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
|
|
BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
|
|
BTRFS_FEATURE_INCOMPAT_RAID1C34)
|
|
|
|
#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
|
|
(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
|
|
#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
|
|
|
|
#define BTRFS_BACKREF_REV_MAX 256
|
|
#define BTRFS_BACKREF_REV_SHIFT 56
|
|
#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
|
|
BTRFS_BACKREF_REV_SHIFT)
|
|
|
|
#define BTRFS_OLD_BACKREF_REV 0
|
|
#define BTRFS_MIXED_BACKREF_REV 1
|
|
|
|
#define BTRFS_MAX_LEVEL 8
|
|
|
|
/* Every tree block (leaf or node) starts with this header. */
|
|
struct btrfs_header {
|
|
/* These first four must match the super block */
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
|
|
__le64 bytenr; /* Which block this node is supposed to live in */
|
|
__le64 flags;
|
|
|
|
/* Allowed to be different from the super from here on down. */
|
|
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
|
|
__le64 generation;
|
|
__le64 owner;
|
|
__le32 nritems;
|
|
u8 level;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* A leaf is full of items. Offset and size tell us where to find
|
|
* the item in the leaf (relative to the start of the data area).
|
|
*/
|
|
struct btrfs_item {
|
|
struct btrfs_disk_key key;
|
|
__le32 offset;
|
|
__le32 size;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* leaves have an item area and a data area:
|
|
* [item0, item1....itemN] [free space] [dataN...data1, data0]
|
|
*
|
|
* The data is separate from the items to get the keys closer together
|
|
* during searches.
|
|
*/
|
|
struct btrfs_leaf {
|
|
struct btrfs_header header;
|
|
struct btrfs_item items[];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* All non-leaf blocks are nodes, they hold only keys and pointers to children
|
|
* blocks.
|
|
*/
|
|
struct btrfs_key_ptr {
|
|
struct btrfs_disk_key key;
|
|
__le64 blockptr;
|
|
__le64 generation;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_node {
|
|
struct btrfs_header header;
|
|
struct btrfs_key_ptr ptrs[];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#endif /* __BTRFS_TREE_H__ */
|