u-boot/cpu/blackfin/serial.h
Mike Frysinger 9171fc8172 Blackfin: unify cpu and boot modes
All of the duplicated code for Blackfin processors and boot modes have been
unified.  After all, the core is the same for all processors, just the
peripheral set differs (which gets handled in the drivers).

Signed-off-by: Mike Frysinger <vapier@gentoo.org>
2008-03-30 15:50:19 -04:00

275 lines
7.2 KiB
C

/*
* serial.h - common serial defines for early debug and serial driver.
* any functions defined here must be always_inline since
* initcode cannot have function calls.
*
* Copyright (c) 2004-2007 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#ifndef __BFIN_CPU_SERIAL_H__
#define __BFIN_CPU_SERIAL_H__
#include <asm/blackfin.h>
#include <asm/mach-common/bits/uart.h>
#ifdef CONFIG_DEBUG_EARLY_SERIAL
# define BFIN_DEBUG_EARLY_SERIAL 1
#else
# define BFIN_DEBUG_EARLY_SERIAL 0
#endif
#define LOB(x) ((x) & 0xFF)
#define HIB(x) (((x) >> 8) & 0xFF)
#ifndef UART_LSR
# if (CONFIG_UART_CONSOLE == 3)
# define pUART_DLH pUART3_DLH
# define pUART_DLL pUART3_DLL
# define pUART_GCTL pUART3_GCTL
# define pUART_IER pUART3_IER
# define pUART_IERC pUART3_IER_CLEAR
# define pUART_LCR pUART3_LCR
# define pUART_LSR pUART3_LSR
# define pUART_RBR pUART3_RBR
# define pUART_THR pUART3_THR
# define UART_THR UART3_THR
# define UART_LSR UART3_LSR
# elif (CONFIG_UART_CONSOLE == 2)
# define pUART_DLH pUART2_DLH
# define pUART_DLL pUART2_DLL
# define pUART_GCTL pUART2_GCTL
# define pUART_IER pUART2_IER
# define pUART_IERC pUART2_IER_CLEAR
# define pUART_LCR pUART2_LCR
# define pUART_LSR pUART2_LSR
# define pUART_RBR pUART2_RBR
# define pUART_THR pUART2_THR
# define UART_THR UART2_THR
# define UART_LSR UART2_LSR
# elif (CONFIG_UART_CONSOLE == 1)
# define pUART_DLH pUART1_DLH
# define pUART_DLL pUART1_DLL
# define pUART_GCTL pUART1_GCTL
# define pUART_IER pUART1_IER
# define pUART_IERC pUART1_IER_CLEAR
# define pUART_LCR pUART1_LCR
# define pUART_LSR pUART1_LSR
# define pUART_RBR pUART1_RBR
# define pUART_THR pUART1_THR
# define UART_THR UART1_THR
# define UART_LSR UART1_LSR
# elif (CONFIG_UART_CONSOLE == 0)
# define pUART_DLH pUART0_DLH
# define pUART_DLL pUART0_DLL
# define pUART_GCTL pUART0_GCTL
# define pUART_IER pUART0_IER
# define pUART_IERC pUART0_IER_CLEAR
# define pUART_LCR pUART0_LCR
# define pUART_LSR pUART0_LSR
# define pUART_RBR pUART0_RBR
# define pUART_THR pUART0_THR
# define UART_THR UART0_THR
# define UART_LSR UART0_LSR
# endif
#endif
#ifndef __ASSEMBLY__
/* We cannot use get_sclk() in initcode as it is defined elsewhere. */
#ifdef BFIN_IN_INITCODE
# define get_sclk() (CONFIG_CLKIN_HZ * CONFIG_VCO_MULT / CONFIG_SCLK_DIV)
#endif
#ifdef __ADSPBF54x__
# define ACCESS_LATCH()
# define ACCESS_PORT_IER()
# define CLEAR_IER() (*pUART_IERC = 0)
#else
# define ACCESS_LATCH() (*pUART_LCR |= DLAB)
# define ACCESS_PORT_IER() (*pUART_LCR &= ~DLAB)
# define CLEAR_IER() (*pUART_IER = 0)
#endif
__attribute__((always_inline))
static inline void serial_do_portmux(void)
{
#ifdef __ADSPBF52x__
# define DO_MUX(port, mux, tx, rx) \
bfin_write_PORT##port##_MUX((bfin_read_PORT##port##_MUX() & ~PORT_x_MUX_##mux##_MASK) | PORT_x_MUX_##mux##_FUNC_3); \
bfin_write_PORT##port##_FER(bfin_read_PORT##port##_FER() | P##port##tx | P##port##rx);
switch (CONFIG_UART_CONSOLE) {
case 0: DO_MUX(G, 2, 7, 8); break; /* Port G; mux 2; PG2 and PG8 */
case 1: DO_MUX(F, 5, 14, 15); break; /* Port F; mux 5; PF14 and PF15 */
}
SSYNC();
#elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__)
# define DO_MUX(func, tx, rx) \
bfin_write_PORT_MUX(bfin_read_PORT_MUX() & ~(func)); \
bfin_write_PORTF_FER(bfin_read_PORTF_FER() | PF##tx | PF##rx);
switch (CONFIG_UART_CONSOLE) {
case 0: DO_MUX(PFDE, 0, 1); break;
case 1: DO_MUX(PFTE, 2, 3); break;
}
SSYNC();
#elif defined(__ADSPBF54x__)
# define DO_MUX(port, tx, rx) \
bfin_write_PORT##port##_MUX((bfin_read_PORT##port##_MUX() & ~(PORT_x_MUX_##tx##_MASK | PORT_x_MUX_##rx##_MASK)) | PORT_x_MUX_##tx##_FUNC_1 | PORT_x_MUX_##rx##_FUNC_1); \
bfin_write_PORT##port##_FER(bfin_read_PORT##port##_FER() | P##port##tx | P##port##rx);
switch (CONFIG_UART_CONSOLE) {
case 0: DO_MUX(E, 7, 8); break; /* Port E; PE7 and PE8 */
case 1: DO_MUX(H, 0, 1); break; /* Port H; PH0 and PH1 */
case 2: DO_MUX(B, 4, 5); break; /* Port B; PB4 and PB5 */
case 3: DO_MUX(B, 6, 7); break; /* Port B; PB6 and PB7 */
}
SSYNC();
#endif
}
__attribute__((always_inline))
static inline void serial_early_init(void)
{
/* handle portmux crap on different Blackfins */
serial_do_portmux();
/* Enable UART */
*pUART_GCTL = UCEN;
/* Set LCR to Word Lengh 8-bit word select */
*pUART_LCR = WLS_8;
SSYNC();
}
__attribute__((always_inline))
static inline uint32_t serial_early_get_baud(void)
{
/* If the UART isnt enabled, then we are booting an LDR
* from a non-UART source (so like flash) which means
* the baud rate here is meaningless.
*/
if ((*pUART_GCTL & UCEN) != UCEN)
return 0;
#if (0) /* See comment for serial_reset_baud() in initcode.c */
/* Set DLAB in LCR to Access DLL and DLH */
ACCESS_LATCH();
SSYNC();
uint8_t dll = *pUART_DLL;
uint8_t dlh = *pUART_DLH;
uint16_t divisor = (dlh << 8) | dll;
uint32_t baud = get_sclk() / (divisor * 16);
/* Clear DLAB in LCR to Access THR RBR IER */
ACCESS_PORT_IER();
SSYNC();
return baud;
#else
return CONFIG_BAUDRATE;
#endif
}
__attribute__((always_inline))
static inline void serial_early_set_baud(uint32_t baud)
{
/* Translate from baud into divisor in terms of SCLK.
* The +1 is to make sure we over sample just a little
* rather than under sample the incoming signals.
*/
uint16_t divisor = (get_sclk() / (baud * 16)) + 1;
/* Set DLAB in LCR to Access DLL and DLH */
ACCESS_LATCH();
SSYNC();
/* Program the divisor to get the baud rate we want */
*pUART_DLL = LOB(divisor);
*pUART_DLH = HIB(divisor);
SSYNC();
/* Clear DLAB in LCR to Access THR RBR IER */
ACCESS_PORT_IER();
SSYNC();
}
#ifndef BFIN_IN_INITCODE
__attribute__((always_inline))
static inline void serial_early_puts(const char *s)
{
if (BFIN_DEBUG_EARLY_SERIAL) {
serial_puts("Early: ");
serial_puts(s);
}
}
#endif
#else
.macro serial_early_init
#ifdef CONFIG_DEBUG_EARLY_SERIAL
call _serial_initialize;
#endif
.endm
.macro serial_early_set_baud
#ifdef CONFIG_DEBUG_EARLY_SERIAL
R0.L = LO(CONFIG_BAUDRATE);
R0.H = HI(CONFIG_BAUDRATE);
call _serial_set_baud;
#endif
.endm
/* Recursively expand calls to _serial_putc for every byte
* passed to us. Append a newline when we're all done.
*/
.macro _serial_early_putc byte:req morebytes:vararg
#ifdef CONFIG_DEBUG_EARLY_SERIAL
R0 = \byte;
call _serial_putc;
.ifnb \morebytes
_serial_early_putc \morebytes
.else
.if (\byte != '\n')
_serial_early_putc '\n'
.endif
.endif
#endif
.endm
/* Wrapper around recurisve _serial_early_putc macro which
* simply prepends the string "Early: "
*/
.macro serial_early_putc byte:req morebytes:vararg
#ifdef CONFIG_DEBUG_EARLY_SERIAL
_serial_early_putc 'E', 'a', 'r', 'l', 'y', ':', ' ', \byte, \morebytes
#endif
.endm
/* Since we embed the string right into our .text section, we need
* to find its address. We do this by getting our PC and adding 2
* bytes (which is the length of the jump instruction). Then we
* pass this address to serial_puts().
*/
#ifdef CONFIG_DEBUG_EARLY_SERIAL
# define serial_early_puts(str) \
call _get_pc; \
jump 1f; \
.ascii "Early:"; \
.ascii __FILE__; \
.ascii ": "; \
.ascii str; \
.asciz "\n"; \
.align 4; \
1: \
R0 += 2; \
call _serial_puts;
#else
# define serial_early_puts(str)
#endif
#endif
#endif