u-boot/drivers/video/rockchip/rk_mipi.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

332 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
* Author: Eric Gao <eric.gao@rock-chips.com>
*/
#include <common.h>
#include <clk.h>
#include <display.h>
#include <dm.h>
#include <fdtdec.h>
#include <panel.h>
#include <regmap.h>
#include "rk_mipi.h"
#include <syscon.h>
#include <asm/gpio.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <dm/uclass-internal.h>
#include <linux/kernel.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3399.h>
#include <asm/arch/grf_rk3399.h>
#include <asm/arch/rockchip_mipi_dsi.h>
DECLARE_GLOBAL_DATA_PTR;
int rk_mipi_read_timing(struct udevice *dev,
struct display_timing *timing)
{
int ret;
ret = fdtdec_decode_display_timing(gd->fdt_blob, dev_of_offset(dev),
0, timing);
if (ret) {
debug("%s: Failed to decode display timing (ret=%d)\n",
__func__, ret);
return -EINVAL;
}
return 0;
}
/*
* Register write function used only for mipi dsi controller.
* Parameter:
* @regs: mipi controller address
* @reg: combination of regaddr(16bit)|bitswidth(8bit)|offset(8bit) you can
* use define in rk_mipi.h directly for this parameter
* @val: value that will be write to specified bits of register
*/
static void rk_mipi_dsi_write(uintptr_t regs, u32 reg, u32 val)
{
u32 dat;
u32 mask;
u32 offset = (reg >> OFFSET_SHIFT) & 0xff;
u32 bits = (reg >> BITS_SHIFT) & 0xff;
uintptr_t addr = (reg >> ADDR_SHIFT) + regs;
/* Mask for specifiled bits,the corresponding bits will be clear */
mask = ~((0xffffffff << offset) & (0xffffffff >> (32 - offset - bits)));
/* Make sure val in the available range */
val &= ~(0xffffffff << bits);
/* Get register's original val */
dat = readl(addr);
/* Clear specified bits */
dat &= mask;
/* Fill specified bits */
dat |= val << offset;
writel(dat, addr);
}
int rk_mipi_dsi_enable(struct udevice *dev,
const struct display_timing *timing)
{
int node, timing_node;
int val;
struct rk_mipi_priv *priv = dev_get_priv(dev);
uintptr_t regs = priv->regs;
u32 txbyte_clk = priv->txbyte_clk;
u32 txesc_clk = priv->txesc_clk;
txesc_clk = txbyte_clk/(txbyte_clk/txesc_clk + 1);
/* Set Display timing parameter */
rk_mipi_dsi_write(regs, VID_HSA_TIME, timing->hsync_len.typ);
rk_mipi_dsi_write(regs, VID_HBP_TIME, timing->hback_porch.typ);
rk_mipi_dsi_write(regs, VID_HLINE_TIME, (timing->hsync_len.typ
+ timing->hback_porch.typ + timing->hactive.typ
+ timing->hfront_porch.typ));
rk_mipi_dsi_write(regs, VID_VSA_LINES, timing->vsync_len.typ);
rk_mipi_dsi_write(regs, VID_VBP_LINES, timing->vback_porch.typ);
rk_mipi_dsi_write(regs, VID_VFP_LINES, timing->vfront_porch.typ);
rk_mipi_dsi_write(regs, VID_ACTIVE_LINES, timing->vactive.typ);
/* Set Signal Polarity */
val = (timing->flags & DISPLAY_FLAGS_HSYNC_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, HSYNC_ACTIVE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_VSYNC_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, VSYNC_ACTIVE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_DE_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, DISPLAY_FLAGS_DE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) ? 1 : 0;
rk_mipi_dsi_write(regs, COLORM_ACTIVE_LOW, val);
/* Set video mode */
rk_mipi_dsi_write(regs, CMD_VIDEO_MODE, VIDEO_MODE);
/* Set video mode transmission type as burst mode */
rk_mipi_dsi_write(regs, VID_MODE_TYPE, BURST_MODE);
/* Set pix num in a video package */
rk_mipi_dsi_write(regs, VID_PKT_SIZE, 0x4b0);
/* Set dpi color coding depth 24 bit */
timing_node = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev),
"display-timings");
node = fdt_first_subnode(gd->fdt_blob, timing_node);
val = fdtdec_get_int(gd->fdt_blob, node, "bits-per-pixel", -1);
switch (val) {
case 16:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_16BIT_CFG_1);
break;
case 24:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
break;
case 30:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_30BIT);
break;
default:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
}
/* Enable low power mode */
rk_mipi_dsi_write(regs, LP_CMD_EN, 1);
rk_mipi_dsi_write(regs, LP_HFP_EN, 1);
rk_mipi_dsi_write(regs, LP_VACT_EN, 1);
rk_mipi_dsi_write(regs, LP_VFP_EN, 1);
rk_mipi_dsi_write(regs, LP_VBP_EN, 1);
rk_mipi_dsi_write(regs, LP_VSA_EN, 1);
/* Division for timeout counter clk */
rk_mipi_dsi_write(regs, TO_CLK_DIVISION, 0x0a);
/* Tx esc clk division from txbyte clk */
rk_mipi_dsi_write(regs, TX_ESC_CLK_DIVISION, txbyte_clk/txesc_clk);
/* Timeout count for hs<->lp transation between Line period */
rk_mipi_dsi_write(regs, HSTX_TO_CNT, 0x3e8);
/* Phy State transfer timing */
rk_mipi_dsi_write(regs, PHY_STOP_WAIT_TIME, 32);
rk_mipi_dsi_write(regs, PHY_TXREQUESTCLKHS, 1);
rk_mipi_dsi_write(regs, PHY_HS2LP_TIME, 0x14);
rk_mipi_dsi_write(regs, PHY_LP2HS_TIME, 0x10);
rk_mipi_dsi_write(regs, MAX_RD_TIME, 0x2710);
/* Power on */
rk_mipi_dsi_write(regs, SHUTDOWNZ, 1);
return 0;
}
/* rk mipi dphy write function. It is used to write test data to dphy */
static void rk_mipi_phy_write(uintptr_t regs, unsigned char test_code,
unsigned char *test_data, unsigned char size)
{
int i = 0;
/* Write Test code */
rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
rk_mipi_dsi_write(regs, PHY_TESTDIN, test_code);
rk_mipi_dsi_write(regs, PHY_TESTEN, 1);
rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
rk_mipi_dsi_write(regs, PHY_TESTEN, 0);
/* Write Test data */
for (i = 0; i < size; i++) {
rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
rk_mipi_dsi_write(regs, PHY_TESTDIN, test_data[i]);
rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
}
}
/*
* Mipi dphy config function. Calculate the suitable prediv, feedback div,
* fsfreqrang value ,cap ,lpf and so on according to the given pix clk rate,
* and then enable phy.
*/
int rk_mipi_phy_enable(struct udevice *dev)
{
int i;
struct rk_mipi_priv *priv = dev_get_priv(dev);
uintptr_t regs = priv->regs;
u64 fbdiv;
u64 prediv = 1;
u32 max_fbdiv = 512;
u32 max_prediv, min_prediv;
u64 ddr_clk = priv->phy_clk;
u32 refclk = priv->ref_clk;
u32 remain = refclk;
unsigned char test_data[2] = {0};
int freq_rang[][2] = {
{90, 0x01}, {100, 0x10}, {110, 0x20}, {130, 0x01},
{140, 0x11}, {150, 0x21}, {170, 0x02}, {180, 0x12},
{200, 0x22}, {220, 0x03}, {240, 0x13}, {250, 0x23},
{270, 0x04}, {300, 0x14}, {330, 0x05}, {360, 0x15},
{400, 0x25}, {450, 0x06}, {500, 0x16}, {550, 0x07},
{600, 0x17}, {650, 0x08}, {700, 0x18}, {750, 0x09},
{800, 0x19}, {850, 0x29}, {900, 0x39}, {950, 0x0a},
{1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b},
{1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c},
{1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c}
};
/* Shutdown mode */
rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 0);
rk_mipi_dsi_write(regs, PHY_RSTZ, 0);
rk_mipi_dsi_write(regs, PHY_TESTCLR, 1);
/* Pll locking */
rk_mipi_dsi_write(regs, PHY_TESTCLR, 0);
/* config cp and lfp */
test_data[0] = 0x80 | (ddr_clk / (200 * MHz)) << 3 | 0x3;
rk_mipi_phy_write(regs, CODE_PLL_VCORANGE_VCOCAP, test_data, 1);
test_data[0] = 0x8;
rk_mipi_phy_write(regs, CODE_PLL_CPCTRL, test_data, 1);
test_data[0] = 0x80 | 0x40;
rk_mipi_phy_write(regs, CODE_PLL_LPF_CP, test_data, 1);
/* select the suitable value for fsfreqrang reg */
for (i = 0; i < ARRAY_SIZE(freq_rang); i++) {
if (ddr_clk / (MHz) >= freq_rang[i][0])
break;
}
if (i == ARRAY_SIZE(freq_rang)) {
debug("%s: Dphy freq out of range!\n", __func__);
return -EINVAL;
}
test_data[0] = freq_rang[i][1] << 1;
rk_mipi_phy_write(regs, CODE_HS_RX_LANE0, test_data, 1);
/*
* Calculate the best ddrclk and it's corresponding div value. If the
* given pixelclock is great than 250M, ddrclk will be fix 1500M.
* Otherwise,
* it's equal to ddr_clk= pixclk * 6. 40MHz >= refclk / prediv >= 5MHz
* according to spec.
*/
max_prediv = (refclk / (5 * MHz));
min_prediv = ((refclk / (40 * MHz)) ? (refclk / (40 * MHz) + 1) : 1);
debug("%s: DEBUG: max_prediv=%u, min_prediv=%u\n", __func__, max_prediv,
min_prediv);
if (max_prediv < min_prediv) {
debug("%s: Invalid refclk value\n", __func__);
return -EINVAL;
}
/* Calculate the best refclk and feedback division value for dphy pll */
for (i = min_prediv; i < max_prediv; i++) {
if ((ddr_clk * i % refclk < remain) &&
(ddr_clk * i / refclk) < max_fbdiv) {
prediv = i;
remain = ddr_clk * i % refclk;
}
}
fbdiv = ddr_clk * prediv / refclk;
ddr_clk = refclk * fbdiv / prediv;
priv->phy_clk = ddr_clk;
debug("%s: DEBUG: refclk=%u, refclk=%llu, fbdiv=%llu, phyclk=%llu\n",
__func__, refclk, prediv, fbdiv, ddr_clk);
/* config prediv and feedback reg */
test_data[0] = prediv - 1;
rk_mipi_phy_write(regs, CODE_PLL_INPUT_DIV_RAT, test_data, 1);
test_data[0] = (fbdiv - 1) & 0x1f;
rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
test_data[0] = (fbdiv - 1) >> 5 | 0x80;
rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
test_data[0] = 0x30;
rk_mipi_phy_write(regs, CODE_PLL_INPUT_LOOP_DIV_RAT, test_data, 1);
/* rest config */
test_data[0] = 0x4d;
rk_mipi_phy_write(regs, CODE_BANDGAP_BIAS_CTRL, test_data, 1);
test_data[0] = 0x3d;
rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
test_data[0] = 0xdf;
rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
test_data[0] = 0x7;
rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
test_data[0] = 0x80 | 0x7;
rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
test_data[0] = 0x80 | 15;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEREQUSETSTATETIME,
test_data, 1);
test_data[0] = 0x80 | 85;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEPREPARESTATETIME,
test_data, 1);
test_data[0] = 0x40 | 10;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEHSZEROSTATETIME,
test_data, 1);
/* enter into stop mode */
rk_mipi_dsi_write(regs, N_LANES, 0x03);
rk_mipi_dsi_write(regs, PHY_ENABLECLK, 1);
rk_mipi_dsi_write(regs, PHY_FORCEPLL, 1);
rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 1);
rk_mipi_dsi_write(regs, PHY_RSTZ, 1);
return 0;
}